p7zip/CPP/7zip/Crypto/WzAes.cpp
2017-10-11 12:35:36 +02:00

236 lines
5.2 KiB
C++

// Crypto/WzAes.cpp
/*
This code implements Brian Gladman's scheme
specified in "A Password Based File Encryption Utility".
Note: you must include MyAes.cpp to project to initialize AES tables
*/
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "../Common/StreamUtils.h"
#include "Pbkdf2HmacSha1.h"
#include "RandGen.h"
#include "WzAes.h"
// define it if you don't want to use speed-optimized version of NSha1::Pbkdf2Hmac
// #define _NO_WZAES_OPTIMIZATIONS
namespace NCrypto {
namespace NWzAes {
const unsigned kAesKeySizeMax = 32;
static const UInt32 kNumKeyGenIterations = 1000;
STDMETHODIMP CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
if (size > kPasswordSizeMax)
return E_INVALIDARG;
_key.Password.CopyFrom(data, (size_t)size);
return S_OK;
}
void CBaseCoder::Init2()
{
const unsigned dkSizeMax32 = (2 * kAesKeySizeMax + kPwdVerifSize + 3) / 4;
Byte dk[dkSizeMax32 * 4];
const unsigned keySize = _key.GetKeySize();
const unsigned dkSize = 2 * keySize + kPwdVerifSize;
// for (unsigned ii = 0; ii < 1000; ii++)
{
#ifdef _NO_WZAES_OPTIMIZATIONS
NSha1::Pbkdf2Hmac(
_key.Password, _key.Password.Size(),
_key.Salt, _key.GetSaltSize(),
kNumKeyGenIterations,
dk, dkSize);
#else
UInt32 dk32[dkSizeMax32];
const unsigned dkSize32 = (dkSize + 3) / 4;
UInt32 salt[kSaltSizeMax / 4];
unsigned numSaltWords = _key.GetNumSaltWords();
for (unsigned i = 0; i < numSaltWords; i++)
{
const Byte *src = _key.Salt + i * 4;
salt[i] = GetBe32(src);
}
NSha1::Pbkdf2Hmac32(
_key.Password, _key.Password.Size(),
salt, numSaltWords,
kNumKeyGenIterations,
dk32, dkSize32);
/*
for (unsigned j = 0; j < dkSize; j++)
dk[j] = (Byte)(dk32[j / 4] >> (24 - 8 * (j & 3)));
*/
for (unsigned j = 0; j < dkSize32; j++)
SetBe32(dk + j * 4, dk32[j]);
#endif
}
_hmac.SetKey(dk + keySize, keySize);
memcpy(_key.PwdVerifComputed, dk + 2 * keySize, kPwdVerifSize);
Aes_SetKey_Enc(_aes.aes + _aes.offset + 8, dk, keySize);
AesCtr2_Init(&_aes);
}
STDMETHODIMP CBaseCoder::Init()
{
return S_OK;
}
HRESULT CEncoder::WriteHeader(ISequentialOutStream *outStream)
{
unsigned saltSize = _key.GetSaltSize();
g_RandomGenerator.Generate(_key.Salt, saltSize);
Init2();
RINOK(WriteStream(outStream, _key.Salt, saltSize));
return WriteStream(outStream, _key.PwdVerifComputed, kPwdVerifSize);
}
HRESULT CEncoder::WriteFooter(ISequentialOutStream *outStream)
{
Byte mac[kMacSize];
_hmac.Final(mac, kMacSize);
return WriteStream(outStream, mac, kMacSize);
}
/*
STDMETHODIMP CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size)
{
if (size != 1)
return E_INVALIDARG;
_key.Init();
return SetKeyMode(data[0]) ? S_OK : E_INVALIDARG;
}
*/
HRESULT CDecoder::ReadHeader(ISequentialInStream *inStream)
{
unsigned saltSize = _key.GetSaltSize();
unsigned extraSize = saltSize + kPwdVerifSize;
Byte temp[kSaltSizeMax + kPwdVerifSize];
RINOK(ReadStream_FAIL(inStream, temp, extraSize));
unsigned i;
for (i = 0; i < saltSize; i++)
_key.Salt[i] = temp[i];
for (i = 0; i < kPwdVerifSize; i++)
_pwdVerifFromArchive[i] = temp[saltSize + i];
return S_OK;
}
static inline bool CompareArrays(const Byte *p1, const Byte *p2, unsigned size)
{
for (unsigned i = 0; i < size; i++)
if (p1[i] != p2[i])
return false;
return true;
}
bool CDecoder::Init_and_CheckPassword()
{
Init2();
return CompareArrays(_key.PwdVerifComputed, _pwdVerifFromArchive, kPwdVerifSize);
}
HRESULT CDecoder::CheckMac(ISequentialInStream *inStream, bool &isOK)
{
isOK = false;
Byte mac1[kMacSize];
RINOK(ReadStream_FAIL(inStream, mac1, kMacSize));
Byte mac2[kMacSize];
_hmac.Final(mac2, kMacSize);
isOK = CompareArrays(mac1, mac2, kMacSize);
return S_OK;
}
CAesCtr2::CAesCtr2()
{
offset = ((0 - (unsigned)(ptrdiff_t)aes) & 0xF) / sizeof(UInt32);
}
void AesCtr2_Init(CAesCtr2 *p)
{
UInt32 *ctr = p->aes + p->offset + 4;
unsigned i;
for (i = 0; i < 4; i++)
ctr[i] = 0;
p->pos = AES_BLOCK_SIZE;
}
/* (size != 16 * N) is allowed only for last call */
void AesCtr2_Code(CAesCtr2 *p, Byte *data, SizeT size)
{
unsigned pos = p->pos;
UInt32 *buf32 = p->aes + p->offset;
if (size == 0)
return;
if (pos != AES_BLOCK_SIZE)
{
const Byte *buf = (const Byte *)buf32;
do
*data++ ^= buf[pos++];
while (--size != 0 && pos != AES_BLOCK_SIZE);
}
if (size >= 16)
{
SizeT size2 = size >> 4;
g_AesCtr_Code(buf32 + 4, data, size2);
size2 <<= 4;
data += size2;
size -= size2;
pos = AES_BLOCK_SIZE;
}
if (size != 0)
{
unsigned j;
const Byte *buf;
for (j = 0; j < 4; j++)
buf32[j] = 0;
g_AesCtr_Code(buf32 + 4, (Byte *)buf32, 1);
buf = (const Byte *)buf32;
pos = 0;
do
*data++ ^= buf[pos++];
while (--size != 0);
}
p->pos = pos;
}
/* (size != 16 * N) is allowed only for last Filter() call */
STDMETHODIMP_(UInt32) CEncoder::Filter(Byte *data, UInt32 size)
{
AesCtr2_Code(&_aes, data, size);
_hmac.Update(data, size);
return size;
}
STDMETHODIMP_(UInt32) CDecoder::Filter(Byte *data, UInt32 size)
{
_hmac.Update(data, size);
AesCtr2_Code(&_aes, data, size);
return size;
}
}}