p7zip/CPP/7zip/Compress/Lzham/lzhamdecomp/lzham_symbol_codec.h

495 lines
18 KiB
C
Raw Normal View History

2017-10-11 12:35:36 +02:00
// File: lzham_symbol_codec.h
// See Copyright Notice and license at the end of include/lzham.h
#pragma once
#include "lzham_prefix_coding.h"
namespace lzham
{
class symbol_codec;
const uint cSymbolCodecArithMinLen = 0x01000000U;
const uint cSymbolCodecArithMaxLen = 0xFFFFFFFFU;
const uint cSymbolCodecArithProbBits = 11;
const uint cSymbolCodecArithProbScale = 1 << cSymbolCodecArithProbBits;
const uint cSymbolCodecArithProbHalfScale = 1 << (cSymbolCodecArithProbBits - 1);
const uint cSymbolCodecArithProbMoveBits = 5;
typedef uint64 bit_cost_t;
const uint32 cBitCostScaleShift = 24;
const uint32 cBitCostScale = (1U << cBitCostScaleShift);
const bit_cost_t cBitCostMax = cUINT64_MAX;
inline bit_cost_t convert_to_scaled_bitcost(uint bits) { LZHAM_ASSERT(bits <= 255); uint32 scaled_bits = bits << cBitCostScaleShift; return static_cast<bit_cost_t>(scaled_bits); }
extern uint32 g_prob_cost[cSymbolCodecArithProbScale];
class quasi_adaptive_huffman_data_model
{
public:
quasi_adaptive_huffman_data_model(lzham_malloc_context malloc_context = NULL, bool encoding = false, uint total_syms = 0, uint max_update_interval = 0, uint adapt_rate = 0);
quasi_adaptive_huffman_data_model(const quasi_adaptive_huffman_data_model& other);
~quasi_adaptive_huffman_data_model();
bool assign(const quasi_adaptive_huffman_data_model& rhs);
quasi_adaptive_huffman_data_model& operator= (const quasi_adaptive_huffman_data_model& rhs);
void clear();
void set_malloc_context(lzham_malloc_context malloc_context)
{
m_malloc_context = malloc_context;
m_initial_sym_freq.set_malloc_context(malloc_context);
m_sym_freq.set_malloc_context(malloc_context);
m_codes.set_malloc_context(malloc_context);
m_code_sizes.set_malloc_context(malloc_context);
}
lzham_malloc_context get_malloc_context() const { return m_malloc_context; }
bool init2(lzham_malloc_context context, bool encoding, uint total_syms, uint max_update_interval, uint adapt_rate, const uint16 *pInitial_sym_freq);
bool reset();
inline uint get_total_syms() const { return m_total_syms; }
void rescale();
void reset_update_rate();
bool update_sym(uint sym);
inline bit_cost_t get_cost(uint sym) const { return convert_to_scaled_bitcost(m_code_sizes[sym]); }
public:
lzham_malloc_context m_malloc_context;
lzham::vector<uint16> m_initial_sym_freq;
lzham::vector<uint16> m_sym_freq;
lzham::vector<uint16> m_codes;
lzham::vector<uint8> m_code_sizes;
prefix_coding::decoder_tables* m_pDecode_tables;
uint m_total_syms;
uint m_max_cycle;
uint m_update_cycle;
uint m_symbols_until_update;
uint m_total_count;
uint8 m_decoder_table_bits;
uint16 m_max_update_interval; // def=16, typical range 12-128, controls the max interval between table updates, higher=longer max interval (faster decode/lower ratio)
uint16 m_adapt_rate; // def=10, 8 or higher, scaled by 8, controls the slowing of the update update freq, higher=more rapid slowing (faster decode/lower ratio)
bool m_encoding;
bool update_tables(int force_update_cycle = -1, bool sym_freq_all_ones = false);
friend class symbol_codec;
};
class adaptive_bit_model
{
public:
inline adaptive_bit_model() { clear(); }
adaptive_bit_model(float prob0);
adaptive_bit_model(const adaptive_bit_model& other);
inline adaptive_bit_model& operator= (const adaptive_bit_model& rhs) { m_bit_0_prob = rhs.m_bit_0_prob; return *this; }
inline void clear() { m_bit_0_prob = 1U << (cSymbolCodecArithProbBits - 1); }
void set_probability_0(float prob0);
inline void update(uint bit)
{
if (!bit)
m_bit_0_prob += ((cSymbolCodecArithProbScale - m_bit_0_prob) >> cSymbolCodecArithProbMoveBits);
else
m_bit_0_prob -= (m_bit_0_prob >> cSymbolCodecArithProbMoveBits);
LZHAM_ASSERT(m_bit_0_prob >= 1);
LZHAM_ASSERT(m_bit_0_prob < cSymbolCodecArithProbScale);
}
inline bit_cost_t get_cost(uint bit) const { return g_prob_cost[bit ? (cSymbolCodecArithProbScale - m_bit_0_prob) : m_bit_0_prob]; }
public:
uint16 m_bit_0_prob;
friend class symbol_codec;
};
#if LZHAM_CPU_HAS_64BIT_REGISTERS
#define LZHAM_SYMBOL_CODEC_USE_64_BIT_BUFFER 1
#else
#define LZHAM_SYMBOL_CODEC_USE_64_BIT_BUFFER 0
#endif
class symbol_codec
{
LZHAM_NO_COPY_OR_ASSIGNMENT_OP(symbol_codec);
public:
symbol_codec(lzham_malloc_context malloc_context);
void reset();
// clear() is like reset(), except it also frees all memory.
void clear();
// Encoding
bool start_encoding(uint expected_file_size);
bool encode_bits(uint bits, uint num_bits);
bool encode_arith_init();
bool encode_align_to_byte();
bool encode(uint sym, quasi_adaptive_huffman_data_model& model);
bool encode(uint bit, adaptive_bit_model& model, bool update_model = true);
inline uint encode_get_total_bits_written() const { return m_total_bits_written; }
bool stop_encoding(bool support_arith);
const lzham::vector<uint8>& get_encoding_buf() const { return m_output_buf; }
lzham::vector<uint8>& get_encoding_buf() { return m_output_buf; }
// Decoding
typedef void (*need_bytes_func_ptr)(size_t num_bytes_consumed, void *pPrivate_data, const uint8* &pBuf, size_t &buf_size, bool &eof_flag);
bool start_decoding(const uint8* pBuf, size_t buf_size, bool eof_flag = true, need_bytes_func_ptr pNeed_bytes_func = NULL, void *pPrivate_data = NULL);
inline void decode_set_input_buffer(const uint8* pBuf, size_t buf_size, const uint8* pBuf_next, bool eof_flag)
{
m_pDecode_buf = pBuf;
m_pDecode_buf_next = pBuf_next;
m_decode_buf_size = buf_size;
m_pDecode_buf_end = pBuf + buf_size;
m_decode_buf_eof = eof_flag;
}
inline uint64 decode_get_bytes_consumed() const { return m_pDecode_buf_next - m_pDecode_buf; }
inline uint64 decode_get_bits_remaining() const { return ((m_pDecode_buf_end - m_pDecode_buf_next) << 3) + m_bit_count; }
void start_arith_decoding();
uint decode_bits(uint num_bits);
uint decode_peek_bits(uint num_bits);
void decode_remove_bits(uint num_bits);
void decode_align_to_byte();
int decode_remove_byte_from_bit_buf();
uint decode(quasi_adaptive_huffman_data_model& model);
uint decode(adaptive_bit_model& model, bool update_model = true);
uint64 stop_decoding();
uint get_total_model_updates() const { return m_total_model_updates; }
public:
lzham_malloc_context m_malloc_context;
const uint8* m_pDecode_buf;
const uint8* m_pDecode_buf_next;
const uint8* m_pDecode_buf_end;
size_t m_decode_buf_size;
bool m_decode_buf_eof;
need_bytes_func_ptr m_pDecode_need_bytes_func;
void* m_pDecode_private_data;
#if LZHAM_SYMBOL_CODEC_USE_64_BIT_BUFFER
typedef uint64 bit_buf_t;
enum { cBitBufSize = 64 };
#else
typedef uint32 bit_buf_t;
enum { cBitBufSize = 32 };
#endif
bit_buf_t m_bit_buf;
int m_bit_count;
uint m_total_model_updates;
lzham::vector<uint8> m_output_buf;
lzham::vector<uint8> m_arith_output_buf;
struct output_symbol
{
uint m_bits;
enum
{
cArithSym = -1,
cAlignToByteSym = -2,
cArithInit = -3
};
int16 m_num_bits;
uint16 m_arith_prob0;
};
lzham::vector<output_symbol> m_output_syms;
uint m_total_bits_written;
uint m_arith_base;
uint m_arith_value;
uint m_arith_length;
uint m_arith_total_bits;
quasi_adaptive_huffman_data_model* m_pSaved_huff_model;
void* m_pSaved_model;
uint m_saved_node_index;
bool put_bits_init(uint expected_size);
bool record_put_bits(uint bits, uint num_bits);
void arith_propagate_carry();
bool arith_renorm_enc_interval();
void arith_start_encoding();
bool arith_stop_encoding();
bool put_bits(uint bits, uint num_bits);
bool put_bits_align_to_byte();
bool flush_bits();
bool assemble_output_buf();
uint get_bits(uint num_bits);
void remove_bits(uint num_bits);
void decode_need_bytes();
enum
{
cNull,
cEncoding,
cDecoding
} m_mode;
};
// Optional macros for faster decompression. These macros implement the symbol_codec class's decode functionality.
// This is hard to debug (and just plain ugly), but using these macros eliminate function calls, and they place the most important
// member variables on the stack so they're hopefully put in registers (avoiding horrible load hit stores on some CPU's).
// The user must define the LZHAM_DECODE_NEEDS_BYTES macro, which is invoked when the decode buffer is exhausted.
#define LZHAM_SYMBOL_CODEC_DECODE_DECLARE(codec) \
uint arith_value = 0; \
uint arith_length = 0; \
symbol_codec::bit_buf_t bit_buf = 0; \
int bit_count = 0; \
const uint8* pDecode_buf_next = NULL;
#define LZHAM_SYMBOL_CODEC_DECODE_BEGIN(codec) \
arith_value = codec.m_arith_value; \
arith_length = codec.m_arith_length; \
bit_buf = codec.m_bit_buf; \
bit_count = codec.m_bit_count; \
pDecode_buf_next = codec.m_pDecode_buf_next;
#define LZHAM_SYMBOL_CODEC_DECODE_END(codec) \
codec.m_arith_value = arith_value; \
codec.m_arith_length = arith_length; \
codec.m_bit_buf = bit_buf; \
codec.m_bit_count = bit_count; \
codec.m_pDecode_buf_next = pDecode_buf_next;
// The user must declare the LZHAM_DECODE_NEEDS_BYTES macro.
#define LZHAM_SYMBOL_CODEC_DECODE_GET_BITS(codec, result, num_bits) \
{ \
while (LZHAM_BUILTIN_EXPECT(bit_count < (int)(num_bits), 0)) \
{ \
uint r; \
if (LZHAM_BUILTIN_EXPECT(pDecode_buf_next == codec.m_pDecode_buf_end, 0)) \
{ \
if (LZHAM_BUILTIN_EXPECT(!codec.m_decode_buf_eof, 1)) \
{ \
LZHAM_SYMBOL_CODEC_DECODE_END(codec) \
LZHAM_DECODE_NEEDS_BYTES \
LZHAM_SYMBOL_CODEC_DECODE_BEGIN(codec) \
} \
r = 0; \
if (LZHAM_BUILTIN_EXPECT(pDecode_buf_next < codec.m_pDecode_buf_end, 1)) r = *pDecode_buf_next++; \
} \
else \
r = *pDecode_buf_next++; \
bit_count += 8; \
bit_buf |= (static_cast<symbol_codec::bit_buf_t>(r) << (symbol_codec::cBitBufSize - bit_count)); \
} \
result = (num_bits) ? static_cast<uint>(bit_buf >> (symbol_codec::cBitBufSize - (num_bits))) : 0; \
bit_buf <<= (num_bits); \
bit_count -= (num_bits); \
}
#define LZHAM_SYMBOL_CODEC_DECODE_ARITH_BIT(codec, result, model) \
{ \
adaptive_bit_model *pModel; \
pModel = &model; \
while (LZHAM_BUILTIN_EXPECT(arith_length < cSymbolCodecArithMinLen, 0)) \
{ \
uint c; codec.m_pSaved_model = pModel; \
LZHAM_SYMBOL_CODEC_DECODE_GET_BITS(codec, c, 8); \
pModel = static_cast<adaptive_bit_model*>(codec.m_pSaved_model); \
arith_value = (arith_value << 8) | c; \
arith_length <<= 8; \
} \
uint x = pModel->m_bit_0_prob * (arith_length >> cSymbolCodecArithProbBits); \
result = (arith_value >= x); \
if (!result) \
{ \
pModel->m_bit_0_prob += ((cSymbolCodecArithProbScale - pModel->m_bit_0_prob) >> cSymbolCodecArithProbMoveBits); \
arith_length = x; \
} \
else \
{ \
pModel->m_bit_0_prob -= (pModel->m_bit_0_prob >> cSymbolCodecArithProbMoveBits); \
arith_value -= x; \
arith_length -= x; \
} \
}
#if LZHAM_SYMBOL_CODEC_USE_64_BIT_BUFFER
#define LZHAM_SYMBOL_CODEC_DECODE_ADAPTIVE_HUFFMAN(codec, result, model) \
{ \
quasi_adaptive_huffman_data_model* pModel; const prefix_coding::decoder_tables* pTables; \
pModel = &model; pTables = model.m_pDecode_tables; \
if (LZHAM_BUILTIN_EXPECT(bit_count < 24, 0)) \
{ \
uint c; \
pDecode_buf_next += sizeof(uint32); \
if (LZHAM_BUILTIN_EXPECT(pDecode_buf_next >= codec.m_pDecode_buf_end, 0)) \
{ \
pDecode_buf_next -= sizeof(uint32); \
while (bit_count < 24) \
{ \
if (!codec.m_decode_buf_eof) \
{ \
codec.m_pSaved_huff_model = pModel; \
LZHAM_SYMBOL_CODEC_DECODE_END(codec) \
LZHAM_DECODE_NEEDS_BYTES \
LZHAM_SYMBOL_CODEC_DECODE_BEGIN(codec) \
pModel = codec.m_pSaved_huff_model; pTables = pModel->m_pDecode_tables; \
} \
c = 0; if (pDecode_buf_next < codec.m_pDecode_buf_end) c = *pDecode_buf_next++; \
bit_count += 8; \
bit_buf |= (static_cast<symbol_codec::bit_buf_t>(c) << (symbol_codec::cBitBufSize - bit_count)); \
} \
} \
else \
{ \
c = LZHAM_READ_BIG_ENDIAN_UINT32(pDecode_buf_next - sizeof(uint32)); \
bit_count += 32; \
bit_buf |= (static_cast<symbol_codec::bit_buf_t>(c) << (symbol_codec::cBitBufSize - bit_count)); \
} \
} \
uint k = static_cast<uint>((bit_buf >> (symbol_codec::cBitBufSize - 16)) + 1); \
uint len; \
if (LZHAM_BUILTIN_EXPECT(k <= pTables->m_table_max_code, 1)) \
{ \
uint32 t = pTables->m_lookup[bit_buf >> (symbol_codec::cBitBufSize - pTables->m_table_bits)]; \
result = t & cUINT16_MAX; \
len = t >> 16; \
} \
else \
{ \
len = pTables->m_decode_start_code_size; \
for ( ; ; ) \
{ \
if (LZHAM_BUILTIN_EXPECT(k <= pTables->m_max_codes[len - 1], 0)) \
break; \
len++; \
} \
int val_ptr = pTables->m_val_ptrs[len - 1] + static_cast<int>(bit_buf >> (symbol_codec::cBitBufSize - len)); \
if (((uint)val_ptr >= pModel->m_total_syms)) val_ptr = 0; \
result = pTables->m_sorted_symbol_order[val_ptr]; \
} \
bit_buf <<= len; \
bit_count -= len; \
uint freq = pModel->m_sym_freq[result]; \
freq++; \
pModel->m_sym_freq[result] = static_cast<uint16>(freq); \
LZHAM_ASSERT(freq <= cUINT16_MAX); \
if (LZHAM_BUILTIN_EXPECT(--pModel->m_symbols_until_update == 0, 0)) \
{ \
pModel->update_tables(); \
} \
}
#else
#define LZHAM_SYMBOL_CODEC_DECODE_ADAPTIVE_HUFFMAN(codec, result, model) \
{ \
quasi_adaptive_huffman_data_model* pModel; const prefix_coding::decoder_tables* pTables; \
pModel = &model; pTables = model.m_pDecode_tables; \
while (LZHAM_BUILTIN_EXPECT(bit_count < (symbol_codec::cBitBufSize - 8), 1)) \
{ \
uint c; \
if (LZHAM_BUILTIN_EXPECT(pDecode_buf_next == codec.m_pDecode_buf_end, 0)) \
{ \
if (LZHAM_BUILTIN_EXPECT(!codec.m_decode_buf_eof, 1)) \
{ \
codec.m_pSaved_huff_model = pModel; \
LZHAM_SYMBOL_CODEC_DECODE_END(codec) \
LZHAM_DECODE_NEEDS_BYTES \
LZHAM_SYMBOL_CODEC_DECODE_BEGIN(codec) \
pModel = codec.m_pSaved_huff_model; pTables = pModel->m_pDecode_tables; \
} \
c = 0; if (LZHAM_BUILTIN_EXPECT(pDecode_buf_next < codec.m_pDecode_buf_end, 1)) c = *pDecode_buf_next++; \
} \
else \
c = *pDecode_buf_next++; \
bit_count += 8; \
bit_buf |= (static_cast<symbol_codec::bit_buf_t>(c) << (symbol_codec::cBitBufSize - bit_count)); \
} \
uint k = static_cast<uint>((bit_buf >> (symbol_codec::cBitBufSize - 16)) + 1); \
uint len; \
if (LZHAM_BUILTIN_EXPECT(k <= pTables->m_table_max_code, 1)) \
{ \
uint32 t = pTables->m_lookup[bit_buf >> (symbol_codec::cBitBufSize - pTables->m_table_bits)]; \
result = t & cUINT16_MAX; \
len = t >> 16; \
} \
else \
{ \
len = pTables->m_decode_start_code_size; \
for ( ; ; ) \
{ \
if (LZHAM_BUILTIN_EXPECT(k <= pTables->m_max_codes[len - 1], 0)) \
break; \
len++; \
} \
int val_ptr = pTables->m_val_ptrs[len - 1] + static_cast<int>(bit_buf >> (symbol_codec::cBitBufSize - len)); \
if (LZHAM_BUILTIN_EXPECT(((uint)val_ptr >= pModel->m_total_syms), 0)) val_ptr = 0; \
result = pTables->m_sorted_symbol_order[val_ptr]; \
} \
bit_buf <<= len; \
bit_count -= len; \
uint freq = pModel->m_sym_freq[result]; \
freq++; \
pModel->m_sym_freq[result] = static_cast<uint16>(freq); \
LZHAM_ASSERT(freq <= cUINT16_MAX); \
if (LZHAM_BUILTIN_EXPECT(--pModel->m_symbols_until_update == 0, 0)) \
{ \
pModel->update_tables(); \
} \
}
#endif
#define LZHAM_SYMBOL_CODEC_DECODE_ALIGN_TO_BYTE(codec) if (bit_count & 7) { int dummy_result; LZHAM_NOTE_UNUSED(dummy_result); LZHAM_SYMBOL_CODEC_DECODE_GET_BITS(codec, dummy_result, bit_count & 7); }
#define LZHAM_SYMBOL_CODEC_DECODE_REMOVE_BYTE_FROM_BIT_BUF(codec, result) \
{ \
result = -1; \
if (bit_count >= 8) \
{ \
result = static_cast<int>(bit_buf >> (symbol_codec::cBitBufSize - 8)); \
bit_buf <<= 8; \
bit_count -= 8; \
} \
}
#define LZHAM_SYMBOL_CODEC_DECODE_ARITH_START(codec) \
{ \
for ( arith_value = 0, arith_length = 0; arith_length < 4; ++arith_length ) \
{ \
uint val; LZHAM_SYMBOL_CODEC_DECODE_GET_BITS(codec, val, 8); \
arith_value = (arith_value << 8) | val; \
} \
arith_length = cSymbolCodecArithMaxLen; \
}
} // namespace lzham