p7zip/CPP/7zip/Compress/Lzham/lzhamcomp/lzham_lzcomp_internal.cpp
2017-10-11 12:35:36 +02:00

2241 lines
76 KiB
C++

// File: lzham_lzcomp_internal.cpp
// See Copyright Notice and license at the end of include/lzham.h
#include "lzham_core.h"
#include "lzham_lzcomp_internal.h"
#include "lzham_checksum.h"
#include "lzham_timer.h"
#include "lzham_lzbase.h"
#include <string.h>
// Update and print high-level coding statistics if set to 1.
// TODO: Add match distance coding statistics.
#define LZHAM_UPDATE_STATS 0
// Only parse on the main thread, for easier debugging.
#define LZHAM_FORCE_SINGLE_THREADED_PARSING 0
// Verify all computed match costs against the generic/slow state::get_cost() method.
#define LZHAM_VERIFY_MATCH_COSTS 0
// Set to 1 to force all blocks to be uncompressed (raw).
#define LZHAM_FORCE_ALL_RAW_BLOCKS 0
#define LZHAM_EXTREME_PARSING_FAST_BYTES 96
namespace lzham
{
static comp_settings s_level_settings[cCompressionLevelCount] =
{
// cCompressionLevelFastest
{
8, // m_fast_bytes
1, // m_match_accel_max_matches_per_probe
2, // m_match_accel_max_probes
},
// cCompressionLevelFaster
{
24, // m_fast_bytes
6, // m_match_accel_max_matches_per_probe
12, // m_match_accel_max_probes
},
// cCompressionLevelDefault
{
32, // m_fast_bytes
UINT_MAX, // m_match_accel_max_matches_per_probe
16, // m_match_accel_max_probes
},
// cCompressionLevelBetter
{
48, // m_fast_bytes
UINT_MAX, // m_match_accel_max_matches_per_probe
32, // m_match_accel_max_probes
},
// cCompressionLevelUber
{
64, // m_fast_bytes
UINT_MAX, // m_match_accel_max_matches_per_probe
cMatchAccelMaxSupportedProbes, // m_match_accel_max_probes
}
};
lzcompressor::lzcompressor(lzham_malloc_context malloc_context) :
m_malloc_context(malloc_context),
m_src_size(-1),
m_src_adler32(0),
m_accel(malloc_context),
m_codec(malloc_context),
m_block_buf(malloc_context),
m_comp_buf(malloc_context),
m_step(0),
m_block_start_dict_ofs(0),
m_block_index(0),
m_finished(false),
m_use_task_pool(false),
m_use_extreme_parsing(false),
m_start_of_block_state(malloc_context),
m_state(malloc_context),
m_fast_bytes(128),
m_num_parse_threads(0)
{
LZHAM_VERIFY( ((uint32_ptr)this & (LZHAM_GET_ALIGNMENT(lzcompressor) - 1)) == 0);
for (uint i = 0; i < LZHAM_ARRAY_SIZE(m_parse_thread_state); i++)
m_parse_thread_state[i].set_malloc_context(malloc_context);
}
bool lzcompressor::init_seed_bytes()
{
uint cur_seed_ofs = 0;
while (cur_seed_ofs < m_params.m_num_seed_bytes)
{
uint total_bytes_remaining = m_params.m_num_seed_bytes - cur_seed_ofs;
uint num_bytes_to_add = math::minimum(total_bytes_remaining, m_params.m_block_size);
if (!m_accel.add_bytes_begin(num_bytes_to_add, static_cast<const uint8*>(m_params.m_pSeed_bytes) + cur_seed_ofs))
{
LZHAM_LOG_ERROR(7000);
return false;
}
m_accel.add_bytes_end();
m_accel.advance_bytes(num_bytes_to_add);
cur_seed_ofs += num_bytes_to_add;
}
return true;
}
bool lzcompressor::raw_parse_thread_state::init(lzcompressor& lzcomp, const lzcompressor::init_params &params)
{
if (!m_state.init(lzcomp, params.m_table_max_update_interval, params.m_table_update_interval_slow_rate))
return false;
if (lzcomp.m_use_extreme_parsing)
{
for (uint j = 0; j < LZHAM_ARRAY_SIZE(m_nodes); j++)
m_nodes[j].clear();
}
else
{
node_state *pNodes = reinterpret_cast<node_state*>(m_nodes);
memset(pNodes, 0xFF, (1 + cMaxParseGraphNodes) * sizeof(node_state));
}
return true;
}
bool lzcompressor::init(const init_params& params)
{
clear();
if ((params.m_dict_size_log2 < CLZBase::cMinDictSizeLog2) || (params.m_dict_size_log2 > CLZBase::cMaxDictSizeLog2))
{
LZHAM_LOG_ERROR(7001);
return false;
}
if ((params.m_compression_level < 0) || (params.m_compression_level > cCompressionLevelCount))
{
LZHAM_LOG_ERROR(7002);
return false;
}
m_params = params;
m_use_task_pool = (m_params.m_pTask_pool) && (m_params.m_pTask_pool->get_num_threads() != 0) && (m_params.m_max_helper_threads > 0);
m_use_extreme_parsing = ((m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_EXTREME_PARSING) && (m_params.m_compression_level == cCompressionLevelUber));
if (!m_use_task_pool)
m_params.m_max_helper_threads = 0;
m_settings = s_level_settings[params.m_compression_level];
m_fast_bytes = m_use_extreme_parsing ? LZHAM_EXTREME_PARSING_FAST_BYTES : m_settings.m_fast_bytes;
if (m_params.m_fast_bytes_override)
{
m_fast_bytes = math::clamp<uint>(m_params.m_fast_bytes_override, 8, CLZBase::cMaxMatchLen + 1);
}
const uint dict_size = 1U << m_params.m_dict_size_log2;
if (params.m_num_seed_bytes)
{
if (!params.m_pSeed_bytes)
{
LZHAM_LOG_ERROR(7003);
return false;
}
if (params.m_num_seed_bytes > dict_size)
{
LZHAM_LOG_ERROR(7004);
return false;
}
}
uint max_block_size = dict_size / 8;
if (m_params.m_block_size > max_block_size)
{
m_params.m_block_size = max_block_size;
}
m_num_parse_threads = 1;
#if !LZHAM_FORCE_SINGLE_THREADED_PARSING
if ((m_params.m_max_helper_threads > 0) && ((m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_FORCE_SINGLE_THREADED_PARSING) == 0))
{
LZHAM_ASSUME(cMaxParseThreads >= 4);
if (m_params.m_block_size < 16384)
m_num_parse_threads = LZHAM_MIN(cMaxParseThreads, m_params.m_max_helper_threads + 1);
else if ((m_params.m_max_helper_threads <= 5) || (m_params.m_compression_level == cCompressionLevelFastest))
m_num_parse_threads = 1;
else
m_num_parse_threads = m_use_extreme_parsing ? 4 : 2;
}
#endif
int num_parse_jobs = m_num_parse_threads - 1;
uint match_accel_helper_threads = LZHAM_MAX(0, (int)m_params.m_max_helper_threads - num_parse_jobs);
match_accel_helper_threads = LZHAM_MIN(match_accel_helper_threads, cMatchAccelMaxSupportedThreads);
LZHAM_ASSERT(m_num_parse_threads >= 1);
LZHAM_ASSERT(m_num_parse_threads <= cMaxParseThreads);
if (!m_use_task_pool)
{
LZHAM_ASSERT(!match_accel_helper_threads && (m_num_parse_threads == 1));
}
else
{
LZHAM_ASSERT((match_accel_helper_threads + (m_num_parse_threads - 1)) <= m_params.m_max_helper_threads);
}
uint accel_flags = 0;
if (m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_DETERMINISTIC_PARSING)
accel_flags |= search_accelerator::cFlagDeterministic;
if (m_params.m_compression_level > cCompressionLevelFastest)
{
if ((m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_USE_LOW_MEMORY_MATCH_FINDER) == 0)
accel_flags |= search_accelerator::cFlagHash24;
accel_flags |= search_accelerator::cFlagLen2Matches;
}
if (!m_accel.init(this, params.m_pTask_pool, match_accel_helper_threads, dict_size, m_settings.m_match_accel_max_matches_per_probe, false, m_settings.m_match_accel_max_probes, accel_flags))
{
LZHAM_LOG_ERROR(7005);
return false;
}
init_position_slots(params.m_dict_size_log2);
init_slot_tabs();
if (!m_state.init(*this, m_params.m_table_max_update_interval, m_params.m_table_update_interval_slow_rate))
{
LZHAM_LOG_ERROR(7006);
return false;
}
if (!m_block_buf.try_reserve(m_params.m_block_size))
{
LZHAM_LOG_ERROR(7007);
return false;
}
if (!m_comp_buf.try_reserve(m_params.m_block_size*2))
{
LZHAM_LOG_ERROR(7008);
return false;
}
for (uint i = 0; i < LZHAM_ARRAY_SIZE(m_parse_thread_state); i++)
{
if (!m_parse_thread_state[i].init(*this, m_params))
{
LZHAM_LOG_ERROR(7009);
return false;
}
}
if (params.m_num_seed_bytes)
{
if (!init_seed_bytes())
{
LZHAM_LOG_ERROR(7010);
return false;
}
}
if (!send_zlib_header())
{
LZHAM_LOG_ERROR(7011);
return false;
}
m_src_size = 0;
return true;
}
// See http://www.gzip.org/zlib/rfc-zlib.html
// Method is set to 14 (LZHAM) and CINFO is (window_size - 15).
bool lzcompressor::send_zlib_header()
{
if ((m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_WRITE_ZLIB_STREAM) == 0)
return true;
// set CM (method) and CINFO (dictionary size) fields
int cmf = LZHAM_Z_LZHAM | ((m_params.m_dict_size_log2 - 15) << 4);
// set FLEVEL by mapping LZHAM's compression level to zlib's
int flg = 0;
switch (m_params.m_compression_level)
{
case LZHAM_COMP_LEVEL_FASTEST:
{
flg = 0 << 6;
break;
}
case LZHAM_COMP_LEVEL_FASTER:
{
flg = 1 << 6;
break;
}
case LZHAM_COMP_LEVEL_DEFAULT:
case LZHAM_COMP_LEVEL_BETTER:
{
flg = 2 << 6;
break;
}
default:
{
flg = 3 << 6;
break;
}
}
// set FDICT flag
if (m_params.m_pSeed_bytes)
flg |= 32;
int check = ((cmf << 8) + flg) % 31;
if (check)
flg += (31 - check);
LZHAM_ASSERT(0 == (((cmf << 8) + flg) % 31));
if (!m_comp_buf.try_push_back(static_cast<uint8>(cmf)))
return false;
if (!m_comp_buf.try_push_back(static_cast<uint8>(flg)))
return false;
if (m_params.m_pSeed_bytes)
{
// send adler32 of DICT
uint dict_adler32 = adler32(m_params.m_pSeed_bytes, m_params.m_num_seed_bytes);
for (uint i = 0; i < 4; i++)
{
if (!m_comp_buf.try_push_back(static_cast<uint8>(dict_adler32 >> 24)))
return false;
dict_adler32 <<= 8;
}
}
return true;
}
void lzcompressor::clear()
{
m_codec.clear();
m_src_size = -1;
m_src_adler32 = cInitAdler32;
m_block_buf.clear();
m_comp_buf.clear();
m_step = 0;
m_finished = false;
m_use_task_pool = false;
m_use_extreme_parsing = false;
m_block_start_dict_ofs = 0;
m_block_index = 0;
m_state.clear();
m_num_parse_threads = 0;
m_fast_bytes = 128;
for (uint i = 0; i < cMaxParseThreads; i++)
{
parse_thread_state &parse_state = m_parse_thread_state[i];
parse_state.m_state.clear();
for (uint j = 0; j <= cMaxParseGraphNodes; j++)
parse_state.m_nodes[j].clear();
parse_state.m_start_ofs = 0;
parse_state.m_bytes_to_match = 0;
parse_state.m_best_decisions.clear();
parse_state.m_issue_reset_state_partial = false;
parse_state.m_emit_decisions_backwards = false;
parse_state.m_failed = false;
parse_state.m_parse_early_out_thresh = UINT_MAX;
parse_state.m_bytes_actually_parsed = 0;
}
}
bool lzcompressor::reset()
{
if (m_src_size < 0)
return false;
m_accel.reset();
m_codec.reset();
m_stats.clear();
m_src_size = 0;
m_src_adler32 = cInitAdler32;
m_block_buf.try_resize(0);
m_comp_buf.try_resize(0);
m_step = 0;
m_finished = false;
m_block_start_dict_ofs = 0;
m_block_index = 0;
m_state.reset();
if (m_params.m_num_seed_bytes)
{
if (!init_seed_bytes())
{
LZHAM_LOG_ERROR(7012);
return false;
}
}
return send_zlib_header();
}
bool lzcompressor::code_decision(lzdecision lzdec, uint& cur_ofs, uint& bytes_to_match)
{
#ifdef LZHAM_LZDEBUG
if (!m_codec.encode_bits(CLZBase::cLZHAMDebugSyncMarkerValue, CLZBase::cLZHAMDebugSyncMarkerBits)) return false;
if (!m_codec.encode_bits(lzdec.is_match(), 1)) return false;
if (!m_codec.encode_bits(lzdec.get_len(), 17)) return false;
if (!m_codec.encode_bits(m_state.m_cur_state, 4)) return false;
#endif
#ifdef LZHAM_LZVERIFY
if (lzdec.is_match())
{
uint match_dist = lzdec.get_match_dist(m_state);
LZHAM_VERIFY(m_accel[cur_ofs] == m_accel[(cur_ofs - match_dist) & (m_accel.get_max_dict_size() - 1)]);
}
#endif
const uint len = lzdec.get_len();
if (!m_state.encode(m_codec, *this, m_accel, lzdec))
{
LZHAM_LOG_ERROR(7013);
return false;
}
cur_ofs += len;
LZHAM_ASSERT(bytes_to_match >= len);
bytes_to_match -= len;
//m_accel.advance_bytes(len);
m_step++;
return true;
}
bool lzcompressor::send_sync_block(lzham_flush_t flush_type)
{
m_codec.reset();
if (!m_codec.start_encoding(128))
{
LZHAM_LOG_ERROR(7014);
return false;
}
#ifdef LZHAM_LZDEBUG
if (!m_codec.encode_bits(166, 12))
{
LZHAM_LOG_ERROR(7015);
return false;
}
#endif
if (!m_codec.encode_bits(cSyncBlock, cBlockHeaderBits))
{
LZHAM_LOG_ERROR(7016);
return false;
}
int flush_code = 0;
switch (flush_type)
{
case LZHAM_FULL_FLUSH:
flush_code = 2;
break;
case LZHAM_TABLE_FLUSH:
flush_code = 1;
break;
case LZHAM_SYNC_FLUSH:
flush_code = 3;
break;
case LZHAM_NO_FLUSH:
case LZHAM_FINISH:
flush_code = 0;
break;
}
if (!m_codec.encode_bits(flush_code, cBlockFlushTypeBits))
{
LZHAM_LOG_ERROR(7017);
return false;
}
if (!m_codec.encode_align_to_byte())
{
LZHAM_LOG_ERROR(7018);
return false;
}
if (!m_codec.encode_bits(0x0000, 16))
{
LZHAM_LOG_ERROR(7019);
return false;
}
if (!m_codec.encode_bits(0xFFFF, 16))
{
LZHAM_LOG_ERROR(7020);
return false;
}
if (!m_codec.stop_encoding(true))
{
LZHAM_LOG_ERROR(7021);
return false;
}
if (!m_comp_buf.append(m_codec.get_encoding_buf()))
{
LZHAM_LOG_ERROR(7022);
return false;
}
m_block_index++;
return true;
}
bool lzcompressor::flush(lzham_flush_t flush_type)
{
LZHAM_ASSERT(!m_finished);
if (m_finished)
{
LZHAM_LOG_ERROR(7023);
return false;
}
bool status = true;
if (m_block_buf.size())
{
status = compress_block(m_block_buf.get_ptr(), m_block_buf.size());
m_block_buf.try_resize(0);
}
if (status)
{
status = send_sync_block(flush_type);
if (LZHAM_FULL_FLUSH == flush_type)
{
m_accel.flush();
m_state.reset();
}
}
lzham_flush_buffered_printf();
return status;
}
bool lzcompressor::put_bytes(const void* pBuf, uint buf_len)
{
LZHAM_ASSERT(!m_finished);
if (m_finished)
{
LZHAM_LOG_ERROR(7024);
return false;
}
bool status = true;
if (!pBuf)
{
// Last block - flush whatever's left and send the final block.
if (m_block_buf.size())
{
status = compress_block(m_block_buf.get_ptr(), m_block_buf.size());
m_block_buf.try_resize(0);
}
if (status)
{
if (!send_final_block())
{
status = false;
LZHAM_LOG_ERROR(7025);
}
}
m_finished = true;
}
else
{
// Compress blocks.
const uint8 *pSrcBuf = static_cast<const uint8*>(pBuf);
uint num_src_bytes_remaining = buf_len;
while (num_src_bytes_remaining)
{
const uint num_bytes_to_copy = LZHAM_MIN(num_src_bytes_remaining, m_params.m_block_size - m_block_buf.size());
if (num_bytes_to_copy == m_params.m_block_size)
{
LZHAM_ASSERT(!m_block_buf.size());
// Full-block available - compress in-place.
status = compress_block(pSrcBuf, num_bytes_to_copy);
}
else
{
// Less than a full block available - append to already accumulated bytes.
if (!m_block_buf.append(static_cast<const uint8 *>(pSrcBuf), num_bytes_to_copy))
{
LZHAM_LOG_ERROR(7026);
return false;
}
LZHAM_ASSERT(m_block_buf.size() <= m_params.m_block_size);
if (m_block_buf.size() == m_params.m_block_size)
{
status = compress_block(m_block_buf.get_ptr(), m_block_buf.size());
m_block_buf.try_resize(0);
}
}
if (!status)
{
LZHAM_LOG_ERROR(7027);
return false;
}
pSrcBuf += num_bytes_to_copy;
num_src_bytes_remaining -= num_bytes_to_copy;
}
}
lzham_flush_buffered_printf();
return status;
}
bool lzcompressor::send_final_block()
{
if (!m_codec.start_encoding(16))
{
LZHAM_LOG_ERROR(7028);
return false;
}
#ifdef LZHAM_LZDEBUG
if (!m_codec.encode_bits(166, 12))
{
LZHAM_LOG_ERROR(7029);
return false;
}
#endif
if (!m_block_index)
{
if (!send_configuration())
{
LZHAM_LOG_ERROR(7030);
return false;
}
}
if (!m_codec.encode_bits(cEOFBlock, cBlockHeaderBits))
{
LZHAM_LOG_ERROR(7031);
return false;
}
if (!m_codec.encode_align_to_byte())
{
LZHAM_LOG_ERROR(7032);
return false;
}
if (!m_codec.encode_bits(m_src_adler32, 32))
{
LZHAM_LOG_ERROR(7033);
return false;
}
if (!m_codec.stop_encoding(true))
{
LZHAM_LOG_ERROR(7034);
return false;
}
if (m_comp_buf.empty())
{
m_comp_buf.swap(m_codec.get_encoding_buf());
}
else
{
if (!m_comp_buf.append(m_codec.get_encoding_buf()))
{
LZHAM_LOG_ERROR(7035);
return false;
}
}
m_block_index++;
#if LZHAM_UPDATE_STATS
m_stats.print();
#endif
return true;
}
bool lzcompressor::send_configuration()
{
// TODO: Currently unused.
//if (!m_codec.encode_bits(m_settings.m_fast_adaptive_huffman_updating, 1))
// return false;
//if (!m_codec.encode_bits(0, 1))
// return false;
return true;
}
void lzcompressor::node::add_state(
int parent_index, int parent_state_index,
const lzdecision &lzdec, const state &parent_state,
bit_cost_t total_cost,
uint total_complexity, uint max_parse_node_states)
{
state_base trial_state;
parent_state.save_partial_state(trial_state);
trial_state.partial_advance(lzdec);
for (int i = m_num_node_states - 1; i >= 0; i--)
{
node_state &cur_node_state = m_node_states[i];
if (cur_node_state.m_saved_state == trial_state)
{
if ( (total_cost < cur_node_state.m_total_cost) ||
((total_cost == cur_node_state.m_total_cost) && (total_complexity < cur_node_state.m_total_complexity)) )
{
cur_node_state.m_parent_index = static_cast<int16>(parent_index);
cur_node_state.m_parent_state_index = static_cast<int8>(parent_state_index);
cur_node_state.m_lzdec = lzdec;
cur_node_state.m_total_cost = total_cost;
cur_node_state.m_total_complexity = total_complexity;
while (i > 0)
{
if ((m_node_states[i].m_total_cost < m_node_states[i - 1].m_total_cost) ||
((m_node_states[i].m_total_cost == m_node_states[i - 1].m_total_cost) && (m_node_states[i].m_total_complexity < m_node_states[i - 1].m_total_complexity)))
{
std::swap(m_node_states[i], m_node_states[i - 1]);
i--;
}
else
break;
}
}
return;
}
}
int insert_index;
for (insert_index = m_num_node_states; insert_index > 0; insert_index--)
{
node_state &cur_node_state = m_node_states[insert_index - 1];
if ( (total_cost > cur_node_state.m_total_cost) ||
((total_cost == cur_node_state.m_total_cost) && (total_complexity >= cur_node_state.m_total_complexity)) )
{
break;
}
}
if (insert_index == static_cast<int>(max_parse_node_states))
return;
uint num_behind = m_num_node_states - insert_index;
uint num_to_move = (m_num_node_states < max_parse_node_states) ? num_behind : (num_behind - 1);
if (num_to_move)
{
LZHAM_ASSERT((insert_index + 1 + num_to_move) <= max_parse_node_states);
memmove(&m_node_states[insert_index + 1], &m_node_states[insert_index], sizeof(node_state) * num_to_move);
}
node_state *pNew_node_state = &m_node_states[insert_index];
pNew_node_state->m_parent_index = static_cast<int16>(parent_index);
pNew_node_state->m_parent_state_index = static_cast<uint8>(parent_state_index);
pNew_node_state->m_lzdec = lzdec;
pNew_node_state->m_total_cost = total_cost;
pNew_node_state->m_total_complexity = total_complexity;
pNew_node_state->m_saved_state = trial_state;
m_num_node_states = LZHAM_MIN(m_num_node_states + 1, static_cast<uint>(max_parse_node_states));
#ifdef LZHAM_LZVERIFY
for (uint i = 0; i < (m_num_node_states - 1); ++i)
{
node_state &a = m_node_states[i];
node_state &b = m_node_states[i + 1];
LZHAM_VERIFY(
(a.m_total_cost < b.m_total_cost) ||
((a.m_total_cost == b.m_total_cost) && (a.m_total_complexity <= b.m_total_complexity)) );
}
#endif
}
// The "extreme" parser tracks the best cMaxParseNodeStates (default 4) candidate LZ decisions per lookahead character.
// This allows the compressor to make locally suboptimal decisions that ultimately result in a better parse.
// It assumes the input statistics are locally stationary over the input block to parse.
bool lzcompressor::extreme_parse(parse_thread_state &parse_state)
{
LZHAM_ASSERT(parse_state.m_bytes_to_match <= cMaxParseGraphNodes);
parse_state.m_failed = false;
parse_state.m_emit_decisions_backwards = true;
node *pNodes = parse_state.m_nodes;
#ifdef LZHAM_BUILD_DEBUG
for (uint i = 0; i < (cMaxParseGraphNodes + 1); i++)
{
LZHAM_ASSERT(pNodes[i].m_num_node_states == 0);
}
#endif
state &approx_state = *parse_state.m_pState;
pNodes[0].m_num_node_states = 1;
node_state &first_node_state = pNodes[0].m_node_states[0];
approx_state.save_partial_state(first_node_state.m_saved_state);
first_node_state.m_parent_index = -1;
first_node_state.m_parent_state_index = -1;
first_node_state.m_total_cost = 0;
first_node_state.m_total_complexity = 0;
const uint bytes_to_parse = parse_state.m_bytes_to_match;
const uint lookahead_start_ofs = m_accel.get_lookahead_pos() & m_accel.get_max_dict_size_mask();
uint cur_dict_ofs = parse_state.m_start_ofs;
uint cur_lookahead_ofs = cur_dict_ofs - lookahead_start_ofs;
uint cur_node_index = 0;
enum { cMaxFullMatches = cMatchAccelMaxSupportedProbes };
uint match_lens[cMaxFullMatches];
uint match_distances[cMaxFullMatches];
bit_cost_t lzdec_bitcosts[cMaxMatchLen + 1];
node prev_lit_node;
prev_lit_node.clear();
node *pMax_node_in_graph = &pNodes[0];
while (cur_node_index < bytes_to_parse)
{
node* pCur_node = &pNodes[cur_node_index];
if ((cur_node_index >= parse_state.m_parse_early_out_thresh) && (pCur_node == pMax_node_in_graph))
{
// If the best path *must* pass through this node, and we're far enough along, and we're parsing using a single thread, then exit so we can move all our state forward.
if (pCur_node->m_num_node_states == 1)
break;
}
const uint max_admissable_match_len = LZHAM_MIN(static_cast<uint>(CLZBase::cMaxMatchLen), bytes_to_parse - cur_node_index);
const uint find_dict_size = m_accel.get_cur_dict_size() + cur_lookahead_ofs;
const uint lit_pred0 = approx_state.get_pred_char(m_accel, cur_dict_ofs, 1);
const uint8* pLookahead = &m_accel.m_dict[cur_dict_ofs];
// full matches
uint max_full_match_len = 0;
uint num_full_matches = 0;
uint len2_match_dist = 0;
if (max_admissable_match_len >= CLZBase::cMinMatchLen)
{
const dict_match* pMatches = m_accel.find_matches(cur_lookahead_ofs);
if (pMatches)
{
for ( ; ; )
{
uint match_len = pMatches->get_len();
LZHAM_ASSERT((pMatches->get_dist() > 0) && (pMatches->get_dist() <= m_dict_size));
match_len = LZHAM_MIN(match_len, max_admissable_match_len);
if (match_len > max_full_match_len)
{
max_full_match_len = match_len;
match_lens[num_full_matches] = match_len;
match_distances[num_full_matches] = pMatches->get_dist();
num_full_matches++;
}
if (pMatches->is_last())
break;
pMatches++;
}
}
len2_match_dist = m_accel.get_len2_match(cur_lookahead_ofs);
}
uint ahead_bytes = 1;
for (uint cur_node_state_index = 0; cur_node_state_index < pCur_node->m_num_node_states; cur_node_state_index++)
{
node_state &cur_node_state = pCur_node->m_node_states[cur_node_state_index];
if (cur_node_index)
{
LZHAM_ASSERT(cur_node_state.m_parent_index >= 0);
approx_state.restore_partial_state(cur_node_state.m_saved_state);
}
uint is_match_model_index = LZHAM_IS_MATCH_MODEL_INDEX(approx_state.m_cur_state);
const bit_cost_t cur_node_total_cost = cur_node_state.m_total_cost;
const uint cur_node_total_complexity = cur_node_state.m_total_complexity;
// rep matches
uint match_hist_max_len = 0;
uint match_hist_min_match_len = 1;
for (uint rep_match_index = 0; rep_match_index < cMatchHistSize; rep_match_index++)
{
uint hist_match_len = 0;
uint dist = approx_state.m_match_hist[rep_match_index];
if (dist <= find_dict_size)
{
const uint comp_pos = static_cast<uint>((m_accel.m_lookahead_pos + cur_lookahead_ofs - dist) & m_accel.m_max_dict_size_mask);
const uint8* pComp = &m_accel.m_dict[comp_pos];
for (hist_match_len = 0; hist_match_len < max_admissable_match_len; hist_match_len++)
if (pComp[hist_match_len] != pLookahead[hist_match_len])
break;
}
if (hist_match_len >= match_hist_min_match_len)
{
match_hist_max_len = math::maximum(match_hist_max_len, hist_match_len);
approx_state.get_rep_match_costs(cur_dict_ofs, lzdec_bitcosts, rep_match_index, match_hist_min_match_len, hist_match_len, is_match_model_index);
uint rep_match_total_complexity = cur_node_total_complexity + (cRep0Complexity + rep_match_index);
for (uint l = match_hist_min_match_len; l <= hist_match_len; l++)
{
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, l, -((int)rep_match_index + 1));
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lzdec_bitcosts[l]);
}
#endif
node& dst_node = pCur_node[l];
bit_cost_t rep_match_total_cost = cur_node_total_cost + lzdec_bitcosts[l];
dst_node.add_state(cur_node_index, cur_node_state_index, lzdecision(cur_dict_ofs, l, -((int)rep_match_index + 1)), approx_state, rep_match_total_cost, rep_match_total_complexity, parse_state.m_max_parse_node_states);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &dst_node);
}
}
match_hist_min_match_len = CLZBase::cMinMatchLen;
}
if (match_hist_max_len >= m_fast_bytes)
{
ahead_bytes = match_hist_max_len;
break;
}
uint min_truncate_match_len = match_hist_max_len;
// nearest len2 match
if (len2_match_dist)
{
lzdecision lzdec(cur_dict_ofs, 2, len2_match_dist);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, lzdec);
pCur_node[2].add_state(cur_node_index, cur_node_state_index, lzdec, approx_state, cur_node_total_cost + actual_cost, cur_node_total_complexity + cShortMatchComplexity, parse_state.m_max_parse_node_states);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &pCur_node[2]);
min_truncate_match_len = LZHAM_MAX(min_truncate_match_len, 2);
}
// full matches
if (max_full_match_len > min_truncate_match_len)
{
uint prev_max_match_len = LZHAM_MAX(1, min_truncate_match_len);
for (uint full_match_index = 0; full_match_index < num_full_matches; full_match_index++)
{
uint end_len = match_lens[full_match_index];
if (end_len <= min_truncate_match_len)
continue;
uint start_len = prev_max_match_len + 1;
uint match_dist = match_distances[full_match_index];
LZHAM_ASSERT(start_len <= end_len);
approx_state.get_full_match_costs(*this, cur_dict_ofs, lzdec_bitcosts, match_dist, start_len, end_len, is_match_model_index);
for (uint l = start_len; l <= end_len; l++)
{
uint match_complexity = (l >= cLongMatchComplexityLenThresh) ? cLongMatchComplexity : cShortMatchComplexity;
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, l, match_dist);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lzdec_bitcosts[l]);
}
#endif
node& dst_node = pCur_node[l];
bit_cost_t match_total_cost = cur_node_total_cost + lzdec_bitcosts[l];
uint match_total_complexity = cur_node_total_complexity + match_complexity;
dst_node.add_state( cur_node_index, cur_node_state_index, lzdecision(cur_dict_ofs, l, match_dist), approx_state, match_total_cost, match_total_complexity, parse_state.m_max_parse_node_states);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &dst_node);
}
prev_max_match_len = end_len;
}
if (max_full_match_len >= m_fast_bytes)
{
ahead_bytes = max_full_match_len;
break;
}
}
// literal
bit_cost_t lit_cost = approx_state.get_lit_cost(*this, m_accel, cur_dict_ofs, lit_pred0, is_match_model_index);
bit_cost_t lit_total_cost = cur_node_total_cost + lit_cost;
uint lit_total_complexity = cur_node_total_complexity + cLitComplexity;
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, 0, 0);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lit_cost);
}
#endif
pCur_node[1].add_state(cur_node_index, cur_node_state_index, lzdecision(cur_dict_ofs, 0, 0), approx_state, lit_total_cost, lit_total_complexity, parse_state.m_max_parse_node_states);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &pCur_node[1]);
} // cur_node_state_index
cur_dict_ofs += ahead_bytes;
cur_lookahead_ofs += ahead_bytes;
cur_node_index += ahead_bytes;
}
LZHAM_ASSERT(static_cast<int>(cur_node_index) == (pMax_node_in_graph - pNodes));
uint bytes_actually_parsed = cur_node_index;
// Now get the optimal decisions by starting from the goal node.
// m_best_decisions is filled backwards.
if (!parse_state.m_best_decisions.try_reserve(bytes_actually_parsed))
{
parse_state.m_failed = true;
for (uint i = 0; i <= bytes_actually_parsed; i++)
pNodes[i].clear();
LZHAM_LOG_ERROR(7036);
return false;
}
bit_cost_t lowest_final_cost = cBitCostMax; //math::cNearlyInfinite;
int node_state_index = 0;
node_state *pLast_node_states = pNodes[bytes_actually_parsed].m_node_states;
for (uint i = 0; i < pNodes[bytes_actually_parsed].m_num_node_states; i++)
{
if (pLast_node_states[i].m_total_cost < lowest_final_cost)
{
lowest_final_cost = pLast_node_states[i].m_total_cost;
node_state_index = i;
}
}
int node_index = bytes_actually_parsed;
lzdecision *pDst_dec = parse_state.m_best_decisions.get_ptr();
do
{
LZHAM_ASSERT((node_index >= 0) && (node_index <= (int)cMaxParseGraphNodes));
node& cur_node = pNodes[node_index];
const node_state &cur_node_state = cur_node.m_node_states[node_state_index];
*pDst_dec++ = cur_node_state.m_lzdec;
node_index = cur_node_state.m_parent_index;
node_state_index = cur_node_state.m_parent_state_index;
} while (node_index > 0);
parse_state.m_best_decisions.try_resize_no_construct(static_cast<uint>(pDst_dec - parse_state.m_best_decisions.get_ptr()));
parse_state.m_bytes_actually_parsed = bytes_actually_parsed;
for (uint i = 0; i <= bytes_actually_parsed; i++)
pNodes[i].clear();
return true;
}
// Parsing notes:
// The regular "optimal" parser only tracks the single cheapest candidate LZ decision per lookahead character.
// This function finds the shortest path through an extremely dense node graph using a streamlined/simplified Dijkstra's algorithm with some coding heuristics.
// Graph edges are LZ "decisions", cost is measured in fractional bits needed to code each graph edge, and graph nodes are lookahead characters.
// There is no need to track visited/unvisted nodes, or find the next cheapest unvisted node in each iteration. The search always proceeds sequentially, visiting each lookahead character in turn from left/right.
// The major CPU expense of this function is the complexity of LZ decision cost evaluation, so a lot of implementation effort is spent here reducing this overhead.
// To simplify the problem, it assumes the input statistics are locally stationary over the input block to parse. (Otherwise, it would need to store, track, and update
// unique symbol statistics for each lookahead character, which would be very costly.)
// This function always sequentially pushes "forward" the unvisited node horizon. This horizon frequently collapses to a single node, which guarantees that the shortest path through the
// graph must pass through this node. LZMA tracks cumulative bitprices relative to this node, while LZHAM currently always tracks cumulative bitprices relative to the first node in the lookahead buffer.
// In very early versions of LZHAM the parse was much more understandable (straight Dijkstra with almost no bit price optimizations or coding heuristics).
bool lzcompressor::optimal_parse(parse_thread_state &parse_state)
{
LZHAM_ASSERT(parse_state.m_bytes_to_match <= cMaxParseGraphNodes);
parse_state.m_failed = false;
parse_state.m_emit_decisions_backwards = true;
node_state *pNodes = reinterpret_cast<node_state*>(parse_state.m_nodes);
pNodes[0].m_parent_index = -1;
pNodes[0].m_total_cost = 0;
pNodes[0].m_total_complexity = 0;
#ifdef LZHAM_BUILD_DEBUG
for (uint i = 1; i < (cMaxParseGraphNodes + 1); i++)
{
LZHAM_ASSERT(pNodes[i].m_total_cost == cUINT64_MAX);
LZHAM_ASSERT(pNodes[i].m_total_complexity == UINT_MAX);
LZHAM_ASSERT(pNodes[i].m_parent_index == -1);
}
#endif
state &approx_state = *parse_state.m_pState;
const uint bytes_to_parse = parse_state.m_bytes_to_match;
const uint lookahead_start_ofs = m_accel.get_lookahead_pos() & m_accel.get_max_dict_size_mask();
uint cur_dict_ofs = parse_state.m_start_ofs;
uint cur_lookahead_ofs = cur_dict_ofs - lookahead_start_ofs;
uint cur_node_index = 0;
enum { cMaxFullMatches = cMatchAccelMaxSupportedProbes };
uint match_lens[cMaxFullMatches];
uint match_distances[cMaxFullMatches];
bit_cost_t lzdec_bitcosts[cMaxMatchLen + 1];
node_state *pMax_node_in_graph = &pNodes[0];
while (cur_node_index < bytes_to_parse)
{
node_state* pCur_node = &pNodes[cur_node_index];
if ((cur_node_index >= parse_state.m_parse_early_out_thresh) && (pCur_node == pMax_node_in_graph))
{
// If the best path *must* pass through this node, and we're far enough along, and we're parsing using a single thread, then exit so we can move all our state forward.
break;
}
const uint max_admissable_match_len = LZHAM_MIN(static_cast<uint>(CLZBase::cMaxMatchLen), bytes_to_parse - cur_node_index);
const uint find_dict_size = m_accel.m_cur_dict_size + cur_lookahead_ofs;
if (cur_node_index)
{
LZHAM_ASSERT(pCur_node->m_parent_index >= 0);
// Move to this node's state using the lowest cost LZ decision found.
approx_state.restore_partial_state(pCur_node->m_saved_state);
approx_state.partial_advance(pCur_node->m_lzdec);
}
const bit_cost_t cur_node_total_cost = pCur_node->m_total_cost;
// This assert includes a fudge factor - make sure we don't overflow our scaled costs.
LZHAM_ASSERT((cBitCostMax - cur_node_total_cost) > (cBitCostScale * 64));
const uint cur_node_total_complexity = pCur_node->m_total_complexity;
const uint lit_pred0 = approx_state.get_pred_char(m_accel, cur_dict_ofs, 1);
uint is_match_model_index = LZHAM_IS_MATCH_MODEL_INDEX(approx_state.m_cur_state);
const uint8* pLookahead = &m_accel.m_dict[cur_dict_ofs];
// rep matches
uint match_hist_max_len = 0;
uint match_hist_min_match_len = 1;
for (uint rep_match_index = 0; rep_match_index < cMatchHistSize; rep_match_index++)
{
uint hist_match_len = 0;
uint dist = approx_state.m_match_hist[rep_match_index];
if (dist <= find_dict_size)
{
const uint comp_pos = static_cast<uint>((m_accel.m_lookahead_pos + cur_lookahead_ofs - dist) & m_accel.m_max_dict_size_mask);
const uint8* pComp = &m_accel.m_dict[comp_pos];
for (hist_match_len = 0; hist_match_len < max_admissable_match_len; hist_match_len++)
if (pComp[hist_match_len] != pLookahead[hist_match_len])
break;
}
if (hist_match_len >= match_hist_min_match_len)
{
match_hist_max_len = math::maximum(match_hist_max_len, hist_match_len);
approx_state.get_rep_match_costs(cur_dict_ofs, lzdec_bitcosts, rep_match_index, match_hist_min_match_len, hist_match_len, is_match_model_index);
uint rep_match_total_complexity = cur_node_total_complexity + (cRep0Complexity + rep_match_index);
for (uint l = match_hist_min_match_len; l <= hist_match_len; l++)
{
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, l, -((int)rep_match_index + 1));
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lzdec_bitcosts[l]);
}
#endif
node_state& dst_node = pCur_node[l];
bit_cost_t rep_match_total_cost = cur_node_total_cost + lzdec_bitcosts[l];
if ((rep_match_total_cost > dst_node.m_total_cost) || ((rep_match_total_cost == dst_node.m_total_cost) && (rep_match_total_complexity >= dst_node.m_total_complexity)))
continue;
dst_node.m_total_cost = rep_match_total_cost;
dst_node.m_total_complexity = rep_match_total_complexity;
dst_node.m_parent_index = (uint16)cur_node_index;
approx_state.save_partial_state(dst_node.m_saved_state);
dst_node.m_lzdec.init(cur_dict_ofs, l, -((int)rep_match_index + 1));
dst_node.m_lzdec.m_len = l;
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &dst_node);
}
}
match_hist_min_match_len = CLZBase::cMinMatchLen;
}
uint max_match_len = match_hist_max_len;
if (max_match_len >= m_fast_bytes)
{
cur_dict_ofs += max_match_len;
cur_lookahead_ofs += max_match_len;
cur_node_index += max_match_len;
continue;
}
// full matches
if (max_admissable_match_len >= CLZBase::cMinMatchLen)
{
uint num_full_matches = 0;
if (match_hist_max_len < 2)
{
// Get the nearest len2 match if we didn't find a rep len2.
uint len2_match_dist = m_accel.get_len2_match(cur_lookahead_ofs);
if (len2_match_dist)
{
bit_cost_t cost = approx_state.get_len2_match_cost(*this, cur_dict_ofs, len2_match_dist, is_match_model_index);
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, 2, len2_match_dist);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == cost);
}
#endif
node_state& dst_node = pCur_node[2];
bit_cost_t match_total_cost = cur_node_total_cost + cost;
uint match_total_complexity = cur_node_total_complexity + cShortMatchComplexity;
if ((match_total_cost < dst_node.m_total_cost) || ((match_total_cost == dst_node.m_total_cost) && (match_total_complexity < dst_node.m_total_complexity)))
{
dst_node.m_total_cost = match_total_cost;
dst_node.m_total_complexity = match_total_complexity;
dst_node.m_parent_index = (uint16)cur_node_index;
approx_state.save_partial_state(dst_node.m_saved_state);
dst_node.m_lzdec.init(cur_dict_ofs, 2, len2_match_dist);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &dst_node);
}
max_match_len = 2;
}
}
const uint min_truncate_match_len = max_match_len;
// Now get all full matches: the nearest matches at each match length. (Actually, we don't
// always get the nearest match. The match finder favors those matches which have the lowest value
// in the nibble of each match distance, all other things being equal, to help exploit how the lowest
// nibble of match distances is separately coded.)
const dict_match* pMatches = m_accel.find_matches(cur_lookahead_ofs);
if (pMatches)
{
for ( ; ; )
{
uint match_len = pMatches->get_len();
LZHAM_ASSERT((pMatches->get_dist() > 0) && (pMatches->get_dist() <= m_dict_size));
match_len = LZHAM_MIN(match_len, max_admissable_match_len);
if (match_len > max_match_len)
{
max_match_len = match_len;
match_lens[num_full_matches] = match_len;
match_distances[num_full_matches] = pMatches->get_dist();
num_full_matches++;
}
if (pMatches->is_last())
break;
pMatches++;
}
}
if (num_full_matches)
{
uint prev_max_match_len = LZHAM_MAX(1, min_truncate_match_len);
for (uint full_match_index = 0; full_match_index < num_full_matches; full_match_index++)
{
uint start_len = prev_max_match_len + 1;
uint end_len = match_lens[full_match_index];
uint match_dist = match_distances[full_match_index];
LZHAM_ASSERT(start_len <= end_len);
approx_state.get_full_match_costs(*this, cur_dict_ofs, lzdec_bitcosts, match_dist, start_len, end_len, is_match_model_index);
for (uint l = start_len; l <= end_len; l++)
{
uint match_complexity = (l >= cLongMatchComplexityLenThresh) ? cLongMatchComplexity : cShortMatchComplexity;
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, l, match_dist);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lzdec_bitcosts[l]);
}
#endif
node_state& dst_node = pCur_node[l];
bit_cost_t match_total_cost = cur_node_total_cost + lzdec_bitcosts[l];
uint match_total_complexity = cur_node_total_complexity + match_complexity;
if ((match_total_cost > dst_node.m_total_cost) || ((match_total_cost == dst_node.m_total_cost) && (match_total_complexity >= dst_node.m_total_complexity)))
continue;
dst_node.m_total_cost = match_total_cost;
dst_node.m_total_complexity = match_total_complexity;
dst_node.m_parent_index = (uint16)cur_node_index;
approx_state.save_partial_state(dst_node.m_saved_state);
dst_node.m_lzdec.init(cur_dict_ofs, l, match_dist);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &dst_node);
}
prev_max_match_len = end_len;
}
}
}
if (max_match_len >= m_fast_bytes)
{
cur_dict_ofs += max_match_len;
cur_lookahead_ofs += max_match_len;
cur_node_index += max_match_len;
continue;
}
// literal
bit_cost_t lit_cost = approx_state.get_lit_cost(*this, m_accel, cur_dict_ofs, lit_pred0, is_match_model_index);
bit_cost_t lit_total_cost = cur_node_total_cost + lit_cost;
uint lit_total_complexity = cur_node_total_complexity + cLitComplexity;
#if LZHAM_VERIFY_MATCH_COSTS
{
lzdecision actual_dec(cur_dict_ofs, 0, 0);
bit_cost_t actual_cost = approx_state.get_cost(*this, m_accel, actual_dec);
LZHAM_ASSERT(actual_cost == lit_cost);
}
#endif
if ((lit_total_cost < pCur_node[1].m_total_cost) || ((lit_total_cost == pCur_node[1].m_total_cost) && (lit_total_complexity < pCur_node[1].m_total_complexity)))
{
pCur_node[1].m_total_cost = lit_total_cost;
pCur_node[1].m_total_complexity = lit_total_complexity;
pCur_node[1].m_parent_index = (int16)cur_node_index;
approx_state.save_partial_state(pCur_node[1].m_saved_state);
pCur_node[1].m_lzdec.init(cur_dict_ofs, 0, 0);
pMax_node_in_graph = LZHAM_MAX(pMax_node_in_graph, &pCur_node[1]);
}
cur_dict_ofs++;
cur_lookahead_ofs++;
cur_node_index++;
} // graph search
LZHAM_ASSERT(static_cast<int>(cur_node_index) == (pMax_node_in_graph - pNodes));
uint bytes_actually_parsed = cur_node_index;
// Now get the optimal decisions by starting from the goal node.
// m_best_decisions is filled backwards.
if (!parse_state.m_best_decisions.try_reserve(bytes_actually_parsed))
{
parse_state.m_failed = true;
memset(pNodes, 0xFF, (pMax_node_in_graph - pNodes + 1) * sizeof(node_state));
LZHAM_LOG_ERROR(7037);
return false;
}
int node_index = bytes_actually_parsed;
lzdecision *pDst_dec = parse_state.m_best_decisions.get_ptr();
do
{
LZHAM_ASSERT((node_index >= 0) && (node_index <= (int)cMaxParseGraphNodes));
node_state& cur_node = pNodes[node_index];
*pDst_dec++ = cur_node.m_lzdec;
node_index = cur_node.m_parent_index;
} while (node_index > 0);
parse_state.m_best_decisions.try_resize_no_construct(static_cast<uint>(pDst_dec - parse_state.m_best_decisions.get_ptr()));
parse_state.m_bytes_actually_parsed = bytes_actually_parsed;
memset(pNodes, 0xFF, (pMax_node_in_graph - pNodes + 1) * sizeof(node_state));
return true;
}
void lzcompressor::parse_job_callback(uint64 data, void* pData_ptr)
{
const uint parse_job_index = (uint)data;
parse_thread_state &parse_state = m_parse_thread_state[parse_job_index];
scoped_perf_section parse_job_timer(cVarArgs, "parse_job_callback %u", parse_job_index);
LZHAM_NOTE_UNUSED(pData_ptr);
if (m_use_extreme_parsing)
extreme_parse(parse_state);
else
optimal_parse(parse_state);
if (parse_state.m_use_semaphore)
{
parse_state.m_finished.release();
}
}
// ofs is the absolute dictionary offset, must be >= the lookahead offset.
// TODO: Doesn't find len2 matches
int lzcompressor::enumerate_lz_decisions(uint ofs, const state& cur_state, lzham::vector<lzpriced_decision>& decisions, uint min_match_len, uint max_match_len)
{
LZHAM_ASSERT(min_match_len >= 1);
uint start_ofs = m_accel.get_lookahead_pos() & m_accel.get_max_dict_size_mask();
LZHAM_ASSERT(ofs >= start_ofs);
const uint lookahead_ofs = ofs - start_ofs;
uint largest_index = 0;
uint largest_len;
bit_cost_t largest_cost;
if (min_match_len <= 1)
{
if (!decisions.try_resize(1))
{
LZHAM_LOG_ERROR(7038);
return -1;
}
lzpriced_decision& lit_dec = decisions[0];
lit_dec.init(ofs, 0, 0, 0);
lit_dec.m_cost = cur_state.get_cost(*this, m_accel, lit_dec);
largest_cost = lit_dec.m_cost;
largest_len = 1;
}
else
{
if (!decisions.try_resize(0))
{
LZHAM_LOG_ERROR(7039);
return -1;
}
largest_len = 0;
largest_cost = cBitCostMax;
}
uint match_hist_max_len = 0;
// Add rep matches.
for (uint i = 0; i < cMatchHistSize; i++)
{
uint hist_match_len = m_accel.get_match_len(lookahead_ofs, cur_state.m_match_hist[i], max_match_len);
if (hist_match_len < min_match_len)
continue;
if ( ((hist_match_len == 1) && (i == 0)) || (hist_match_len >= CLZBase::cMinMatchLen) )
{
match_hist_max_len = math::maximum(match_hist_max_len, hist_match_len);
lzpriced_decision dec(ofs, hist_match_len, -((int)i + 1));
dec.m_cost = cur_state.get_cost(*this, m_accel, dec);
if (!decisions.try_push_back(dec))
{
LZHAM_LOG_ERROR(7040);
return -1;
}
if ( (hist_match_len > largest_len) || ((hist_match_len == largest_len) && (dec.m_cost < largest_cost)) )
{
largest_index = decisions.size() - 1;
largest_len = hist_match_len;
largest_cost = dec.m_cost;
}
}
}
// Now add full matches.
if ((max_match_len >= CLZBase::cMinMatchLen) && (match_hist_max_len < m_fast_bytes))
{
const dict_match* pMatches = m_accel.find_matches(lookahead_ofs);
if (pMatches)
{
for ( ; ; )
{
uint match_len = math::minimum(pMatches->get_len(), max_match_len);
LZHAM_ASSERT((pMatches->get_dist() > 0) && (pMatches->get_dist() <= m_dict_size));
// Full matches are very likely to be more expensive than rep matches of the same length, so don't bother evaluating them.
if ((match_len >= min_match_len) && (match_len > match_hist_max_len))
{
if ((max_match_len > CLZBase::cMaxMatchLen) && (match_len == CLZBase::cMaxMatchLen))
{
match_len = m_accel.get_match_len(lookahead_ofs, pMatches->get_dist(), max_match_len, CLZBase::cMaxMatchLen);
}
lzpriced_decision dec(ofs, match_len, pMatches->get_dist());
dec.m_cost = cur_state.get_cost(*this, m_accel, dec);
if (!decisions.try_push_back(dec))
{
LZHAM_LOG_ERROR(7041);
return -1;
}
if ( (match_len > largest_len) || ((match_len == largest_len) && (dec.get_cost() < largest_cost)) )
{
largest_index = decisions.size() - 1;
largest_len = match_len;
largest_cost = dec.get_cost();
}
}
if (pMatches->is_last())
break;
pMatches++;
}
}
}
return largest_index;
}
bool lzcompressor::greedy_parse(parse_thread_state &parse_state)
{
parse_state.m_failed = true;
parse_state.m_emit_decisions_backwards = false;
const uint bytes_to_parse = parse_state.m_bytes_to_match;
const uint lookahead_start_ofs = m_accel.get_lookahead_pos() & m_accel.get_max_dict_size_mask();
uint cur_dict_ofs = parse_state.m_start_ofs;
uint cur_lookahead_ofs = cur_dict_ofs - lookahead_start_ofs;
uint cur_ofs = 0;
state &approx_state = *parse_state.m_pState;
lzham::vector<lzpriced_decision> &decisions = parse_state.m_temp_decisions;
if (!decisions.try_reserve(384))
{
LZHAM_LOG_ERROR(7042);
return false;
}
if (!parse_state.m_best_decisions.try_resize(0))
{
LZHAM_LOG_ERROR(7043);
return false;
}
while (cur_ofs < bytes_to_parse)
{
const uint max_admissable_match_len = LZHAM_MIN(static_cast<uint>(CLZBase::cMaxHugeMatchLen), bytes_to_parse - cur_ofs);
int largest_dec_index = enumerate_lz_decisions(cur_dict_ofs, approx_state, decisions, 1, max_admissable_match_len);
if (largest_dec_index < 0)
{
LZHAM_LOG_ERROR(7044);
return false;
}
const lzpriced_decision &dec = decisions[largest_dec_index];
if (!parse_state.m_best_decisions.try_push_back(dec))
{
LZHAM_LOG_ERROR(7045);
return false;
}
approx_state.partial_advance(dec);
uint match_len = dec.get_len();
LZHAM_ASSERT(match_len <= max_admissable_match_len);
cur_dict_ofs += match_len;
cur_lookahead_ofs += match_len;
cur_ofs += match_len;
if (parse_state.m_best_decisions.size() >= parse_state.m_max_greedy_decisions)
{
parse_state.m_greedy_parse_total_bytes_coded = cur_ofs;
parse_state.m_bytes_actually_parsed = cur_ofs;
parse_state.m_greedy_parse_gave_up = true;
return false;
}
}
parse_state.m_greedy_parse_total_bytes_coded = cur_ofs;
LZHAM_ASSERT(cur_ofs == bytes_to_parse);
parse_state.m_failed = false;
parse_state.m_bytes_actually_parsed = parse_state.m_bytes_to_match;
return true;
}
bool lzcompressor::compress_block(const void* pBuf, uint buf_len)
{
uint cur_ofs = 0;
uint bytes_remaining = buf_len;
while (bytes_remaining)
{
uint bytes_to_compress = math::minimum(m_accel.get_max_add_bytes(), bytes_remaining);
if (!compress_block_internal(static_cast<const uint8*>(pBuf) + cur_ofs, bytes_to_compress))
{
LZHAM_LOG_ERROR(7046);
return false;
}
cur_ofs += bytes_to_compress;
bytes_remaining -= bytes_to_compress;
}
return true;
}
bool lzcompressor::compress_block_internal(const void* pBuf, uint buf_len)
{
scoped_perf_section compress_block_timer(cVarArgs, "****** compress_block %u", m_block_index);
LZHAM_ASSERT(pBuf);
LZHAM_ASSERT(buf_len <= m_params.m_block_size);
LZHAM_ASSERT(m_src_size >= 0);
if (m_src_size < 0)
return false;
m_src_size += buf_len;
// Important: Don't do any expensive work until after add_bytes_begin() is called, to increase parallelism.
if (!m_accel.add_bytes_begin(buf_len, static_cast<const uint8*>(pBuf)))
{
LZHAM_LOG_ERROR(7047);
return false;
}
bool computed_adler32 = false;
m_start_of_block_state = m_state;
m_block_start_dict_ofs = m_accel.get_lookahead_pos() & (m_accel.get_max_dict_size() - 1);
uint cur_dict_ofs = m_block_start_dict_ofs;
uint bytes_to_match = buf_len;
if (!m_codec.start_encoding((buf_len * 9) / 8))
{
LZHAM_LOG_ERROR(7048);
return false;
}
if (!m_block_index)
{
if (!send_configuration())
{
LZHAM_LOG_ERROR(7049);
return false;
}
}
#ifdef LZHAM_LZDEBUG
m_codec.encode_bits(166, 12);
#endif
if (!m_codec.encode_bits(cCompBlock, cBlockHeaderBits))
{
LZHAM_LOG_ERROR(7050);
return false;
}
if (!m_codec.encode_arith_init())
{
LZHAM_LOG_ERROR(7051);
return false;
}
m_state.start_of_block(m_accel, cur_dict_ofs, m_block_index);
bool emit_reset_update_rate_command = false;
if (m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_TRADEOFF_DECOMPRESSION_RATE_FOR_COMP_RATIO)
{
emit_reset_update_rate_command = true;
m_state.reset_update_rate();
}
// TODO: We could also issue a full huff/arith table reset (code 2), and see if that actually improves the block's compression.
m_codec.encode_bits(emit_reset_update_rate_command ? 1 : 0, cBlockFlushTypeBits);
//coding_stats initial_stats(m_stats);
uint initial_step = m_step;
while (bytes_to_match)
{
const uint cAvgAcceptableGreedyMatchLen = 384;
if ((m_params.m_pSeed_bytes) && (bytes_to_match >= cAvgAcceptableGreedyMatchLen))
{
parse_thread_state &greedy_parse_state = m_parse_thread_state[cMaxParseThreads];
greedy_parse_state.m_pState = &greedy_parse_state.m_state;
greedy_parse_state.m_state = m_state;
greedy_parse_state.m_state.m_cur_ofs = cur_dict_ofs;
greedy_parse_state.m_issue_reset_state_partial = false;
greedy_parse_state.m_start_ofs = cur_dict_ofs;
greedy_parse_state.m_bytes_to_match = LZHAM_MIN(bytes_to_match, static_cast<uint>(CLZBase::cMaxHugeMatchLen));
greedy_parse_state.m_max_greedy_decisions = LZHAM_MAX((bytes_to_match / cAvgAcceptableGreedyMatchLen), 2);
greedy_parse_state.m_greedy_parse_gave_up = false;
greedy_parse_state.m_greedy_parse_total_bytes_coded = 0;
greedy_parse_state.m_parse_early_out_thresh = UINT_MAX;
greedy_parse_state.m_bytes_actually_parsed = 0;
greedy_parse_state.m_use_semaphore = false;
if (!greedy_parse(greedy_parse_state))
{
if (!greedy_parse_state.m_greedy_parse_gave_up)
{
LZHAM_LOG_ERROR(7052);
return false;
}
}
uint num_greedy_decisions_to_code = 0;
const lzham::vector<lzdecision> &best_decisions = greedy_parse_state.m_best_decisions;
if (!greedy_parse_state.m_greedy_parse_gave_up)
num_greedy_decisions_to_code = best_decisions.size();
else
{
uint num_small_decisions = 0;
uint total_match_len = 0;
uint max_match_len = 0;
uint i;
for (i = 0; i < best_decisions.size(); i++)
{
const lzdecision &dec = best_decisions[i];
if (dec.get_len() <= CLZBase::cMaxMatchLen)
{
num_small_decisions++;
if (num_small_decisions > 16)
break;
}
total_match_len += dec.get_len();
max_match_len = LZHAM_MAX(max_match_len, dec.get_len());
}
if (max_match_len > CLZBase::cMaxMatchLen)
{
if ((total_match_len / i) >= cAvgAcceptableGreedyMatchLen)
{
num_greedy_decisions_to_code = i;
}
}
}
if (num_greedy_decisions_to_code)
{
for (uint i = 0; i < num_greedy_decisions_to_code; i++)
{
LZHAM_ASSERT(best_decisions[i].m_pos == (int)cur_dict_ofs);
//LZHAM_ASSERT(i >= 0);
LZHAM_ASSERT(i < best_decisions.size());
#if LZHAM_UPDATE_STATS
bit_cost_t cost = m_state.get_cost(*this, m_accel, best_decisions[i]);
m_stats.update(best_decisions[i], m_state, m_accel, cost);
#endif
if (!code_decision(best_decisions[i], cur_dict_ofs, bytes_to_match))
{
LZHAM_LOG_ERROR(7053);
return false;
}
m_accel.advance_bytes(best_decisions[i].get_len());
}
if ((!greedy_parse_state.m_greedy_parse_gave_up) || (!bytes_to_match))
{
if (!computed_adler32)
{
computed_adler32 = true;
scoped_perf_section add_bytes_timer("adler32");
m_src_adler32 = adler32(pBuf, buf_len, m_src_adler32);
}
continue;
}
}
}
uint num_parse_jobs = LZHAM_MIN(m_num_parse_threads, (bytes_to_match + cMaxParseGraphNodes - 1) / cMaxParseGraphNodes);
if ((m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_DETERMINISTIC_PARSING) == 0)
{
if (m_use_task_pool && m_accel.get_max_helper_threads())
{
// Increase the number of active parse jobs as the match finder finishes up to keep CPU utilization up.
num_parse_jobs += m_accel.get_num_completed_helper_threads();
num_parse_jobs = LZHAM_MIN(num_parse_jobs, cMaxParseThreads);
}
}
// Don't bother threading if the remaining bytes to parse is too small.
if ((bytes_to_match < 1536) || (m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_FORCE_SINGLE_THREADED_PARSING))
num_parse_jobs = 1;
// Update the coding statistics more frequently near the beginning of streams.
if ((!m_block_index) && ((cur_dict_ofs - m_block_start_dict_ofs) < cMaxParseGraphNodes * 4))
num_parse_jobs = 1;
uint parse_thread_start_ofs = cur_dict_ofs;
uint parse_thread_total_size = LZHAM_MIN(bytes_to_match, cMaxParseGraphNodes * num_parse_jobs);
uint parse_thread_remaining = parse_thread_total_size;
state_base saved_state;
if (num_parse_jobs == 1)
m_state.save_partial_state(saved_state);
for (uint parse_thread_index = 0; parse_thread_index < num_parse_jobs; parse_thread_index++)
{
parse_thread_state &parse_thread = m_parse_thread_state[parse_thread_index];
if (num_parse_jobs == 1)
{
parse_thread.m_pState = &m_state;
}
else
{
parse_thread.m_pState = &parse_thread.m_state;
parse_thread.m_state = m_state;
}
parse_thread.m_pState->m_cur_ofs = parse_thread_start_ofs;
if (parse_thread_index > 0)
{
parse_thread.m_pState->reset_state_partial();
parse_thread.m_issue_reset_state_partial = true;
}
else
{
parse_thread.m_issue_reset_state_partial = false;
}
parse_thread.m_start_ofs = parse_thread_start_ofs;
if (parse_thread_index == (num_parse_jobs - 1))
parse_thread.m_bytes_to_match = parse_thread_remaining;
else
parse_thread.m_bytes_to_match = parse_thread_total_size / num_parse_jobs;
parse_thread.m_bytes_to_match = LZHAM_MIN(parse_thread.m_bytes_to_match, cMaxParseGraphNodes);
LZHAM_ASSERT(parse_thread.m_bytes_to_match > 0);
parse_thread.m_max_parse_node_states = m_params.m_extreme_parsing_max_best_arrivals;
parse_thread.m_max_greedy_decisions = UINT_MAX;
parse_thread.m_greedy_parse_gave_up = false;
parse_thread.m_parse_early_out_thresh = UINT_MAX;
parse_thread.m_bytes_actually_parsed = 0;
parse_thread.m_use_semaphore = ((m_use_task_pool) && (num_parse_jobs > 1)) && (parse_thread_index > 0);
if ((m_params.m_compression_level == cCompressionLevelUber) && (num_parse_jobs == 1))
{
// Allow the parsers to exit early if they encounter a graph bottleneck, so we can move the coding statistics forward before parsing again.
parse_thread.m_parse_early_out_thresh = (m_params.m_lzham_compress_flags & LZHAM_COMP_FLAG_EXTREME_PARSING) ? 16 : 64;
}
parse_thread_start_ofs += parse_thread.m_bytes_to_match;
parse_thread_remaining -= parse_thread.m_bytes_to_match;
}
{
scoped_perf_section parse_timer("parsing");
if ((m_use_task_pool) && (num_parse_jobs > 1))
{
{
scoped_perf_section queue_task_timer("queuing parse tasks");
if (!m_params.m_pTask_pool->queue_multiple_object_tasks(this, &lzcompressor::parse_job_callback, 1, num_parse_jobs - 1))
return false;
}
parse_job_callback(0, NULL);
}
else
{
for (uint parse_thread_index = 0; parse_thread_index < num_parse_jobs; parse_thread_index++)
{
parse_job_callback(parse_thread_index, NULL);
}
}
}
if (num_parse_jobs == 1)
m_state.restore_partial_state(saved_state);
if (!computed_adler32)
{
computed_adler32 = true;
scoped_perf_section add_bytes_timer("adler32");
m_src_adler32 = adler32(pBuf, buf_len, m_src_adler32);
}
#define LZHAM_RELEASE_SEMAPHORES for (uint pti = 1; pti < num_parse_jobs; pti++) if (m_parse_thread_state[pti].m_use_semaphore) { m_parse_thread_state[pti].m_finished.wait(); m_parse_thread_state[pti].m_use_semaphore = false; }
{
scoped_perf_section coding_timer("coding");
uint total_bytes_parsed = 0;
for (uint parse_thread_index = 0; parse_thread_index < num_parse_jobs; parse_thread_index++)
{
parse_thread_state &parse_thread = m_parse_thread_state[parse_thread_index];
if (parse_thread.m_use_semaphore)
{
scoped_perf_section sect(cVarArgs, "Waiting for parser %u", parse_thread_index);
m_parse_thread_state[parse_thread_index].m_finished.wait();
m_parse_thread_state[parse_thread_index].m_use_semaphore = false;
}
if (parse_thread.m_failed)
{
LZHAM_RELEASE_SEMAPHORES
LZHAM_LOG_ERROR(7054);
return false;
}
const lzham::vector<lzdecision> &best_decisions = parse_thread.m_best_decisions;
if (parse_thread.m_issue_reset_state_partial)
{
if (!m_state.encode_reset_state_partial(m_codec, m_accel, cur_dict_ofs))
{
LZHAM_RELEASE_SEMAPHORES
LZHAM_LOG_ERROR(7055);
return false;
}
m_step++;
}
if (best_decisions.size())
{
int i = 0;
int end_dec_index = static_cast<int>(best_decisions.size()) - 1;
int dec_step = 1;
if (parse_thread.m_emit_decisions_backwards)
{
i = static_cast<int>(best_decisions.size()) - 1;
end_dec_index = 0;
dec_step = -1;
LZHAM_ASSERT(best_decisions.back().m_pos == (int)parse_thread.m_start_ofs);
}
else
{
LZHAM_ASSERT(best_decisions.front().m_pos == (int)parse_thread.m_start_ofs);
}
// Loop rearranged to avoid bad x64 codegen problem with MSVC2008.
for ( ; ; )
{
LZHAM_ASSERT(best_decisions[i].m_pos == (int)cur_dict_ofs);
LZHAM_ASSERT(i >= 0);
LZHAM_ASSERT(i < (int)best_decisions.size());
#if LZHAM_UPDATE_STATS
bit_cost_t cost = m_state.get_cost(*this, m_accel, best_decisions[i]);
m_stats.update(best_decisions[i], m_state, m_accel, cost);
//m_state.print(m_codec, *this, m_accel, best_decisions[i]);
#endif
if (!code_decision(best_decisions[i], cur_dict_ofs, bytes_to_match))
{
LZHAM_RELEASE_SEMAPHORES
LZHAM_LOG_ERROR(7056);
return false;
}
total_bytes_parsed += best_decisions[i].get_len();
if (i == end_dec_index)
break;
i += dec_step;
}
LZHAM_NOTE_UNUSED(i);
}
LZHAM_ASSERT(cur_dict_ofs == parse_thread.m_start_ofs + parse_thread.m_bytes_actually_parsed);
} // parse_thread_index
m_accel.advance_bytes(total_bytes_parsed);
} // coding
} // while (bytes_to_match)
{
scoped_perf_section add_bytes_timer("add_bytes_end");
m_accel.add_bytes_end();
}
if (!m_state.encode_eob(m_codec, m_accel, cur_dict_ofs))
{
LZHAM_LOG_ERROR(7057);
return false;
}
#ifdef LZHAM_LZDEBUG
if (!m_codec.encode_bits(366, 12))
{
LZHAM_LOG_ERROR(7058);
return false;
}
#endif
{
scoped_perf_section stop_encoding_timer("stop_encoding");
if (!m_codec.stop_encoding(true))
{
LZHAM_LOG_ERROR(7059);
return false;
}
}
// Coded the entire block - now see if it makes more sense to just send a raw/uncompressed block.
uint compressed_size = m_codec.get_encoding_buf().size();
LZHAM_NOTE_UNUSED(compressed_size);
//bool used_raw_block = false;
#if !LZHAM_FORCE_ALL_RAW_BLOCKS
#if (defined(LZHAM_DISABLE_RAW_BLOCKS) || defined(LZHAM_LZDEBUG))
if (0)
#else
// TODO: Allow the user to control this threshold, i.e. if less than 1% then just store uncompressed.
if (compressed_size >= buf_len)
#endif
#endif
{
// Failed to compress the block, so go back to our original state and just code a raw block.
m_state = m_start_of_block_state;
m_step = initial_step;
//m_stats = initial_stats;
m_codec.reset();
if (!m_codec.start_encoding(buf_len + 16))
{
LZHAM_LOG_ERROR(7060);
return false;
}
if (!m_block_index)
{
if (!send_configuration())
{
LZHAM_LOG_ERROR(7061);
return false;
}
}
#ifdef LZHAM_LZDEBUG
if (!m_codec.encode_bits(166, 12))
{
LZHAM_LOG_ERROR(7062);
return false;
}
#endif
if (!m_codec.encode_bits(cRawBlock, cBlockHeaderBits))
{
LZHAM_LOG_ERROR(7063);
return false;
}
LZHAM_ASSERT(buf_len <= 0x1000000);
if (!m_codec.encode_bits(buf_len - 1, 24))
{
LZHAM_LOG_ERROR(7064);
return false;
}
// Write buf len check bits, to help increase the probability of detecting corrupted data more early.
uint buf_len0 = (buf_len - 1) & 0xFF;
uint buf_len1 = ((buf_len - 1) >> 8) & 0xFF;
uint buf_len2 = ((buf_len - 1) >> 16) & 0xFF;
if (!m_codec.encode_bits((buf_len0 ^ buf_len1) ^ buf_len2, 8))
{
LZHAM_LOG_ERROR(7065);
return false;
}
if (!m_codec.encode_align_to_byte())
{
LZHAM_LOG_ERROR(7066);
return false;
}
const uint8* pSrc = m_accel.get_ptr(m_block_start_dict_ofs);
for (uint i = 0; i < buf_len; i++)
{
if (!m_codec.encode_bits(*pSrc++, 8))
{
LZHAM_LOG_ERROR(7067);
return false;
}
}
if (!m_codec.stop_encoding(true))
{
LZHAM_LOG_ERROR(7068);
return false;
}
//used_raw_block = true;
emit_reset_update_rate_command = false;
}
{
scoped_perf_section append_timer("append");
if (m_comp_buf.empty())
{
m_comp_buf.swap(m_codec.get_encoding_buf());
}
else
{
if (!m_comp_buf.append(m_codec.get_encoding_buf()))
{
LZHAM_LOG_ERROR(7069);
return false;
}
}
}
#if LZHAM_UPDATE_STATS
LZHAM_VERIFY(m_stats.m_total_bytes == m_src_size);
if (emit_reset_update_rate_command)
m_stats.m_total_update_rate_resets++;
#endif
m_block_index++;
return true;
}
} // namespace lzham