Import Upstream version 2.7.18
This commit is contained in:
159
Demo/threads/Coroutine.py
Normal file
159
Demo/threads/Coroutine.py
Normal file
@@ -0,0 +1,159 @@
|
||||
# Coroutine implementation using Python threads.
|
||||
#
|
||||
# Combines ideas from Guido's Generator module, and from the coroutine
|
||||
# features of Icon and Simula 67.
|
||||
#
|
||||
# To run a collection of functions as coroutines, you need to create
|
||||
# a Coroutine object to control them:
|
||||
# co = Coroutine()
|
||||
# and then 'create' a subsidiary object for each function in the
|
||||
# collection:
|
||||
# cof1 = co.create(f1 [, arg1, arg2, ...]) # [] means optional,
|
||||
# cof2 = co.create(f2 [, arg1, arg2, ...]) #... not list
|
||||
# cof3 = co.create(f3 [, arg1, arg2, ...])
|
||||
# etc. The functions need not be distinct; 'create'ing the same
|
||||
# function multiple times gives you independent instances of the
|
||||
# function.
|
||||
#
|
||||
# To start the coroutines running, use co.tran on one of the create'd
|
||||
# functions; e.g., co.tran(cof2). The routine that first executes
|
||||
# co.tran is called the "main coroutine". It's special in several
|
||||
# respects: it existed before you created the Coroutine object; if any of
|
||||
# the create'd coroutines exits (does a return, or suffers an unhandled
|
||||
# exception), EarlyExit error is raised in the main coroutine; and the
|
||||
# co.detach() method transfers control directly to the main coroutine
|
||||
# (you can't use co.tran() for this because the main coroutine doesn't
|
||||
# have a name ...).
|
||||
#
|
||||
# Coroutine objects support these methods:
|
||||
#
|
||||
# handle = .create(func [, arg1, arg2, ...])
|
||||
# Creates a coroutine for an invocation of func(arg1, arg2, ...),
|
||||
# and returns a handle ("name") for the coroutine so created. The
|
||||
# handle can be used as the target in a subsequent .tran().
|
||||
#
|
||||
# .tran(target, data=None)
|
||||
# Transfer control to the create'd coroutine "target", optionally
|
||||
# passing it an arbitrary piece of data. To the coroutine A that does
|
||||
# the .tran, .tran acts like an ordinary function call: another
|
||||
# coroutine B can .tran back to it later, and if it does A's .tran
|
||||
# returns the 'data' argument passed to B's tran. E.g.,
|
||||
#
|
||||
# in coroutine coA in coroutine coC in coroutine coB
|
||||
# x = co.tran(coC) co.tran(coB) co.tran(coA,12)
|
||||
# print x # 12
|
||||
#
|
||||
# The data-passing feature is taken from Icon, and greatly cuts
|
||||
# the need to use global variables for inter-coroutine communication.
|
||||
#
|
||||
# .back( data=None )
|
||||
# The same as .tran(invoker, data=None), where 'invoker' is the
|
||||
# coroutine that most recently .tran'ed control to the coroutine
|
||||
# doing the .back. This is akin to Icon's "&source".
|
||||
#
|
||||
# .detach( data=None )
|
||||
# The same as .tran(main, data=None), where 'main' is the
|
||||
# (unnameable!) coroutine that started it all. 'main' has all the
|
||||
# rights of any other coroutine: upon receiving control, it can
|
||||
# .tran to an arbitrary coroutine of its choosing, go .back to
|
||||
# the .detach'er, or .kill the whole thing.
|
||||
#
|
||||
# .kill()
|
||||
# Destroy all the coroutines, and return control to the main
|
||||
# coroutine. None of the create'ed coroutines can be resumed after a
|
||||
# .kill(). An EarlyExit exception does a .kill() automatically. It's
|
||||
# a good idea to .kill() coroutines you're done with, since the
|
||||
# current implementation consumes a thread for each coroutine that
|
||||
# may be resumed.
|
||||
|
||||
import thread
|
||||
import sync
|
||||
|
||||
class _CoEvent:
|
||||
def __init__(self, func):
|
||||
self.f = func
|
||||
self.e = sync.event()
|
||||
|
||||
def __repr__(self):
|
||||
if self.f is None:
|
||||
return 'main coroutine'
|
||||
else:
|
||||
return 'coroutine for func ' + self.f.func_name
|
||||
|
||||
def __hash__(self):
|
||||
return id(self)
|
||||
|
||||
def __cmp__(x,y):
|
||||
return cmp(id(x), id(y))
|
||||
|
||||
def resume(self):
|
||||
self.e.post()
|
||||
|
||||
def wait(self):
|
||||
self.e.wait()
|
||||
self.e.clear()
|
||||
|
||||
class Killed(Exception): pass
|
||||
class EarlyExit(Exception): pass
|
||||
|
||||
class Coroutine:
|
||||
def __init__(self):
|
||||
self.active = self.main = _CoEvent(None)
|
||||
self.invokedby = {self.main: None}
|
||||
self.killed = 0
|
||||
self.value = None
|
||||
self.terminated_by = None
|
||||
|
||||
def create(self, func, *args):
|
||||
me = _CoEvent(func)
|
||||
self.invokedby[me] = None
|
||||
thread.start_new_thread(self._start, (me,) + args)
|
||||
return me
|
||||
|
||||
def _start(self, me, *args):
|
||||
me.wait()
|
||||
if not self.killed:
|
||||
try:
|
||||
try:
|
||||
apply(me.f, args)
|
||||
except Killed:
|
||||
pass
|
||||
finally:
|
||||
if not self.killed:
|
||||
self.terminated_by = me
|
||||
self.kill()
|
||||
|
||||
def kill(self):
|
||||
if self.killed:
|
||||
raise TypeError, 'kill() called on dead coroutines'
|
||||
self.killed = 1
|
||||
for coroutine in self.invokedby.keys():
|
||||
coroutine.resume()
|
||||
|
||||
def back(self, data=None):
|
||||
return self.tran( self.invokedby[self.active], data )
|
||||
|
||||
def detach(self, data=None):
|
||||
return self.tran( self.main, data )
|
||||
|
||||
def tran(self, target, data=None):
|
||||
if not self.invokedby.has_key(target):
|
||||
raise TypeError, '.tran target %r is not an active coroutine' % (target,)
|
||||
if self.killed:
|
||||
raise TypeError, '.tran target %r is killed' % (target,)
|
||||
self.value = data
|
||||
me = self.active
|
||||
self.invokedby[target] = me
|
||||
self.active = target
|
||||
target.resume()
|
||||
|
||||
me.wait()
|
||||
if self.killed:
|
||||
if self.main is not me:
|
||||
raise Killed
|
||||
if self.terminated_by is not None:
|
||||
raise EarlyExit, '%r terminated early' % (self.terminated_by,)
|
||||
|
||||
return self.value
|
||||
|
||||
# end of module
|
||||
92
Demo/threads/Generator.py
Normal file
92
Demo/threads/Generator.py
Normal file
@@ -0,0 +1,92 @@
|
||||
# Generator implementation using threads
|
||||
|
||||
import sys
|
||||
import thread
|
||||
|
||||
class Killed(Exception):
|
||||
pass
|
||||
|
||||
class Generator:
|
||||
# Constructor
|
||||
def __init__(self, func, args):
|
||||
self.getlock = thread.allocate_lock()
|
||||
self.putlock = thread.allocate_lock()
|
||||
self.getlock.acquire()
|
||||
self.putlock.acquire()
|
||||
self.func = func
|
||||
self.args = args
|
||||
self.done = 0
|
||||
self.killed = 0
|
||||
thread.start_new_thread(self._start, ())
|
||||
|
||||
# Internal routine
|
||||
def _start(self):
|
||||
try:
|
||||
self.putlock.acquire()
|
||||
if not self.killed:
|
||||
try:
|
||||
apply(self.func, (self,) + self.args)
|
||||
except Killed:
|
||||
pass
|
||||
finally:
|
||||
if not self.killed:
|
||||
self.done = 1
|
||||
self.getlock.release()
|
||||
|
||||
# Called by producer for each value; raise Killed if no more needed
|
||||
def put(self, value):
|
||||
if self.killed:
|
||||
raise TypeError, 'put() called on killed generator'
|
||||
self.value = value
|
||||
self.getlock.release() # Resume consumer thread
|
||||
self.putlock.acquire() # Wait for next get() call
|
||||
if self.killed:
|
||||
raise Killed
|
||||
|
||||
# Called by producer to get next value; raise EOFError if no more
|
||||
def get(self):
|
||||
if self.killed:
|
||||
raise TypeError, 'get() called on killed generator'
|
||||
self.putlock.release() # Resume producer thread
|
||||
self.getlock.acquire() # Wait for value to appear
|
||||
if self.done:
|
||||
raise EOFError # Say there are no more values
|
||||
return self.value
|
||||
|
||||
# Called by consumer if no more values wanted
|
||||
def kill(self):
|
||||
if self.killed:
|
||||
raise TypeError, 'kill() called on killed generator'
|
||||
self.killed = 1
|
||||
self.putlock.release()
|
||||
|
||||
# Clone constructor
|
||||
def clone(self):
|
||||
return Generator(self.func, self.args)
|
||||
|
||||
def pi(g):
|
||||
k, a, b, a1, b1 = 2L, 4L, 1L, 12L, 4L
|
||||
while 1:
|
||||
# Next approximation
|
||||
p, q, k = k*k, 2L*k+1L, k+1L
|
||||
a, b, a1, b1 = a1, b1, p*a+q*a1, p*b+q*b1
|
||||
# Print common digits
|
||||
d, d1 = a//b, a1//b1
|
||||
while d == d1:
|
||||
g.put(int(d))
|
||||
a, a1 = 10L*(a%b), 10L*(a1%b1)
|
||||
d, d1 = a//b, a1//b1
|
||||
|
||||
def test():
|
||||
g = Generator(pi, ())
|
||||
g.kill()
|
||||
g = Generator(pi, ())
|
||||
for i in range(10): print g.get(),
|
||||
print
|
||||
h = g.clone()
|
||||
g.kill()
|
||||
while 1:
|
||||
print h.get(),
|
||||
sys.stdout.flush()
|
||||
|
||||
test()
|
||||
11
Demo/threads/README
Normal file
11
Demo/threads/README
Normal file
@@ -0,0 +1,11 @@
|
||||
This directory contains some demonstrations of the thread module.
|
||||
|
||||
These are mostly "proof of concept" type applications:
|
||||
|
||||
Generator.py Generator class implemented with threads.
|
||||
sync.py Condition variables primitives by Tim Peters.
|
||||
telnet.py Version of ../sockets/telnet.py using threads.
|
||||
|
||||
Coroutine.py Coroutines using threads, by Tim Peters (22 May 94)
|
||||
fcmp.py Example of above, by Tim
|
||||
squasher.py Another example of above, also by Tim
|
||||
64
Demo/threads/fcmp.py
Normal file
64
Demo/threads/fcmp.py
Normal file
@@ -0,0 +1,64 @@
|
||||
# Coroutine example: controlling multiple instances of a single function
|
||||
|
||||
from Coroutine import *
|
||||
|
||||
# fringe visits a nested list in inorder, and detaches for each non-list
|
||||
# element; raises EarlyExit after the list is exhausted
|
||||
def fringe(co, list):
|
||||
for x in list:
|
||||
if type(x) is type([]):
|
||||
fringe(co, x)
|
||||
else:
|
||||
co.back(x)
|
||||
|
||||
def printinorder(list):
|
||||
co = Coroutine()
|
||||
f = co.create(fringe, co, list)
|
||||
try:
|
||||
while 1:
|
||||
print co.tran(f),
|
||||
except EarlyExit:
|
||||
pass
|
||||
print
|
||||
|
||||
printinorder([1,2,3]) # 1 2 3
|
||||
printinorder([[[[1,[2]]],3]]) # ditto
|
||||
x = [0, 1, [2, [3]], [4,5], [[[6]]] ]
|
||||
printinorder(x) # 0 1 2 3 4 5 6
|
||||
|
||||
# fcmp lexicographically compares the fringes of two nested lists
|
||||
def fcmp(l1, l2):
|
||||
co1 = Coroutine(); f1 = co1.create(fringe, co1, l1)
|
||||
co2 = Coroutine(); f2 = co2.create(fringe, co2, l2)
|
||||
while 1:
|
||||
try:
|
||||
v1 = co1.tran(f1)
|
||||
except EarlyExit:
|
||||
try:
|
||||
v2 = co2.tran(f2)
|
||||
except EarlyExit:
|
||||
return 0
|
||||
co2.kill()
|
||||
return -1
|
||||
try:
|
||||
v2 = co2.tran(f2)
|
||||
except EarlyExit:
|
||||
co1.kill()
|
||||
return 1
|
||||
if v1 != v2:
|
||||
co1.kill(); co2.kill()
|
||||
return cmp(v1,v2)
|
||||
|
||||
print fcmp(range(7), x) # 0; fringes are equal
|
||||
print fcmp(range(6), x) # -1; 1st list ends early
|
||||
print fcmp(x, range(6)) # 1; 2nd list ends early
|
||||
print fcmp(range(8), x) # 1; 2nd list ends early
|
||||
print fcmp(x, range(8)) # -1; 1st list ends early
|
||||
print fcmp([1,[[2],8]],
|
||||
[[[1],2],8]) # 0
|
||||
print fcmp([1,[[3],8]],
|
||||
[[[1],2],8]) # 1
|
||||
print fcmp([1,[[2],8]],
|
||||
[[[1],2],9]) # -1
|
||||
|
||||
# end of example
|
||||
155
Demo/threads/find.py
Normal file
155
Demo/threads/find.py
Normal file
@@ -0,0 +1,155 @@
|
||||
# A parallelized "find(1)" using the thread module.
|
||||
|
||||
# This demonstrates the use of a work queue and worker threads.
|
||||
# It really does do more stats/sec when using multiple threads,
|
||||
# although the improvement is only about 20-30 percent.
|
||||
# (That was 8 years ago. In 2002, on Linux, I can't measure
|
||||
# a speedup. :-( )
|
||||
|
||||
# I'm too lazy to write a command line parser for the full find(1)
|
||||
# command line syntax, so the predicate it searches for is wired-in,
|
||||
# see function selector() below. (It currently searches for files with
|
||||
# world write permission.)
|
||||
|
||||
# Usage: parfind.py [-w nworkers] [directory] ...
|
||||
# Default nworkers is 4
|
||||
|
||||
|
||||
import sys
|
||||
import getopt
|
||||
import string
|
||||
import time
|
||||
import os
|
||||
from stat import *
|
||||
import thread
|
||||
|
||||
|
||||
# Work queue class. Usage:
|
||||
# wq = WorkQ()
|
||||
# wq.addwork(func, (arg1, arg2, ...)) # one or more calls
|
||||
# wq.run(nworkers)
|
||||
# The work is done when wq.run() completes.
|
||||
# The function calls executed by the workers may add more work.
|
||||
# Don't use keyboard interrupts!
|
||||
|
||||
class WorkQ:
|
||||
|
||||
# Invariants:
|
||||
|
||||
# - busy and work are only modified when mutex is locked
|
||||
# - len(work) is the number of jobs ready to be taken
|
||||
# - busy is the number of jobs being done
|
||||
# - todo is locked iff there is no work and somebody is busy
|
||||
|
||||
def __init__(self):
|
||||
self.mutex = thread.allocate()
|
||||
self.todo = thread.allocate()
|
||||
self.todo.acquire()
|
||||
self.work = []
|
||||
self.busy = 0
|
||||
|
||||
def addwork(self, func, args):
|
||||
job = (func, args)
|
||||
self.mutex.acquire()
|
||||
self.work.append(job)
|
||||
self.mutex.release()
|
||||
if len(self.work) == 1:
|
||||
self.todo.release()
|
||||
|
||||
def _getwork(self):
|
||||
self.todo.acquire()
|
||||
self.mutex.acquire()
|
||||
if self.busy == 0 and len(self.work) == 0:
|
||||
self.mutex.release()
|
||||
self.todo.release()
|
||||
return None
|
||||
job = self.work[0]
|
||||
del self.work[0]
|
||||
self.busy = self.busy + 1
|
||||
self.mutex.release()
|
||||
if len(self.work) > 0:
|
||||
self.todo.release()
|
||||
return job
|
||||
|
||||
def _donework(self):
|
||||
self.mutex.acquire()
|
||||
self.busy = self.busy - 1
|
||||
if self.busy == 0 and len(self.work) == 0:
|
||||
self.todo.release()
|
||||
self.mutex.release()
|
||||
|
||||
def _worker(self):
|
||||
time.sleep(0.00001) # Let other threads run
|
||||
while 1:
|
||||
job = self._getwork()
|
||||
if not job:
|
||||
break
|
||||
func, args = job
|
||||
apply(func, args)
|
||||
self._donework()
|
||||
|
||||
def run(self, nworkers):
|
||||
if not self.work:
|
||||
return # Nothing to do
|
||||
for i in range(nworkers-1):
|
||||
thread.start_new(self._worker, ())
|
||||
self._worker()
|
||||
self.todo.acquire()
|
||||
|
||||
|
||||
# Main program
|
||||
|
||||
def main():
|
||||
nworkers = 4
|
||||
opts, args = getopt.getopt(sys.argv[1:], '-w:')
|
||||
for opt, arg in opts:
|
||||
if opt == '-w':
|
||||
nworkers = string.atoi(arg)
|
||||
if not args:
|
||||
args = [os.curdir]
|
||||
|
||||
wq = WorkQ()
|
||||
for dir in args:
|
||||
wq.addwork(find, (dir, selector, wq))
|
||||
|
||||
t1 = time.time()
|
||||
wq.run(nworkers)
|
||||
t2 = time.time()
|
||||
|
||||
sys.stderr.write('Total time %r sec.\n' % (t2-t1))
|
||||
|
||||
|
||||
# The predicate -- defines what files we look for.
|
||||
# Feel free to change this to suit your purpose
|
||||
|
||||
def selector(dir, name, fullname, stat):
|
||||
# Look for world writable files that are not symlinks
|
||||
return (stat[ST_MODE] & 0002) != 0 and not S_ISLNK(stat[ST_MODE])
|
||||
|
||||
|
||||
# The find procedure -- calls wq.addwork() for subdirectories
|
||||
|
||||
def find(dir, pred, wq):
|
||||
try:
|
||||
names = os.listdir(dir)
|
||||
except os.error, msg:
|
||||
print repr(dir), ':', msg
|
||||
return
|
||||
for name in names:
|
||||
if name not in (os.curdir, os.pardir):
|
||||
fullname = os.path.join(dir, name)
|
||||
try:
|
||||
stat = os.lstat(fullname)
|
||||
except os.error, msg:
|
||||
print repr(fullname), ':', msg
|
||||
continue
|
||||
if pred(dir, name, fullname, stat):
|
||||
print fullname
|
||||
if S_ISDIR(stat[ST_MODE]):
|
||||
if not os.path.ismount(fullname):
|
||||
wq.addwork(find, (fullname, pred, wq))
|
||||
|
||||
|
||||
# Call the main program
|
||||
|
||||
main()
|
||||
105
Demo/threads/squasher.py
Normal file
105
Demo/threads/squasher.py
Normal file
@@ -0,0 +1,105 @@
|
||||
# Coroutine example: general coroutine transfers
|
||||
#
|
||||
# The program is a variation of a Simula 67 program due to Dahl & Hoare,
|
||||
# (Dahl/Dijkstra/Hoare, Structured Programming; Academic Press, 1972)
|
||||
# who in turn credit the original example to Conway.
|
||||
#
|
||||
# We have a number of input lines, terminated by a 0 byte. The problem
|
||||
# is to squash them together into output lines containing 72 characters
|
||||
# each. A semicolon must be added between input lines. Runs of blanks
|
||||
# and tabs in input lines must be squashed into single blanks.
|
||||
# Occurrences of "**" in input lines must be replaced by "^".
|
||||
#
|
||||
# Here's a test case:
|
||||
|
||||
test = """\
|
||||
d = sqrt(b**2 - 4*a*c)
|
||||
twoa = 2*a
|
||||
L = -b/twoa
|
||||
R = d/twoa
|
||||
A1 = L + R
|
||||
A2 = L - R\0
|
||||
"""
|
||||
|
||||
# The program should print:
|
||||
|
||||
# d = sqrt(b^2 - 4*a*c);twoa = 2*a; L = -b/twoa; R = d/twoa; A1 = L + R;
|
||||
#A2 = L - R
|
||||
#done
|
||||
|
||||
# getline: delivers the next input line to its invoker
|
||||
# disassembler: grabs input lines from getline, and delivers them one
|
||||
# character at a time to squasher, also inserting a semicolon into
|
||||
# the stream between lines
|
||||
# squasher: grabs characters from disassembler and passes them on to
|
||||
# assembler, first replacing "**" with "^" and squashing runs of
|
||||
# whitespace
|
||||
# assembler: grabs characters from squasher and packs them into lines
|
||||
# with 72 character each, delivering each such line to putline;
|
||||
# when it sees a null byte, passes the last line to putline and
|
||||
# then kills all the coroutines
|
||||
# putline: grabs lines from assembler, and just prints them
|
||||
|
||||
from Coroutine import *
|
||||
|
||||
def getline(text):
|
||||
for line in string.splitfields(text, '\n'):
|
||||
co.tran(codisassembler, line)
|
||||
|
||||
def disassembler():
|
||||
while 1:
|
||||
card = co.tran(cogetline)
|
||||
for i in range(len(card)):
|
||||
co.tran(cosquasher, card[i])
|
||||
co.tran(cosquasher, ';')
|
||||
|
||||
def squasher():
|
||||
while 1:
|
||||
ch = co.tran(codisassembler)
|
||||
if ch == '*':
|
||||
ch2 = co.tran(codisassembler)
|
||||
if ch2 == '*':
|
||||
ch = '^'
|
||||
else:
|
||||
co.tran(coassembler, ch)
|
||||
ch = ch2
|
||||
if ch in ' \t':
|
||||
while 1:
|
||||
ch2 = co.tran(codisassembler)
|
||||
if ch2 not in ' \t':
|
||||
break
|
||||
co.tran(coassembler, ' ')
|
||||
ch = ch2
|
||||
co.tran(coassembler, ch)
|
||||
|
||||
def assembler():
|
||||
line = ''
|
||||
while 1:
|
||||
ch = co.tran(cosquasher)
|
||||
if ch == '\0':
|
||||
break
|
||||
if len(line) == 72:
|
||||
co.tran(coputline, line)
|
||||
line = ''
|
||||
line = line + ch
|
||||
line = line + ' ' * (72 - len(line))
|
||||
co.tran(coputline, line)
|
||||
co.kill()
|
||||
|
||||
def putline():
|
||||
while 1:
|
||||
line = co.tran(coassembler)
|
||||
print line
|
||||
|
||||
import string
|
||||
co = Coroutine()
|
||||
cogetline = co.create(getline, test)
|
||||
coputline = co.create(putline)
|
||||
coassembler = co.create(assembler)
|
||||
codisassembler = co.create(disassembler)
|
||||
cosquasher = co.create(squasher)
|
||||
|
||||
co.tran(coputline)
|
||||
print 'done'
|
||||
|
||||
# end of example
|
||||
603
Demo/threads/sync.py
Normal file
603
Demo/threads/sync.py
Normal file
@@ -0,0 +1,603 @@
|
||||
# Defines classes that provide synchronization objects. Note that use of
|
||||
# this module requires that your Python support threads.
|
||||
#
|
||||
# condition(lock=None) # a POSIX-like condition-variable object
|
||||
# barrier(n) # an n-thread barrier
|
||||
# event() # an event object
|
||||
# semaphore(n=1) # a semaphore object, with initial count n
|
||||
# mrsw() # a multiple-reader single-writer lock
|
||||
#
|
||||
# CONDITIONS
|
||||
#
|
||||
# A condition object is created via
|
||||
# import this_module
|
||||
# your_condition_object = this_module.condition(lock=None)
|
||||
#
|
||||
# As explained below, a condition object has a lock associated with it,
|
||||
# used in the protocol to protect condition data. You can specify a
|
||||
# lock to use in the constructor, else the constructor will allocate
|
||||
# an anonymous lock for you. Specifying a lock explicitly can be useful
|
||||
# when more than one condition keys off the same set of shared data.
|
||||
#
|
||||
# Methods:
|
||||
# .acquire()
|
||||
# acquire the lock associated with the condition
|
||||
# .release()
|
||||
# release the lock associated with the condition
|
||||
# .wait()
|
||||
# block the thread until such time as some other thread does a
|
||||
# .signal or .broadcast on the same condition, and release the
|
||||
# lock associated with the condition. The lock associated with
|
||||
# the condition MUST be in the acquired state at the time
|
||||
# .wait is invoked.
|
||||
# .signal()
|
||||
# wake up exactly one thread (if any) that previously did a .wait
|
||||
# on the condition; that thread will awaken with the lock associated
|
||||
# with the condition in the acquired state. If no threads are
|
||||
# .wait'ing, this is a nop. If more than one thread is .wait'ing on
|
||||
# the condition, any of them may be awakened.
|
||||
# .broadcast()
|
||||
# wake up all threads (if any) that are .wait'ing on the condition;
|
||||
# the threads are woken up serially, each with the lock in the
|
||||
# acquired state, so should .release() as soon as possible. If no
|
||||
# threads are .wait'ing, this is a nop.
|
||||
#
|
||||
# Note that if a thread does a .wait *while* a signal/broadcast is
|
||||
# in progress, it's guaranteeed to block until a subsequent
|
||||
# signal/broadcast.
|
||||
#
|
||||
# Secret feature: `broadcast' actually takes an integer argument,
|
||||
# and will wake up exactly that many waiting threads (or the total
|
||||
# number waiting, if that's less). Use of this is dubious, though,
|
||||
# and probably won't be supported if this form of condition is
|
||||
# reimplemented in C.
|
||||
#
|
||||
# DIFFERENCES FROM POSIX
|
||||
#
|
||||
# + A separate mutex is not needed to guard condition data. Instead, a
|
||||
# condition object can (must) be .acquire'ed and .release'ed directly.
|
||||
# This eliminates a common error in using POSIX conditions.
|
||||
#
|
||||
# + Because of implementation difficulties, a POSIX `signal' wakes up
|
||||
# _at least_ one .wait'ing thread. Race conditions make it difficult
|
||||
# to stop that. This implementation guarantees to wake up only one,
|
||||
# but you probably shouldn't rely on that.
|
||||
#
|
||||
# PROTOCOL
|
||||
#
|
||||
# Condition objects are used to block threads until "some condition" is
|
||||
# true. E.g., a thread may wish to wait until a producer pumps out data
|
||||
# for it to consume, or a server may wish to wait until someone requests
|
||||
# its services, or perhaps a whole bunch of threads want to wait until a
|
||||
# preceding pass over the data is complete. Early models for conditions
|
||||
# relied on some other thread figuring out when a blocked thread's
|
||||
# condition was true, and made the other thread responsible both for
|
||||
# waking up the blocked thread and guaranteeing that it woke up with all
|
||||
# data in a correct state. This proved to be very delicate in practice,
|
||||
# and gave conditions a bad name in some circles.
|
||||
#
|
||||
# The POSIX model addresses these problems by making a thread responsible
|
||||
# for ensuring that its own state is correct when it wakes, and relies
|
||||
# on a rigid protocol to make this easy; so long as you stick to the
|
||||
# protocol, POSIX conditions are easy to "get right":
|
||||
#
|
||||
# A) The thread that's waiting for some arbitrarily-complex condition
|
||||
# (ACC) to become true does:
|
||||
#
|
||||
# condition.acquire()
|
||||
# while not (code to evaluate the ACC):
|
||||
# condition.wait()
|
||||
# # That blocks the thread, *and* releases the lock. When a
|
||||
# # condition.signal() happens, it will wake up some thread that
|
||||
# # did a .wait, *and* acquire the lock again before .wait
|
||||
# # returns.
|
||||
# #
|
||||
# # Because the lock is acquired at this point, the state used
|
||||
# # in evaluating the ACC is frozen, so it's safe to go back &
|
||||
# # reevaluate the ACC.
|
||||
#
|
||||
# # At this point, ACC is true, and the thread has the condition
|
||||
# # locked.
|
||||
# # So code here can safely muck with the shared state that
|
||||
# # went into evaluating the ACC -- if it wants to.
|
||||
# # When done mucking with the shared state, do
|
||||
# condition.release()
|
||||
#
|
||||
# B) Threads that are mucking with shared state that may affect the
|
||||
# ACC do:
|
||||
#
|
||||
# condition.acquire()
|
||||
# # muck with shared state
|
||||
# condition.release()
|
||||
# if it's possible that ACC is true now:
|
||||
# condition.signal() # or .broadcast()
|
||||
#
|
||||
# Note: You may prefer to put the "if" clause before the release().
|
||||
# That's fine, but do note that anyone waiting on the signal will
|
||||
# stay blocked until the release() is done (since acquiring the
|
||||
# condition is part of what .wait() does before it returns).
|
||||
#
|
||||
# TRICK OF THE TRADE
|
||||
#
|
||||
# With simpler forms of conditions, it can be impossible to know when
|
||||
# a thread that's supposed to do a .wait has actually done it. But
|
||||
# because this form of condition releases a lock as _part_ of doing a
|
||||
# wait, the state of that lock can be used to guarantee it.
|
||||
#
|
||||
# E.g., suppose thread A spawns thread B and later wants to wait for B to
|
||||
# complete:
|
||||
#
|
||||
# In A: In B:
|
||||
#
|
||||
# B_done = condition() ... do work ...
|
||||
# B_done.acquire() B_done.acquire(); B_done.release()
|
||||
# spawn B B_done.signal()
|
||||
# ... some time later ... ... and B exits ...
|
||||
# B_done.wait()
|
||||
#
|
||||
# Because B_done was in the acquire'd state at the time B was spawned,
|
||||
# B's attempt to acquire B_done can't succeed until A has done its
|
||||
# B_done.wait() (which releases B_done). So B's B_done.signal() is
|
||||
# guaranteed to be seen by the .wait(). Without the lock trick, B
|
||||
# may signal before A .waits, and then A would wait forever.
|
||||
#
|
||||
# BARRIERS
|
||||
#
|
||||
# A barrier object is created via
|
||||
# import this_module
|
||||
# your_barrier = this_module.barrier(num_threads)
|
||||
#
|
||||
# Methods:
|
||||
# .enter()
|
||||
# the thread blocks until num_threads threads in all have done
|
||||
# .enter(). Then the num_threads threads that .enter'ed resume,
|
||||
# and the barrier resets to capture the next num_threads threads
|
||||
# that .enter it.
|
||||
#
|
||||
# EVENTS
|
||||
#
|
||||
# An event object is created via
|
||||
# import this_module
|
||||
# your_event = this_module.event()
|
||||
#
|
||||
# An event has two states, `posted' and `cleared'. An event is
|
||||
# created in the cleared state.
|
||||
#
|
||||
# Methods:
|
||||
#
|
||||
# .post()
|
||||
# Put the event in the posted state, and resume all threads
|
||||
# .wait'ing on the event (if any).
|
||||
#
|
||||
# .clear()
|
||||
# Put the event in the cleared state.
|
||||
#
|
||||
# .is_posted()
|
||||
# Returns 0 if the event is in the cleared state, or 1 if the event
|
||||
# is in the posted state.
|
||||
#
|
||||
# .wait()
|
||||
# If the event is in the posted state, returns immediately.
|
||||
# If the event is in the cleared state, blocks the calling thread
|
||||
# until the event is .post'ed by another thread.
|
||||
#
|
||||
# Note that an event, once posted, remains posted until explicitly
|
||||
# cleared. Relative to conditions, this is both the strength & weakness
|
||||
# of events. It's a strength because the .post'ing thread doesn't have to
|
||||
# worry about whether the threads it's trying to communicate with have
|
||||
# already done a .wait (a condition .signal is seen only by threads that
|
||||
# do a .wait _prior_ to the .signal; a .signal does not persist). But
|
||||
# it's a weakness because .clear'ing an event is error-prone: it's easy
|
||||
# to mistakenly .clear an event before all the threads you intended to
|
||||
# see the event get around to .wait'ing on it. But so long as you don't
|
||||
# need to .clear an event, events are easy to use safely.
|
||||
#
|
||||
# SEMAPHORES
|
||||
#
|
||||
# A semaphore object is created via
|
||||
# import this_module
|
||||
# your_semaphore = this_module.semaphore(count=1)
|
||||
#
|
||||
# A semaphore has an integer count associated with it. The initial value
|
||||
# of the count is specified by the optional argument (which defaults to
|
||||
# 1) passed to the semaphore constructor.
|
||||
#
|
||||
# Methods:
|
||||
#
|
||||
# .p()
|
||||
# If the semaphore's count is greater than 0, decrements the count
|
||||
# by 1 and returns.
|
||||
# Else if the semaphore's count is 0, blocks the calling thread
|
||||
# until a subsequent .v() increases the count. When that happens,
|
||||
# the count will be decremented by 1 and the calling thread resumed.
|
||||
#
|
||||
# .v()
|
||||
# Increments the semaphore's count by 1, and wakes up a thread (if
|
||||
# any) blocked by a .p(). It's an (detected) error for a .v() to
|
||||
# increase the semaphore's count to a value larger than the initial
|
||||
# count.
|
||||
#
|
||||
# MULTIPLE-READER SINGLE-WRITER LOCKS
|
||||
#
|
||||
# A mrsw lock is created via
|
||||
# import this_module
|
||||
# your_mrsw_lock = this_module.mrsw()
|
||||
#
|
||||
# This kind of lock is often useful with complex shared data structures.
|
||||
# The object lets any number of "readers" proceed, so long as no thread
|
||||
# wishes to "write". When a (one or more) thread declares its intention
|
||||
# to "write" (e.g., to update a shared structure), all current readers
|
||||
# are allowed to finish, and then a writer gets exclusive access; all
|
||||
# other readers & writers are blocked until the current writer completes.
|
||||
# Finally, if some thread is waiting to write and another is waiting to
|
||||
# read, the writer takes precedence.
|
||||
#
|
||||
# Methods:
|
||||
#
|
||||
# .read_in()
|
||||
# If no thread is writing or waiting to write, returns immediately.
|
||||
# Else blocks until no thread is writing or waiting to write. So
|
||||
# long as some thread has completed a .read_in but not a .read_out,
|
||||
# writers are blocked.
|
||||
#
|
||||
# .read_out()
|
||||
# Use sometime after a .read_in to declare that the thread is done
|
||||
# reading. When all threads complete reading, a writer can proceed.
|
||||
#
|
||||
# .write_in()
|
||||
# If no thread is writing (has completed a .write_in, but hasn't yet
|
||||
# done a .write_out) or reading (similarly), returns immediately.
|
||||
# Else blocks the calling thread, and threads waiting to read, until
|
||||
# the current writer completes writing or all the current readers
|
||||
# complete reading; if then more than one thread is waiting to
|
||||
# write, one of them is allowed to proceed, but which one is not
|
||||
# specified.
|
||||
#
|
||||
# .write_out()
|
||||
# Use sometime after a .write_in to declare that the thread is done
|
||||
# writing. Then if some other thread is waiting to write, it's
|
||||
# allowed to proceed. Else all threads (if any) waiting to read are
|
||||
# allowed to proceed.
|
||||
#
|
||||
# .write_to_read()
|
||||
# Use instead of a .write_in to declare that the thread is done
|
||||
# writing but wants to continue reading without other writers
|
||||
# intervening. If there are other threads waiting to write, they
|
||||
# are allowed to proceed only if the current thread calls
|
||||
# .read_out; threads waiting to read are only allowed to proceed
|
||||
# if there are no threads waiting to write. (This is a
|
||||
# weakness of the interface!)
|
||||
|
||||
import thread
|
||||
|
||||
class condition:
|
||||
def __init__(self, lock=None):
|
||||
# the lock actually used by .acquire() and .release()
|
||||
if lock is None:
|
||||
self.mutex = thread.allocate_lock()
|
||||
else:
|
||||
if hasattr(lock, 'acquire') and \
|
||||
hasattr(lock, 'release'):
|
||||
self.mutex = lock
|
||||
else:
|
||||
raise TypeError, 'condition constructor requires ' \
|
||||
'a lock argument'
|
||||
|
||||
# lock used to block threads until a signal
|
||||
self.checkout = thread.allocate_lock()
|
||||
self.checkout.acquire()
|
||||
|
||||
# internal critical-section lock, & the data it protects
|
||||
self.idlock = thread.allocate_lock()
|
||||
self.id = 0
|
||||
self.waiting = 0 # num waiters subject to current release
|
||||
self.pending = 0 # num waiters awaiting next signal
|
||||
self.torelease = 0 # num waiters to release
|
||||
self.releasing = 0 # 1 iff release is in progress
|
||||
|
||||
def acquire(self):
|
||||
self.mutex.acquire()
|
||||
|
||||
def release(self):
|
||||
self.mutex.release()
|
||||
|
||||
def wait(self):
|
||||
mutex, checkout, idlock = self.mutex, self.checkout, self.idlock
|
||||
if not mutex.locked():
|
||||
raise ValueError, \
|
||||
"condition must be .acquire'd when .wait() invoked"
|
||||
|
||||
idlock.acquire()
|
||||
myid = self.id
|
||||
self.pending = self.pending + 1
|
||||
idlock.release()
|
||||
|
||||
mutex.release()
|
||||
|
||||
while 1:
|
||||
checkout.acquire(); idlock.acquire()
|
||||
if myid < self.id:
|
||||
break
|
||||
checkout.release(); idlock.release()
|
||||
|
||||
self.waiting = self.waiting - 1
|
||||
self.torelease = self.torelease - 1
|
||||
if self.torelease:
|
||||
checkout.release()
|
||||
else:
|
||||
self.releasing = 0
|
||||
if self.waiting == self.pending == 0:
|
||||
self.id = 0
|
||||
idlock.release()
|
||||
mutex.acquire()
|
||||
|
||||
def signal(self):
|
||||
self.broadcast(1)
|
||||
|
||||
def broadcast(self, num = -1):
|
||||
if num < -1:
|
||||
raise ValueError, '.broadcast called with num %r' % (num,)
|
||||
if num == 0:
|
||||
return
|
||||
self.idlock.acquire()
|
||||
if self.pending:
|
||||
self.waiting = self.waiting + self.pending
|
||||
self.pending = 0
|
||||
self.id = self.id + 1
|
||||
if num == -1:
|
||||
self.torelease = self.waiting
|
||||
else:
|
||||
self.torelease = min( self.waiting,
|
||||
self.torelease + num )
|
||||
if self.torelease and not self.releasing:
|
||||
self.releasing = 1
|
||||
self.checkout.release()
|
||||
self.idlock.release()
|
||||
|
||||
class barrier:
|
||||
def __init__(self, n):
|
||||
self.n = n
|
||||
self.togo = n
|
||||
self.full = condition()
|
||||
|
||||
def enter(self):
|
||||
full = self.full
|
||||
full.acquire()
|
||||
self.togo = self.togo - 1
|
||||
if self.togo:
|
||||
full.wait()
|
||||
else:
|
||||
self.togo = self.n
|
||||
full.broadcast()
|
||||
full.release()
|
||||
|
||||
class event:
|
||||
def __init__(self):
|
||||
self.state = 0
|
||||
self.posted = condition()
|
||||
|
||||
def post(self):
|
||||
self.posted.acquire()
|
||||
self.state = 1
|
||||
self.posted.broadcast()
|
||||
self.posted.release()
|
||||
|
||||
def clear(self):
|
||||
self.posted.acquire()
|
||||
self.state = 0
|
||||
self.posted.release()
|
||||
|
||||
def is_posted(self):
|
||||
self.posted.acquire()
|
||||
answer = self.state
|
||||
self.posted.release()
|
||||
return answer
|
||||
|
||||
def wait(self):
|
||||
self.posted.acquire()
|
||||
if not self.state:
|
||||
self.posted.wait()
|
||||
self.posted.release()
|
||||
|
||||
class semaphore:
|
||||
def __init__(self, count=1):
|
||||
if count <= 0:
|
||||
raise ValueError, 'semaphore count %d; must be >= 1' % count
|
||||
self.count = count
|
||||
self.maxcount = count
|
||||
self.nonzero = condition()
|
||||
|
||||
def p(self):
|
||||
self.nonzero.acquire()
|
||||
while self.count == 0:
|
||||
self.nonzero.wait()
|
||||
self.count = self.count - 1
|
||||
self.nonzero.release()
|
||||
|
||||
def v(self):
|
||||
self.nonzero.acquire()
|
||||
if self.count == self.maxcount:
|
||||
raise ValueError, '.v() tried to raise semaphore count above ' \
|
||||
'initial value %r' % self.maxcount
|
||||
self.count = self.count + 1
|
||||
self.nonzero.signal()
|
||||
self.nonzero.release()
|
||||
|
||||
class mrsw:
|
||||
def __init__(self):
|
||||
# critical-section lock & the data it protects
|
||||
self.rwOK = thread.allocate_lock()
|
||||
self.nr = 0 # number readers actively reading (not just waiting)
|
||||
self.nw = 0 # number writers either waiting to write or writing
|
||||
self.writing = 0 # 1 iff some thread is writing
|
||||
|
||||
# conditions
|
||||
self.readOK = condition(self.rwOK) # OK to unblock readers
|
||||
self.writeOK = condition(self.rwOK) # OK to unblock writers
|
||||
|
||||
def read_in(self):
|
||||
self.rwOK.acquire()
|
||||
while self.nw:
|
||||
self.readOK.wait()
|
||||
self.nr = self.nr + 1
|
||||
self.rwOK.release()
|
||||
|
||||
def read_out(self):
|
||||
self.rwOK.acquire()
|
||||
if self.nr <= 0:
|
||||
raise ValueError, \
|
||||
'.read_out() invoked without an active reader'
|
||||
self.nr = self.nr - 1
|
||||
if self.nr == 0:
|
||||
self.writeOK.signal()
|
||||
self.rwOK.release()
|
||||
|
||||
def write_in(self):
|
||||
self.rwOK.acquire()
|
||||
self.nw = self.nw + 1
|
||||
while self.writing or self.nr:
|
||||
self.writeOK.wait()
|
||||
self.writing = 1
|
||||
self.rwOK.release()
|
||||
|
||||
def write_out(self):
|
||||
self.rwOK.acquire()
|
||||
if not self.writing:
|
||||
raise ValueError, \
|
||||
'.write_out() invoked without an active writer'
|
||||
self.writing = 0
|
||||
self.nw = self.nw - 1
|
||||
if self.nw:
|
||||
self.writeOK.signal()
|
||||
else:
|
||||
self.readOK.broadcast()
|
||||
self.rwOK.release()
|
||||
|
||||
def write_to_read(self):
|
||||
self.rwOK.acquire()
|
||||
if not self.writing:
|
||||
raise ValueError, \
|
||||
'.write_to_read() invoked without an active writer'
|
||||
self.writing = 0
|
||||
self.nw = self.nw - 1
|
||||
self.nr = self.nr + 1
|
||||
if not self.nw:
|
||||
self.readOK.broadcast()
|
||||
self.rwOK.release()
|
||||
|
||||
# The rest of the file is a test case, that runs a number of parallelized
|
||||
# quicksorts in parallel. If it works, you'll get about 600 lines of
|
||||
# tracing output, with a line like
|
||||
# test passed! 209 threads created in all
|
||||
# as the last line. The content and order of preceding lines will
|
||||
# vary across runs.
|
||||
|
||||
def _new_thread(func, *args):
|
||||
global TID
|
||||
tid.acquire(); id = TID = TID+1; tid.release()
|
||||
io.acquire(); alive.append(id); \
|
||||
print 'starting thread', id, '--', len(alive), 'alive'; \
|
||||
io.release()
|
||||
thread.start_new_thread( func, (id,) + args )
|
||||
|
||||
def _qsort(tid, a, l, r, finished):
|
||||
# sort a[l:r]; post finished when done
|
||||
io.acquire(); print 'thread', tid, 'qsort', l, r; io.release()
|
||||
if r-l > 1:
|
||||
pivot = a[l]
|
||||
j = l+1 # make a[l:j] <= pivot, and a[j:r] > pivot
|
||||
for i in range(j, r):
|
||||
if a[i] <= pivot:
|
||||
a[j], a[i] = a[i], a[j]
|
||||
j = j + 1
|
||||
a[l], a[j-1] = a[j-1], pivot
|
||||
|
||||
l_subarray_sorted = event()
|
||||
r_subarray_sorted = event()
|
||||
_new_thread(_qsort, a, l, j-1, l_subarray_sorted)
|
||||
_new_thread(_qsort, a, j, r, r_subarray_sorted)
|
||||
l_subarray_sorted.wait()
|
||||
r_subarray_sorted.wait()
|
||||
|
||||
io.acquire(); print 'thread', tid, 'qsort done'; \
|
||||
alive.remove(tid); io.release()
|
||||
finished.post()
|
||||
|
||||
def _randarray(tid, a, finished):
|
||||
io.acquire(); print 'thread', tid, 'randomizing array'; \
|
||||
io.release()
|
||||
for i in range(1, len(a)):
|
||||
wh.acquire(); j = randint(0,i); wh.release()
|
||||
a[i], a[j] = a[j], a[i]
|
||||
io.acquire(); print 'thread', tid, 'randomizing done'; \
|
||||
alive.remove(tid); io.release()
|
||||
finished.post()
|
||||
|
||||
def _check_sort(a):
|
||||
if a != range(len(a)):
|
||||
raise ValueError, ('a not sorted', a)
|
||||
|
||||
def _run_one_sort(tid, a, bar, done):
|
||||
# randomize a, and quicksort it
|
||||
# for variety, all the threads running this enter a barrier
|
||||
# at the end, and post `done' after the barrier exits
|
||||
io.acquire(); print 'thread', tid, 'randomizing', a; \
|
||||
io.release()
|
||||
finished = event()
|
||||
_new_thread(_randarray, a, finished)
|
||||
finished.wait()
|
||||
|
||||
io.acquire(); print 'thread', tid, 'sorting', a; io.release()
|
||||
finished.clear()
|
||||
_new_thread(_qsort, a, 0, len(a), finished)
|
||||
finished.wait()
|
||||
_check_sort(a)
|
||||
|
||||
io.acquire(); print 'thread', tid, 'entering barrier'; \
|
||||
io.release()
|
||||
bar.enter()
|
||||
io.acquire(); print 'thread', tid, 'leaving barrier'; \
|
||||
io.release()
|
||||
io.acquire(); alive.remove(tid); io.release()
|
||||
bar.enter() # make sure they've all removed themselves from alive
|
||||
## before 'done' is posted
|
||||
bar.enter() # just to be cruel
|
||||
done.post()
|
||||
|
||||
def test():
|
||||
global TID, tid, io, wh, randint, alive
|
||||
import random
|
||||
randint = random.randint
|
||||
|
||||
TID = 0 # thread ID (1, 2, ...)
|
||||
tid = thread.allocate_lock() # for changing TID
|
||||
io = thread.allocate_lock() # for printing, and 'alive'
|
||||
wh = thread.allocate_lock() # for calls to random
|
||||
alive = [] # IDs of active threads
|
||||
|
||||
NSORTS = 5
|
||||
arrays = []
|
||||
for i in range(NSORTS):
|
||||
arrays.append( range( (i+1)*10 ) )
|
||||
|
||||
bar = barrier(NSORTS)
|
||||
finished = event()
|
||||
for i in range(NSORTS):
|
||||
_new_thread(_run_one_sort, arrays[i], bar, finished)
|
||||
finished.wait()
|
||||
|
||||
print 'all threads done, and checking results ...'
|
||||
if alive:
|
||||
raise ValueError, ('threads still alive at end', alive)
|
||||
for i in range(NSORTS):
|
||||
a = arrays[i]
|
||||
if len(a) != (i+1)*10:
|
||||
raise ValueError, ('length of array', i, 'screwed up')
|
||||
_check_sort(a)
|
||||
|
||||
print 'test passed!', TID, 'threads created in all'
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
|
||||
# end of module
|
||||
114
Demo/threads/telnet.py
Normal file
114
Demo/threads/telnet.py
Normal file
@@ -0,0 +1,114 @@
|
||||
# Minimal interface to the Internet telnet protocol.
|
||||
#
|
||||
# *** modified to use threads ***
|
||||
#
|
||||
# It refuses all telnet options and does not recognize any of the other
|
||||
# telnet commands, but can still be used to connect in line-by-line mode.
|
||||
# It's also useful to play with a number of other services,
|
||||
# like time, finger, smtp and even ftp.
|
||||
#
|
||||
# Usage: telnet host [port]
|
||||
#
|
||||
# The port may be a service name or a decimal port number;
|
||||
# it defaults to 'telnet'.
|
||||
|
||||
|
||||
import sys, os, time
|
||||
from socket import *
|
||||
import thread
|
||||
|
||||
BUFSIZE = 8*1024
|
||||
|
||||
# Telnet protocol characters
|
||||
|
||||
IAC = chr(255) # Interpret as command
|
||||
DONT = chr(254)
|
||||
DO = chr(253)
|
||||
WONT = chr(252)
|
||||
WILL = chr(251)
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
sys.stderr.write('usage: telnet hostname [port]\n')
|
||||
sys.exit(2)
|
||||
host = sys.argv[1]
|
||||
try:
|
||||
hostaddr = gethostbyname(host)
|
||||
except error:
|
||||
sys.stderr.write(sys.argv[1] + ': bad host name\n')
|
||||
sys.exit(2)
|
||||
#
|
||||
if len(sys.argv) > 2:
|
||||
servname = sys.argv[2]
|
||||
else:
|
||||
servname = 'telnet'
|
||||
#
|
||||
if '0' <= servname[:1] <= '9':
|
||||
port = eval(servname)
|
||||
else:
|
||||
try:
|
||||
port = getservbyname(servname, 'tcp')
|
||||
except error:
|
||||
sys.stderr.write(servname + ': bad tcp service name\n')
|
||||
sys.exit(2)
|
||||
#
|
||||
s = socket(AF_INET, SOCK_STREAM)
|
||||
#
|
||||
try:
|
||||
s.connect((host, port))
|
||||
except error, msg:
|
||||
sys.stderr.write('connect failed: %r\n' % (msg,))
|
||||
sys.exit(1)
|
||||
#
|
||||
thread.start_new(child, (s,))
|
||||
parent(s)
|
||||
|
||||
def parent(s):
|
||||
# read socket, write stdout
|
||||
iac = 0 # Interpret next char as command
|
||||
opt = '' # Interpret next char as option
|
||||
while 1:
|
||||
data, dummy = s.recvfrom(BUFSIZE)
|
||||
if not data:
|
||||
# EOF -- exit
|
||||
sys.stderr.write( '(Closed by remote host)\n')
|
||||
sys.exit(1)
|
||||
cleandata = ''
|
||||
for c in data:
|
||||
if opt:
|
||||
print ord(c)
|
||||
## print '(replying: %r)' % (opt+c,)
|
||||
s.send(opt + c)
|
||||
opt = ''
|
||||
elif iac:
|
||||
iac = 0
|
||||
if c == IAC:
|
||||
cleandata = cleandata + c
|
||||
elif c in (DO, DONT):
|
||||
if c == DO: print '(DO)',
|
||||
else: print '(DONT)',
|
||||
opt = IAC + WONT
|
||||
elif c in (WILL, WONT):
|
||||
if c == WILL: print '(WILL)',
|
||||
else: print '(WONT)',
|
||||
opt = IAC + DONT
|
||||
else:
|
||||
print '(command)', ord(c)
|
||||
elif c == IAC:
|
||||
iac = 1
|
||||
print '(IAC)',
|
||||
else:
|
||||
cleandata = cleandata + c
|
||||
sys.stdout.write(cleandata)
|
||||
sys.stdout.flush()
|
||||
## print 'Out:', repr(cleandata)
|
||||
|
||||
def child(s):
|
||||
# read stdin, write socket
|
||||
while 1:
|
||||
line = sys.stdin.readline()
|
||||
## print 'Got:', repr(line)
|
||||
if not line: break
|
||||
s.send(line)
|
||||
|
||||
main()
|
||||
Reference in New Issue
Block a user