p7zip/CPP/7zip/Compress/BZip2Encoder.cpp
2017-10-11 12:35:36 +02:00

891 lines
21 KiB
C++

// BZip2Encoder.cpp
#include "StdAfx.h"
#include "../../../C/Alloc.h"
#include "../../../C/BwtSort.h"
#include "../../../C/HuffEnc.h"
#include "BZip2Crc.h"
#include "BZip2Encoder.h"
#include "Mtf8.h"
namespace NCompress {
namespace NBZip2 {
const unsigned kMaxHuffmanLenForEncoding = 16; // it must be < kMaxHuffmanLen = 20
static const UInt32 kBufferSize = (1 << 17);
static const unsigned kNumHuffPasses = 4;
bool CThreadInfo::Alloc()
{
if (m_BlockSorterIndex == 0)
{
m_BlockSorterIndex = (UInt32 *)::BigAlloc(BLOCK_SORT_BUF_SIZE(kBlockSizeMax) * sizeof(UInt32));
if (m_BlockSorterIndex == 0)
return false;
}
if (m_Block == 0)
{
m_Block = (Byte *)::MidAlloc(kBlockSizeMax * 5 + kBlockSizeMax / 10 + (20 << 10));
if (m_Block == 0)
return false;
m_MtfArray = m_Block + kBlockSizeMax;
m_TempArray = m_MtfArray + kBlockSizeMax * 2 + 2;
}
return true;
}
void CThreadInfo::Free()
{
::BigFree(m_BlockSorterIndex);
m_BlockSorterIndex = 0;
::MidFree(m_Block);
m_Block = 0;
}
#ifndef _7ZIP_ST
static THREAD_FUNC_DECL MFThread(void *threadCoderInfo)
{
return ((CThreadInfo *)threadCoderInfo)->ThreadFunc();
}
#define RINOK_THREAD(x) { WRes __result_ = (x); if (__result_ != 0) return __result_; }
HRESULT CThreadInfo::Create()
{
RINOK_THREAD(StreamWasFinishedEvent.Create());
RINOK_THREAD(WaitingWasStartedEvent.Create());
RINOK_THREAD(CanWriteEvent.Create());
RINOK_THREAD(Thread.Create(MFThread, this));
return S_OK;
}
void CThreadInfo::FinishStream(bool needLeave)
{
Encoder->StreamWasFinished = true;
StreamWasFinishedEvent.Set();
if (needLeave)
Encoder->CS.Leave();
Encoder->CanStartWaitingEvent.Lock();
WaitingWasStartedEvent.Set();
}
DWORD CThreadInfo::ThreadFunc()
{
for (;;)
{
Encoder->CanProcessEvent.Lock();
Encoder->CS.Enter();
if (Encoder->CloseThreads)
{
Encoder->CS.Leave();
return 0;
}
if (Encoder->StreamWasFinished)
{
FinishStream(true);
continue;
}
HRESULT res = S_OK;
bool needLeave = true;
try
{
UInt32 blockSize = Encoder->ReadRleBlock(m_Block);
m_PackSize = Encoder->m_InStream.GetProcessedSize();
m_BlockIndex = Encoder->NextBlockIndex;
if (++Encoder->NextBlockIndex == Encoder->NumThreads)
Encoder->NextBlockIndex = 0;
if (blockSize == 0)
{
FinishStream(true);
continue;
}
Encoder->CS.Leave();
needLeave = false;
res = EncodeBlock3(blockSize);
}
catch(const CInBufferException &e) { res = e.ErrorCode; }
catch(const COutBufferException &e) { res = e.ErrorCode; }
catch(...) { res = E_FAIL; }
if (res != S_OK)
{
Encoder->Result = res;
FinishStream(needLeave);
continue;
}
}
}
#endif
void CEncProps::Normalize(int level)
{
if (level < 0) level = 5;
if (level > 9) level = 9;
if (NumPasses == (UInt32)(Int32)-1)
NumPasses = (level >= 9 ? 7 : (level >= 7 ? 2 : 1));
if (NumPasses < 1) NumPasses = 1;
if (NumPasses > kNumPassesMax) NumPasses = kNumPassesMax;
if (BlockSizeMult == (UInt32)(Int32)-1)
BlockSizeMult = (level >= 5 ? 9 : (level >= 1 ? level * 2 - 1: 1));
if (BlockSizeMult < kBlockSizeMultMin) BlockSizeMult = kBlockSizeMultMin;
if (BlockSizeMult > kBlockSizeMultMax) BlockSizeMult = kBlockSizeMultMax;
}
CEncoder::CEncoder()
{
_props.Normalize(-1);
#ifndef _7ZIP_ST
ThreadsInfo = 0;
m_NumThreadsPrev = 0;
NumThreads = 1;
#endif
}
#ifndef _7ZIP_ST
CEncoder::~CEncoder()
{
Free();
}
HRESULT CEncoder::Create()
{
RINOK_THREAD(CanProcessEvent.CreateIfNotCreated());
RINOK_THREAD(CanStartWaitingEvent.CreateIfNotCreated());
if (ThreadsInfo != 0 && m_NumThreadsPrev == NumThreads)
return S_OK;
try
{
Free();
MtMode = (NumThreads > 1);
m_NumThreadsPrev = NumThreads;
ThreadsInfo = new CThreadInfo[NumThreads];
if (ThreadsInfo == 0)
return E_OUTOFMEMORY;
}
catch(...) { return E_OUTOFMEMORY; }
for (UInt32 t = 0; t < NumThreads; t++)
{
CThreadInfo &ti = ThreadsInfo[t];
ti.Encoder = this;
if (MtMode)
{
HRESULT res = ti.Create();
if (res != S_OK)
{
NumThreads = t;
Free();
return res;
}
}
}
return S_OK;
}
void CEncoder::Free()
{
if (!ThreadsInfo)
return;
CloseThreads = true;
CanProcessEvent.Set();
for (UInt32 t = 0; t < NumThreads; t++)
{
CThreadInfo &ti = ThreadsInfo[t];
if (MtMode)
ti.Thread.Wait();
ti.Free();
}
delete []ThreadsInfo;
ThreadsInfo = 0;
}
#endif
UInt32 CEncoder::ReadRleBlock(Byte *buffer)
{
UInt32 i = 0;
Byte prevByte;
if (m_InStream.ReadByte(prevByte))
{
UInt32 blockSize = _props.BlockSizeMult * kBlockSizeStep - 1;
unsigned numReps = 1;
buffer[i++] = prevByte;
while (i < blockSize) // "- 1" to support RLE
{
Byte b;
if (!m_InStream.ReadByte(b))
break;
if (b != prevByte)
{
if (numReps >= kRleModeRepSize)
buffer[i++] = (Byte)(numReps - kRleModeRepSize);
buffer[i++] = b;
numReps = 1;
prevByte = b;
continue;
}
numReps++;
if (numReps <= kRleModeRepSize)
buffer[i++] = b;
else if (numReps == kRleModeRepSize + 255)
{
buffer[i++] = (Byte)(numReps - kRleModeRepSize);
numReps = 0;
}
}
// it's to support original BZip2 decoder
if (numReps >= kRleModeRepSize)
buffer[i++] = (Byte)(numReps - kRleModeRepSize);
}
return i;
}
void CThreadInfo::WriteBits2(UInt32 value, unsigned numBits) { m_OutStreamCurrent->WriteBits(value, numBits); }
void CThreadInfo::WriteByte2(Byte b) { WriteBits2(b, 8); }
void CThreadInfo::WriteBit2(Byte v) { WriteBits2(v, 1); }
void CThreadInfo::WriteCrc2(UInt32 v)
{
for (unsigned i = 0; i < 4; i++)
WriteByte2(((Byte)(v >> (24 - i * 8))));
}
void CEncoder::WriteBits(UInt32 value, unsigned numBits) { m_OutStream.WriteBits(value, numBits); }
void CEncoder::WriteByte(Byte b) { WriteBits(b, 8); }
// void CEncoder::WriteBit(Byte v) { WriteBits(v, 1); }
void CEncoder::WriteCrc(UInt32 v)
{
for (unsigned i = 0; i < 4; i++)
WriteByte(((Byte)(v >> (24 - i * 8))));
}
// blockSize > 0
void CThreadInfo::EncodeBlock(const Byte *block, UInt32 blockSize)
{
WriteBit2(0); // Randomised = false
{
UInt32 origPtr = BlockSort(m_BlockSorterIndex, block, blockSize);
// if (m_BlockSorterIndex[origPtr] != 0) throw 1;
m_BlockSorterIndex[origPtr] = blockSize;
WriteBits2(origPtr, kNumOrigBits);
}
CMtf8Encoder mtf;
unsigned numInUse = 0;
{
Byte inUse[256];
Byte inUse16[16];
UInt32 i;
for (i = 0; i < 256; i++)
inUse[i] = 0;
for (i = 0; i < 16; i++)
inUse16[i] = 0;
for (i = 0; i < blockSize; i++)
inUse[block[i]] = 1;
for (i = 0; i < 256; i++)
if (inUse[i])
{
inUse16[i >> 4] = 1;
mtf.Buf[numInUse++] = (Byte)i;
}
for (i = 0; i < 16; i++)
WriteBit2(inUse16[i]);
for (i = 0; i < 256; i++)
if (inUse16[i >> 4])
WriteBit2(inUse[i]);
}
unsigned alphaSize = numInUse + 2;
Byte *mtfs = m_MtfArray;
UInt32 mtfArraySize = 0;
UInt32 symbolCounts[kMaxAlphaSize];
{
for (unsigned i = 0; i < kMaxAlphaSize; i++)
symbolCounts[i] = 0;
}
{
UInt32 rleSize = 0;
UInt32 i = 0;
const UInt32 *bsIndex = m_BlockSorterIndex;
block--;
do
{
unsigned pos = mtf.FindAndMove(block[bsIndex[i]]);
if (pos == 0)
rleSize++;
else
{
while (rleSize != 0)
{
rleSize--;
mtfs[mtfArraySize++] = (Byte)(rleSize & 1);
symbolCounts[rleSize & 1]++;
rleSize >>= 1;
}
if (pos >= 0xFE)
{
mtfs[mtfArraySize++] = 0xFF;
mtfs[mtfArraySize++] = (Byte)(pos - 0xFE);
}
else
mtfs[mtfArraySize++] = (Byte)(pos + 1);
symbolCounts[pos + 1]++;
}
}
while (++i < blockSize);
while (rleSize != 0)
{
rleSize--;
mtfs[mtfArraySize++] = (Byte)(rleSize & 1);
symbolCounts[rleSize & 1]++;
rleSize >>= 1;
}
if (alphaSize < 256)
mtfs[mtfArraySize++] = (Byte)(alphaSize - 1);
else
{
mtfs[mtfArraySize++] = 0xFF;
mtfs[mtfArraySize++] = (Byte)(alphaSize - 256);
}
symbolCounts[alphaSize - 1]++;
}
UInt32 numSymbols = 0;
{
for (unsigned i = 0; i < kMaxAlphaSize; i++)
numSymbols += symbolCounts[i];
}
unsigned bestNumTables = kNumTablesMin;
UInt32 bestPrice = 0xFFFFFFFF;
UInt32 startPos = m_OutStreamCurrent->GetPos();
Byte startCurByte = m_OutStreamCurrent->GetCurByte();
for (unsigned nt = kNumTablesMin; nt <= kNumTablesMax + 1; nt++)
{
unsigned numTables;
if (m_OptimizeNumTables)
{
m_OutStreamCurrent->SetPos(startPos);
m_OutStreamCurrent->SetCurState((startPos & 7), startCurByte);
if (nt <= kNumTablesMax)
numTables = nt;
else
numTables = bestNumTables;
}
else
{
if (numSymbols < 200) numTables = 2;
else if (numSymbols < 600) numTables = 3;
else if (numSymbols < 1200) numTables = 4;
else if (numSymbols < 2400) numTables = 5;
else numTables = 6;
}
WriteBits2(numTables, kNumTablesBits);
UInt32 numSelectors = (numSymbols + kGroupSize - 1) / kGroupSize;
WriteBits2(numSelectors, kNumSelectorsBits);
{
UInt32 remFreq = numSymbols;
unsigned gs = 0;
unsigned t = numTables;
do
{
UInt32 tFreq = remFreq / t;
unsigned ge = gs;
UInt32 aFreq = 0;
while (aFreq < tFreq) // && ge < alphaSize)
aFreq += symbolCounts[ge++];
if (ge > gs + 1 && t != numTables && t != 1 && (((numTables - t) & 1) == 1))
aFreq -= symbolCounts[--ge];
Byte *lens = Lens[t - 1];
unsigned i = 0;
do
lens[i] = (Byte)((i >= gs && i < ge) ? 0 : 1);
while (++i < alphaSize);
gs = ge;
remFreq -= aFreq;
}
while (--t != 0);
}
for (unsigned pass = 0; pass < kNumHuffPasses; pass++)
{
{
unsigned t = 0;
do
memset(Freqs[t], 0, sizeof(Freqs[t]));
while (++t < numTables);
}
{
UInt32 mtfPos = 0;
UInt32 g = 0;
do
{
UInt32 symbols[kGroupSize];
unsigned i = 0;
do
{
UInt32 symbol = mtfs[mtfPos++];
if (symbol >= 0xFF)
symbol += mtfs[mtfPos++];
symbols[i] = symbol;
}
while (++i < kGroupSize && mtfPos < mtfArraySize);
UInt32 bestPrice2 = 0xFFFFFFFF;
unsigned t = 0;
do
{
const Byte *lens = Lens[t];
UInt32 price = 0;
unsigned j = 0;
do
price += lens[symbols[j]];
while (++j < i);
if (price < bestPrice2)
{
m_Selectors[g] = (Byte)t;
bestPrice2 = price;
}
}
while (++t < numTables);
UInt32 *freqs = Freqs[m_Selectors[g++]];
unsigned j = 0;
do
freqs[symbols[j]]++;
while (++j < i);
}
while (mtfPos < mtfArraySize);
}
unsigned t = 0;
do
{
UInt32 *freqs = Freqs[t];
unsigned i = 0;
do
if (freqs[i] == 0)
freqs[i] = 1;
while (++i < alphaSize);
Huffman_Generate(freqs, Codes[t], Lens[t], kMaxAlphaSize, kMaxHuffmanLenForEncoding);
}
while (++t < numTables);
}
{
Byte mtfSel[kNumTablesMax];
{
unsigned t = 0;
do
mtfSel[t] = (Byte)t;
while (++t < numTables);
}
UInt32 i = 0;
do
{
Byte sel = m_Selectors[i];
unsigned pos;
for (pos = 0; mtfSel[pos] != sel; pos++)
WriteBit2(1);
WriteBit2(0);
for (; pos > 0; pos--)
mtfSel[pos] = mtfSel[pos - 1];
mtfSel[0] = sel;
}
while (++i < numSelectors);
}
{
unsigned t = 0;
do
{
const Byte *lens = Lens[t];
UInt32 len = lens[0];
WriteBits2(len, kNumLevelsBits);
unsigned i = 0;
do
{
UInt32 level = lens[i];
while (len != level)
{
WriteBit2(1);
if (len < level)
{
WriteBit2(0);
len++;
}
else
{
WriteBit2(1);
len--;
}
}
WriteBit2(0);
}
while (++i < alphaSize);
}
while (++t < numTables);
}
{
UInt32 groupSize = 0;
UInt32 groupIndex = 0;
const Byte *lens = 0;
const UInt32 *codes = 0;
UInt32 mtfPos = 0;
do
{
UInt32 symbol = mtfs[mtfPos++];
if (symbol >= 0xFF)
symbol += mtfs[mtfPos++];
if (groupSize == 0)
{
groupSize = kGroupSize;
unsigned t = m_Selectors[groupIndex++];
lens = Lens[t];
codes = Codes[t];
}
groupSize--;
m_OutStreamCurrent->WriteBits(codes[symbol], lens[symbol]);
}
while (mtfPos < mtfArraySize);
}
if (!m_OptimizeNumTables)
break;
UInt32 price = m_OutStreamCurrent->GetPos() - startPos;
if (price <= bestPrice)
{
if (nt == kNumTablesMax)
break;
bestPrice = price;
bestNumTables = nt;
}
}
}
// blockSize > 0
UInt32 CThreadInfo::EncodeBlockWithHeaders(const Byte *block, UInt32 blockSize)
{
WriteByte2(kBlockSig0);
WriteByte2(kBlockSig1);
WriteByte2(kBlockSig2);
WriteByte2(kBlockSig3);
WriteByte2(kBlockSig4);
WriteByte2(kBlockSig5);
CBZip2Crc crc;
unsigned numReps = 0;
Byte prevByte = block[0];
UInt32 i = 0;
do
{
Byte b = block[i];
if (numReps == kRleModeRepSize)
{
for (; b > 0; b--)
crc.UpdateByte(prevByte);
numReps = 0;
continue;
}
if (prevByte == b)
numReps++;
else
{
numReps = 1;
prevByte = b;
}
crc.UpdateByte(b);
}
while (++i < blockSize);
UInt32 crcRes = crc.GetDigest();
WriteCrc2(crcRes);
EncodeBlock(block, blockSize);
return crcRes;
}
void CThreadInfo::EncodeBlock2(const Byte *block, UInt32 blockSize, UInt32 numPasses)
{
UInt32 numCrcs = m_NumCrcs;
bool needCompare = false;
UInt32 startBytePos = m_OutStreamCurrent->GetBytePos();
UInt32 startPos = m_OutStreamCurrent->GetPos();
Byte startCurByte = m_OutStreamCurrent->GetCurByte();
Byte endCurByte = 0;
UInt32 endPos = 0;
if (numPasses > 1 && blockSize >= (1 << 10))
{
UInt32 blockSize0 = blockSize / 2;
for (;(block[blockSize0] == block[blockSize0 - 1] ||
block[blockSize0 - 1] == block[blockSize0 - 2]) &&
blockSize0 < blockSize; blockSize0++);
if (blockSize0 < blockSize)
{
EncodeBlock2(block, blockSize0, numPasses - 1);
EncodeBlock2(block + blockSize0, blockSize - blockSize0, numPasses - 1);
endPos = m_OutStreamCurrent->GetPos();
endCurByte = m_OutStreamCurrent->GetCurByte();
if ((endPos & 7) > 0)
WriteBits2(0, 8 - (endPos & 7));
m_OutStreamCurrent->SetCurState((startPos & 7), startCurByte);
needCompare = true;
}
}
UInt32 startBytePos2 = m_OutStreamCurrent->GetBytePos();
UInt32 startPos2 = m_OutStreamCurrent->GetPos();
UInt32 crcVal = EncodeBlockWithHeaders(block, blockSize);
UInt32 endPos2 = m_OutStreamCurrent->GetPos();
if (needCompare)
{
UInt32 size2 = endPos2 - startPos2;
if (size2 < endPos - startPos)
{
UInt32 numBytes = m_OutStreamCurrent->GetBytePos() - startBytePos2;
Byte *buffer = m_OutStreamCurrent->GetStream();
for (UInt32 i = 0; i < numBytes; i++)
buffer[startBytePos + i] = buffer[startBytePos2 + i];
m_OutStreamCurrent->SetPos(startPos + endPos2 - startPos2);
m_NumCrcs = numCrcs;
m_CRCs[m_NumCrcs++] = crcVal;
}
else
{
m_OutStreamCurrent->SetPos(endPos);
m_OutStreamCurrent->SetCurState((endPos & 7), endCurByte);
}
}
else
{
m_NumCrcs = numCrcs;
m_CRCs[m_NumCrcs++] = crcVal;
}
}
HRESULT CThreadInfo::EncodeBlock3(UInt32 blockSize)
{
CMsbfEncoderTemp outStreamTemp;
outStreamTemp.SetStream(m_TempArray);
outStreamTemp.Init();
m_OutStreamCurrent = &outStreamTemp;
m_NumCrcs = 0;
EncodeBlock2(m_Block, blockSize, Encoder->_props.NumPasses);
#ifndef _7ZIP_ST
if (Encoder->MtMode)
Encoder->ThreadsInfo[m_BlockIndex].CanWriteEvent.Lock();
#endif
for (UInt32 i = 0; i < m_NumCrcs; i++)
Encoder->CombinedCrc.Update(m_CRCs[i]);
Encoder->WriteBytes(m_TempArray, outStreamTemp.GetPos(), outStreamTemp.GetCurByte());
HRESULT res = S_OK;
#ifndef _7ZIP_ST
if (Encoder->MtMode)
{
UInt32 blockIndex = m_BlockIndex + 1;
if (blockIndex == Encoder->NumThreads)
blockIndex = 0;
if (Encoder->Progress)
{
UInt64 unpackSize = Encoder->m_OutStream.GetProcessedSize();
res = Encoder->Progress->SetRatioInfo(&m_PackSize, &unpackSize);
}
Encoder->ThreadsInfo[blockIndex].CanWriteEvent.Set();
}
#endif
return res;
}
void CEncoder::WriteBytes(const Byte *data, UInt32 sizeInBits, Byte lastByte)
{
UInt32 bytesSize = (sizeInBits >> 3);
for (UInt32 i = 0; i < bytesSize; i++)
m_OutStream.WriteBits(data[i], 8);
WriteBits(lastByte, (sizeInBits & 7));
}
HRESULT CEncoder::CodeReal(ISequentialInStream *inStream, ISequentialOutStream *outStream,
const UInt64 * /* inSize */, const UInt64 * /* outSize */, ICompressProgressInfo *progress)
{
#ifndef _7ZIP_ST
Progress = progress;
RINOK(Create());
for (UInt32 t = 0; t < NumThreads; t++)
#endif
{
#ifndef _7ZIP_ST
CThreadInfo &ti = ThreadsInfo[t];
if (MtMode)
{
RINOK(ti.StreamWasFinishedEvent.Reset());
RINOK(ti.WaitingWasStartedEvent.Reset());
RINOK(ti.CanWriteEvent.Reset());
}
#else
CThreadInfo &ti = ThreadsInfo;
ti.Encoder = this;
#endif
ti.m_OptimizeNumTables = _props.DoOptimizeNumTables();
if (!ti.Alloc())
return E_OUTOFMEMORY;
}
if (!m_InStream.Create(kBufferSize))
return E_OUTOFMEMORY;
if (!m_OutStream.Create(kBufferSize))
return E_OUTOFMEMORY;
m_InStream.SetStream(inStream);
m_InStream.Init();
m_OutStream.SetStream(outStream);
m_OutStream.Init();
CombinedCrc.Init();
#ifndef _7ZIP_ST
NextBlockIndex = 0;
StreamWasFinished = false;
CloseThreads = false;
CanStartWaitingEvent.Reset();
#endif
WriteByte(kArSig0);
WriteByte(kArSig1);
WriteByte(kArSig2);
WriteByte((Byte)(kArSig3 + _props.BlockSizeMult));
#ifndef _7ZIP_ST
if (MtMode)
{
ThreadsInfo[0].CanWriteEvent.Set();
Result = S_OK;
CanProcessEvent.Set();
UInt32 t;
for (t = 0; t < NumThreads; t++)
ThreadsInfo[t].StreamWasFinishedEvent.Lock();
CanProcessEvent.Reset();
CanStartWaitingEvent.Set();
for (t = 0; t < NumThreads; t++)
ThreadsInfo[t].WaitingWasStartedEvent.Lock();
CanStartWaitingEvent.Reset();
RINOK(Result);
}
else
#endif
{
for (;;)
{
CThreadInfo &ti =
#ifndef _7ZIP_ST
ThreadsInfo[0];
#else
ThreadsInfo;
#endif
UInt32 blockSize = ReadRleBlock(ti.m_Block);
if (blockSize == 0)
break;
RINOK(ti.EncodeBlock3(blockSize));
if (progress)
{
UInt64 packSize = m_InStream.GetProcessedSize();
UInt64 unpackSize = m_OutStream.GetProcessedSize();
RINOK(progress->SetRatioInfo(&packSize, &unpackSize));
}
}
}
WriteByte(kFinSig0);
WriteByte(kFinSig1);
WriteByte(kFinSig2);
WriteByte(kFinSig3);
WriteByte(kFinSig4);
WriteByte(kFinSig5);
WriteCrc(CombinedCrc.GetDigest());
return Flush();
}
STDMETHODIMP CEncoder::Code(ISequentialInStream *inStream, ISequentialOutStream *outStream,
const UInt64 *inSize, const UInt64 *outSize, ICompressProgressInfo *progress)
{
try { return CodeReal(inStream, outStream, inSize, outSize, progress); }
catch(const CInBufferException &e) { return e.ErrorCode; }
catch(const COutBufferException &e) { return e.ErrorCode; }
catch(...) { return S_FALSE; }
}
HRESULT CEncoder::SetCoderProperties(const PROPID *propIDs, const PROPVARIANT *coderProps, UInt32 numProps)
{
int level = -1;
CEncProps props;
for (UInt32 i = 0; i < numProps; i++)
{
const PROPVARIANT &prop = coderProps[i];
PROPID propID = propIDs[i];
if (propID >= NCoderPropID::kReduceSize)
continue;
if (prop.vt != VT_UI4)
return E_INVALIDARG;
UInt32 v = (UInt32)prop.ulVal;
switch (propID)
{
case NCoderPropID::kNumPasses: props.NumPasses = v; break;
case NCoderPropID::kDictionarySize: props.BlockSizeMult = v / kBlockSizeStep; break;
case NCoderPropID::kLevel: level = v; break;
case NCoderPropID::kNumThreads:
{
#ifndef _7ZIP_ST
SetNumberOfThreads(v);
#endif
break;
}
default: return E_INVALIDARG;
}
}
props.Normalize(level);
_props = props;
return S_OK;
}
#ifndef _7ZIP_ST
STDMETHODIMP CEncoder::SetNumberOfThreads(UInt32 numThreads)
{
const UInt32 kNumThreadsMax = 64;
if (numThreads < 1) numThreads = 1;
if (numThreads > kNumThreadsMax) numThreads = kNumThreadsMax;
NumThreads = numThreads;
return S_OK;
}
#endif
}}