// File: lzham_match_accel.cpp // See Copyright Notice and license at the end of include/lzham.h #include "lzham_core.h" #include "lzham_match_accel.h" #include "lzham_timer.h" static const int cHashSize24 = 0x1000000; static const int cHashSize16 = 0x10000; namespace lzham { static inline uint32 hash2_to_12(uint c0, uint c1) { return c0 ^ (c1 << 4); } #define LZHAM_HASH3_16(c0, c1, c2) ((((uint)c0) | (((uint)c1) << 8U)) ^ (((uint)c2) << 4U)) #define LZHAM_HASH3_24(c0, c1, c2) (((uint)c0) | (((uint)c1) << 8U) | (((uint)c2) << 16U)) search_accelerator::search_accelerator(lzham_malloc_context malloc_context) : m_malloc_context(malloc_context), m_pLZBase(NULL), m_pTask_pool(NULL), m_max_helper_threads(0), m_max_dict_size(0), m_max_dict_size_mask(0), m_lookahead_pos(0), m_lookahead_size(0), m_cur_dict_size(0), m_dict(malloc_context), m_hash(malloc_context), m_nodes(malloc_context), m_matches(malloc_context), m_match_refs(malloc_context), m_digram_hash(malloc_context), m_digram_next(malloc_context), m_fill_lookahead_pos(0), m_fill_lookahead_size(0), m_fill_dict_size(0), m_max_probes(0), m_max_matches(0), m_all_matches(false), m_deterministic(false), m_len2_matches(false), m_hash24(false), m_next_match_ref(0), m_num_completed_helper_threads(0) { for (uint i = 0; i < LZHAM_ARRAY_SIZE(m_thread_dict_offsets); i++) m_thread_dict_offsets[i].set_malloc_context(malloc_context); } bool search_accelerator::init(CLZBase* pLZBase, task_pool* pPool, uint max_helper_threads, uint max_dict_size, uint max_matches, bool all_matches, uint max_probes, uint flags) { LZHAM_ASSERT(pLZBase); LZHAM_ASSERT(max_dict_size && math::is_power_of_2(max_dict_size)); LZHAM_ASSERT(max_probes); m_max_probes = LZHAM_MIN(cMatchAccelMaxSupportedProbes, max_probes); m_deterministic = (flags & cFlagDeterministic) != 0; m_len2_matches = (flags & cFlagLen2Matches) != 0; m_hash24 = (flags & cFlagHash24) != 0; m_pLZBase = pLZBase; m_pTask_pool = max_helper_threads ? pPool : NULL; m_max_helper_threads = m_pTask_pool ? max_helper_threads : 0; m_max_matches = LZHAM_MIN(m_max_probes, max_matches); m_all_matches = all_matches; m_max_dict_size = max_dict_size; m_max_dict_size_mask = m_max_dict_size - 1; m_cur_dict_size = 0; m_lookahead_size = 0; m_lookahead_pos = 0; m_fill_lookahead_pos = 0; m_fill_lookahead_size = 0; m_fill_dict_size = 0; m_num_completed_helper_threads = 0; if (!m_dict.try_resize_no_construct(max_dict_size + LZHAM_MIN(m_max_dict_size, static_cast(CLZBase::cMaxHugeMatchLen)))) { LZHAM_LOG_ERROR(9000); return false; } if (!m_hash.try_resize_no_construct(m_hash24 ? cHashSize24 : cHashSize16)) { LZHAM_LOG_ERROR(9001); return false; } memset(m_hash.get_ptr(), 0, m_hash.size_in_bytes()); if (!m_nodes.try_resize_no_construct(max_dict_size)) { LZHAM_LOG_ERROR(9002); return false; } for (uint i = 0; i < max_helper_threads; i++) { if (!m_thread_dict_offsets[i].try_reserve(256 * 1024)) { LZHAM_LOG_ERROR(9003); return false; } } // Shouldn't be necessary //if (m_deterministic) // memset(m_nodes.get_ptr(), 0, m_nodes.size_in_bytes()); return true; } void search_accelerator::reset() { m_cur_dict_size = 0; m_lookahead_size = 0; m_lookahead_pos = 0; m_fill_lookahead_pos = 0; m_fill_lookahead_size = 0; m_fill_dict_size = 0; m_num_completed_helper_threads = 0; // Clearing the hash tables is only necessary for determinism (otherwise, it's possible the matches returned after a reset will depend on the data processes before the reset). if (m_hash.size()) memset(m_hash.get_ptr(), 0, m_hash.size_in_bytes()); if (m_digram_hash.size()) memset(m_digram_hash.get_ptr(), 0, m_digram_hash.size_in_bytes()); // Shouldn't be necessary //if (m_deterministic) // memset(m_nodes.get_ptr(), 0, m_nodes.size_in_bytes()); } void search_accelerator::flush() { m_cur_dict_size = 0; } uint search_accelerator::get_max_add_bytes() const { uint add_pos = static_cast(m_lookahead_pos & (m_max_dict_size - 1)); return m_max_dict_size - add_pos; } static uint8 g_hamming_dist[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; void search_accelerator::find_all_matches_callback_st(uint64 data, void* pData_ptr) { scoped_perf_section find_all_matches_timer("find_all_matches_callback_st"); LZHAM_NOTE_UNUSED(data); LZHAM_NOTE_UNUSED(pData_ptr); dict_match temp_matches[cMatchAccelMaxSupportedProbes * 2]; uint fill_lookahead_pos = m_fill_lookahead_pos; uint fill_dict_size = m_fill_dict_size; uint fill_lookahead_size = m_fill_lookahead_size; uint c0 = 0, c1 = 0; if (fill_lookahead_size >= 2) { c0 = m_dict[fill_lookahead_pos & m_max_dict_size_mask]; c1 = m_dict[(fill_lookahead_pos & m_max_dict_size_mask) + 1]; } const uint8* pDict = m_dict.get_ptr(); while (fill_lookahead_size >= 3) { uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; uint c2 = pDict[insert_pos + 2]; uint h; if (m_hash24) h = LZHAM_HASH3_24(c0, c1, c2); else h = LZHAM_HASH3_16(c0, c1, c2); c0 = c1; c1 = c2; dict_match *pDstMatch = temp_matches; uint cur_pos = m_hash[h]; m_hash[h] = static_cast(fill_lookahead_pos); uint *pLeft = &m_nodes[insert_pos].m_left; uint *pRight = &m_nodes[insert_pos].m_right; const uint max_match_len = LZHAM_MIN(static_cast(CLZBase::cMaxMatchLen), fill_lookahead_size); uint best_match_len = 2; const uint8* pIns = &pDict[insert_pos]; uint n = m_max_probes; for ( ; ; ) { uint delta_pos = fill_lookahead_pos - cur_pos; if ((n-- == 0) || (!delta_pos) || (delta_pos >= fill_dict_size)) { *pLeft = 0; *pRight = 0; break; } uint pos = cur_pos & m_max_dict_size_mask; // Unfortunately, the initial compare match_len must be 0 because of the way we hash and truncate matches at the end of each block. uint match_len = 0; const uint8* pComp = &pDict[pos]; #if LZHAM_PLATFORM_X360 || (LZHAM_USE_UNALIGNED_INT_LOADS == 0) || LZHAM_BIG_ENDIAN_CPU for ( ; match_len < max_match_len; match_len++) if (pComp[match_len] != pIns[match_len]) break; #else // Compare a qword at a time for a bit more efficiency. uint64 x = *reinterpret_cast(pComp); uint64 y = *reinterpret_cast(pIns); if ((max_match_len >= 8) && (x == y)) { const uint64* pComp_cur = reinterpret_cast(pComp) + 1; const uint64* pIns_cur = reinterpret_cast(pIns) + 1; const uint64* pComp_end = reinterpret_cast(pComp + max_match_len - 7); while (pComp_cur < pComp_end) { if (*pComp_cur != *pIns_cur) break; ++pComp_cur; ++pIns_cur; } uint alt_match_len = static_cast(reinterpret_cast(pComp_cur) - reinterpret_cast(pComp)); for ( ; alt_match_len < max_match_len; alt_match_len++) if (pComp[alt_match_len] != pIns[alt_match_len]) break; match_len = alt_match_len; } else { if ((uint32)x == (uint32)y) { x >>= 32; y >>= 32; match_len += 4; } if ((uint16)x == (uint16)y) { x >>= 16; y >>= 16; match_len += 2; } if ((uint8)x == (uint8)y) match_len++; match_len = math::minimum(match_len, max_match_len); } #endif #ifdef LZVERIFY uint check_match_len; for (check_match_len = 0; check_match_len < max_match_len; check_match_len++) if (pComp[check_match_len] != pIns[check_match_len]) break; LZHAM_VERIFY(match_len == check_match_len); #endif node *pNode = &m_nodes[pos]; if (match_len > best_match_len) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; best_match_len = match_len; if (match_len == max_match_len) { *pLeft = pNode->m_left; *pRight = pNode->m_right; break; } } else if (m_all_matches) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; } else if ((best_match_len > 2) && (best_match_len == match_len)) { uint bestMatchDist = pDstMatch[-1].m_dist; uint compMatchDist = delta_pos; uint bestMatchSlot, bestMatchSlotOfs; m_pLZBase->compute_lzx_position_slot(bestMatchDist, bestMatchSlot, bestMatchSlotOfs); uint compMatchSlot, compMatchOfs; m_pLZBase->compute_lzx_position_slot(compMatchDist, compMatchSlot, compMatchOfs); // If both matches uses the same match slot, choose the one with the offset containing the lowest nibble as these bits separately entropy coded. // This could choose a match which is further away in the absolute sense, but closer in a coding sense. if ( (compMatchSlot < bestMatchSlot) || ((compMatchSlot >= 8) && (compMatchSlot == bestMatchSlot) && ((compMatchOfs & 15) < (bestMatchSlotOfs & 15))) ) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } else if ((match_len < max_match_len) && (compMatchSlot <= bestMatchSlot)) { // Choose the match which has lowest hamming distance in the mismatch byte for a tiny win on binary files. // TODO: This competes against the prev. optimization. uint desired_mismatch_byte = pIns[match_len]; uint cur_mismatch_byte = pDict[(insert_pos - bestMatchDist + match_len) & m_max_dict_size_mask]; uint cur_mismatch_dist = g_hamming_dist[cur_mismatch_byte ^ desired_mismatch_byte]; uint new_mismatch_byte = pComp[match_len]; uint new_mismatch_dist = g_hamming_dist[new_mismatch_byte ^ desired_mismatch_byte]; if (new_mismatch_dist < cur_mismatch_dist) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } } } uint new_pos; if (pComp[match_len] < pIns[match_len]) { *pLeft = cur_pos; pLeft = &pNode->m_right; new_pos = pNode->m_right; } else { *pRight = cur_pos; pRight = &pNode->m_left; new_pos = pNode->m_left; } if (new_pos == cur_pos) break; cur_pos = new_pos; } const uint num_matches = (uint)(pDstMatch - temp_matches); if (num_matches) { pDstMatch[-1].m_dist |= 0x80000000; const uint num_matches_to_write = LZHAM_MIN(num_matches, m_max_matches); const uint match_ref_ofs = m_next_match_ref; m_next_match_ref += num_matches_to_write; memcpy(&m_matches[match_ref_ofs], temp_matches + (num_matches - num_matches_to_write), sizeof(temp_matches[0]) * num_matches_to_write); m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)] = match_ref_ofs; } else { m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)] = -2; } fill_lookahead_pos++; fill_lookahead_size--; fill_dict_size++; } while (fill_lookahead_size) { uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; m_nodes[insert_pos].m_left = 0; m_nodes[insert_pos].m_right = 0; m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)] = -2; fill_lookahead_pos++; fill_lookahead_size--; fill_dict_size++; } m_num_completed_helper_threads++; } void search_accelerator::find_all_matches_callback_mt(uint64 data, void* pData_ptr) { scoped_perf_section find_all_matches_timer(cVarArgs, "find_all_matches_callback_mt %u", (uint)data); LZHAM_NOTE_UNUSED(pData_ptr); const uint thread_index = (uint)data; dict_match temp_matches[cMatchAccelMaxSupportedProbes * 2]; const uint8* pDict = m_dict.get_ptr(); const uint *pDict_ofsets = m_thread_dict_offsets[thread_index].get_ptr(); const uint num_dict_offsets = m_thread_dict_offsets[thread_index].size(); for (uint i = 0; i < num_dict_offsets; i++) { uint lookahead_ofs = *pDict_ofsets++; uint fill_lookahead_pos = m_fill_lookahead_pos + lookahead_ofs; uint fill_dict_size = m_fill_dict_size + lookahead_ofs; LZHAM_ASSERT(m_fill_lookahead_size > lookahead_ofs); uint fill_lookahead_size = m_fill_lookahead_size - lookahead_ofs; const uint max_match_len = LZHAM_MIN(static_cast(CLZBase::cMaxMatchLen), fill_lookahead_size); uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; uint c0 = pDict[insert_pos]; uint c1 = pDict[insert_pos + 1]; uint c2 = pDict[insert_pos + 2]; uint h; if (m_hash24) h = LZHAM_HASH3_24(c0, c1, c2); else h = LZHAM_HASH3_16(c0, c1, c2); dict_match* pDstMatch = temp_matches; uint cur_pos = m_hash[h]; m_hash[h] = static_cast(fill_lookahead_pos); uint *pLeft = &m_nodes[insert_pos].m_left; uint *pRight = &m_nodes[insert_pos].m_right; uint best_match_len = 2; const uint8* pIns = &pDict[insert_pos]; uint n = m_max_probes; for ( ; ; ) { uint delta_pos = fill_lookahead_pos - cur_pos; if ((n-- == 0) || (!delta_pos) || (delta_pos >= fill_dict_size)) { *pLeft = 0; *pRight = 0; break; } uint pos = cur_pos & m_max_dict_size_mask; // Unfortunately, the initial compare match_len must be 0 because of the way we hash and truncate matches at the end of each block. uint match_len = 0; const uint8* pComp = &pDict[pos]; #if LZHAM_PLATFORM_X360 || (LZHAM_USE_UNALIGNED_INT_LOADS == 0) || LZHAM_BIG_ENDIAN_CPU for ( ; match_len < max_match_len; match_len++) if (pComp[match_len] != pIns[match_len]) break; #else // Compare a qword at a time for a bit more efficiency. uint64 x = *reinterpret_cast(pComp); uint64 y = *reinterpret_cast(pIns); if ((max_match_len >= 8) && (x == y)) { const uint64* pComp_cur = reinterpret_cast(pComp) + 1; const uint64* pIns_cur = reinterpret_cast(pIns) + 1; const uint64* pComp_end = reinterpret_cast(pComp + max_match_len - 7); while (pComp_cur < pComp_end) { if (*pComp_cur != *pIns_cur) break; ++pComp_cur; ++pIns_cur; } uint alt_match_len = static_cast(reinterpret_cast(pComp_cur) - reinterpret_cast(pComp)); for ( ; alt_match_len < max_match_len; alt_match_len++) if (pComp[alt_match_len] != pIns[alt_match_len]) break; match_len = alt_match_len; } else { if ((uint32)x == (uint32)y) { x >>= 32; y >>= 32; match_len += 4; } if ((uint16)x == (uint16)y) { x >>= 16; y >>= 16; match_len += 2; } if ((uint8)x == (uint8)y) match_len++; match_len = math::minimum(match_len, max_match_len); } #endif #ifdef LZVERIFY uint check_match_len; for (check_match_len = 0; check_match_len < max_match_len; check_match_len++) if (pComp[check_match_len] != pIns[check_match_len]) break; LZHAM_VERIFY(match_len == check_match_len); #endif node *pNode = &m_nodes[pos]; if (match_len > best_match_len) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; best_match_len = match_len; if (match_len == max_match_len) { *pLeft = pNode->m_left; *pRight = pNode->m_right; break; } } else if (m_all_matches) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; } else if ((best_match_len > 2) && (best_match_len == match_len)) { uint bestMatchDist = pDstMatch[-1].m_dist; uint compMatchDist = delta_pos; uint bestMatchSlot, bestMatchSlotOfs; m_pLZBase->compute_lzx_position_slot(bestMatchDist, bestMatchSlot, bestMatchSlotOfs); uint compMatchSlot, compMatchOfs; m_pLZBase->compute_lzx_position_slot(compMatchDist, compMatchSlot, compMatchOfs); // If both matches uses the same match slot, choose the one with the offset containing the lowest nibble as these bits separately entropy coded. // This could choose a match which is further away in the absolute sense, but closer in a coding sense. if ( (compMatchSlot < bestMatchSlot) || ((compMatchSlot >= 8) && (compMatchSlot == bestMatchSlot) && ((compMatchOfs & 15) < (bestMatchSlotOfs & 15))) ) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } else if ((match_len < max_match_len) && (compMatchSlot <= bestMatchSlot)) { // Choose the match which has lowest hamming distance in the mismatch byte for a tiny win on binary files. // TODO: This competes against the prev. optimization. uint desired_mismatch_byte = pIns[match_len]; uint cur_mismatch_byte = pDict[(insert_pos - bestMatchDist + match_len) & m_max_dict_size_mask]; uint cur_mismatch_dist = g_hamming_dist[cur_mismatch_byte ^ desired_mismatch_byte]; uint new_mismatch_byte = pComp[match_len]; uint new_mismatch_dist = g_hamming_dist[new_mismatch_byte ^ desired_mismatch_byte]; if (new_mismatch_dist < cur_mismatch_dist) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } } } uint new_pos; if (pComp[match_len] < pIns[match_len]) { *pLeft = cur_pos; pLeft = &pNode->m_right; new_pos = pNode->m_right; } else { *pRight = cur_pos; pRight = &pNode->m_left; new_pos = pNode->m_left; } if (new_pos == cur_pos) break; cur_pos = new_pos; } const uint num_matches = (uint)(pDstMatch - temp_matches); if (num_matches) { pDstMatch[-1].m_dist |= 0x80000000; const uint num_matches_to_write = LZHAM_MIN(num_matches, m_max_matches); const uint match_ref_ofs = static_cast(atomic_exchange_add(&m_next_match_ref, num_matches_to_write)); memcpy(&m_matches[match_ref_ofs], temp_matches + (num_matches - num_matches_to_write), sizeof(temp_matches[0]) * num_matches_to_write); // FIXME: This is going to really hurt on platforms requiring export barriers. LZHAM_MEMORY_EXPORT_BARRIER atomic_exchange32((atomic32_t*)&m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)], match_ref_ofs); } else { atomic_exchange32((atomic32_t*)&m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)], -2); } } atomic_increment32(&m_num_completed_helper_threads); } bool search_accelerator::find_len2_matches() { if (!m_digram_hash.size()) { if (!m_digram_hash.try_resize(cDigramHashSize)) { LZHAM_LOG_ERROR(9004); return false; } } if (m_digram_next.size() < m_lookahead_size) { if (!m_digram_next.try_resize(m_lookahead_size)) { LZHAM_LOG_ERROR(9005); return false; } } uint lookahead_dict_pos = m_lookahead_pos & m_max_dict_size_mask; for (int lookahead_ofs = 0; lookahead_ofs < ((int)m_lookahead_size - 1); ++lookahead_ofs, ++lookahead_dict_pos) { uint c0 = m_dict[lookahead_dict_pos]; uint c1 = m_dict[lookahead_dict_pos + 1]; uint h = hash2_to_12(c0, c1) & (cDigramHashSize - 1); m_digram_next[lookahead_ofs] = m_digram_hash[h]; m_digram_hash[h] = m_lookahead_pos + lookahead_ofs; } m_digram_next[m_lookahead_size - 1] = 0; return true; } uint search_accelerator::get_len2_match(uint lookahead_ofs) { if ((m_fill_lookahead_size - lookahead_ofs) < 2) return 0; if (!m_digram_next.size()) return 0; uint cur_pos = m_lookahead_pos + lookahead_ofs; uint next_match_pos = m_digram_next[cur_pos - m_fill_lookahead_pos]; uint match_dist = cur_pos - next_match_pos; if ((!match_dist) || (match_dist > CLZBase::cMaxLen2MatchDist) || (match_dist > (m_cur_dict_size + lookahead_ofs))) return 0; const uint8* pCur = &m_dict[cur_pos & m_max_dict_size_mask]; const uint8* pMatch = &m_dict[next_match_pos & m_max_dict_size_mask]; if ((pCur[0] == pMatch[0]) && (pCur[1] == pMatch[1])) return match_dist; return 0; } static inline uint32 bitmix32(uint32 a) { a -= (a << 6); a ^= (a >> 17); a -= (a << 9); a ^= (a << 4); a -= (a << 3); a ^= (a << 10); a ^= (a >> 15); return a; } bool search_accelerator::find_all_matches(uint num_bytes) { if (!m_matches.try_resize_no_construct(m_max_probes * num_bytes)) { LZHAM_LOG_ERROR(9006); return false; } if (!m_match_refs.try_resize_no_construct(num_bytes)) { LZHAM_LOG_ERROR(9007); return false; } memset(m_match_refs.get_ptr(), 0xFF, m_match_refs.size_in_bytes()); m_fill_lookahead_pos = m_lookahead_pos; m_fill_lookahead_size = num_bytes; m_fill_dict_size = m_cur_dict_size; m_next_match_ref = 0; if ((!m_pTask_pool) || (m_max_helper_threads < 1) || (num_bytes < 1024)) { find_all_matches_callback_st(0, NULL); m_num_completed_helper_threads = 0; } else { for (uint i = num_bytes - 2; i < num_bytes; i++) { uint fill_lookahead_pos = m_fill_lookahead_pos + i; uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; m_nodes[insert_pos].m_left = 0; m_nodes[insert_pos].m_right = 0; m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)] = -2; } for (uint i = 0; i < m_max_helper_threads; i++) m_thread_dict_offsets[i].try_resize(0); uint bytes_to_add = num_bytes - 2; scoped_perf_section sect(cVarArgs, "****** find_all_matches_prep %u", bytes_to_add); const uint8* pDict = &m_dict[m_lookahead_pos & m_max_dict_size_mask]; if (m_hash24) { uint t = (pDict[0] << 8) | (pDict[1] << 16); if (math::is_power_of_2(m_max_helper_threads)) { const uint bitmask = (m_max_helper_threads - 1); for (uint i = 0; i < bytes_to_add; i++) { t = (t >> 8) | (pDict[2] << 16); LZHAM_ASSERT(t == LZHAM_HASH3_24(pDict[0], pDict[1], pDict[2])); uint thread_index = bitmix32(t) & bitmask; if (!m_thread_dict_offsets[thread_index].try_push_back(i)) { LZHAM_LOG_ERROR(9008); return false; } pDict++; } } else { for (uint i = 0; i < bytes_to_add; i++) { t = (t >> 8) | (pDict[2] << 16); LZHAM_ASSERT(t == LZHAM_HASH3_24(pDict[0], pDict[1], pDict[2])); uint thread_index = bitmix32(t) % m_max_helper_threads; if (!m_thread_dict_offsets[thread_index].try_push_back(i)) { LZHAM_LOG_ERROR(9009); return false; } pDict++; } } } else { uint c0 = pDict[0]; uint c1 = pDict[1]; for (uint i = 0; i < bytes_to_add; i++) { uint c2 = pDict[2]; uint t = LZHAM_HASH3_16(c0, c1, c2); c0 = c1; c1 = c2; uint thread_index = bitmix32(t) % m_max_helper_threads; if (!m_thread_dict_offsets[thread_index].try_push_back(i)) { LZHAM_LOG_ERROR(9010); return false; } pDict++; } } m_num_completed_helper_threads = 0; if (!m_pTask_pool->queue_multiple_object_tasks(this, &search_accelerator::find_all_matches_callback_mt, 0, m_max_helper_threads)) { LZHAM_LOG_ERROR(9011); return false; } } return m_len2_matches ? find_len2_matches() : true; } bool search_accelerator::add_bytes_begin(uint num_bytes, const uint8* pBytes) { LZHAM_ASSERT(num_bytes <= m_max_dict_size); LZHAM_ASSERT(!m_lookahead_size); uint add_pos = m_lookahead_pos & m_max_dict_size_mask; LZHAM_ASSERT((add_pos + num_bytes) <= m_max_dict_size); memcpy(&m_dict[add_pos], pBytes, num_bytes); uint dict_bytes_to_mirror = LZHAM_MIN(static_cast(CLZBase::cMaxHugeMatchLen), m_max_dict_size); if (add_pos < dict_bytes_to_mirror) memcpy(&m_dict[m_max_dict_size], &m_dict[0], dict_bytes_to_mirror); m_lookahead_size = num_bytes; uint max_possible_dict_size = m_max_dict_size - num_bytes; m_cur_dict_size = LZHAM_MIN(m_cur_dict_size, max_possible_dict_size); m_next_match_ref = 0; return find_all_matches(num_bytes); } void search_accelerator::add_bytes_end() { if (m_pTask_pool) { m_pTask_pool->join(); } LZHAM_ASSERT((uint)m_next_match_ref <= m_matches.size()); } dict_match* search_accelerator::find_matches(uint lookahead_ofs, bool spin) { LZHAM_ASSERT(lookahead_ofs < m_lookahead_size); const uint match_ref_ofs = static_cast(m_lookahead_pos - m_fill_lookahead_pos + lookahead_ofs); int match_ref; uint spin_count = 0; // This may spin until the match finder job(s) catch up to the caller's lookahead position. for ( ; ; ) { match_ref = static_cast(m_match_refs[match_ref_ofs]); if (match_ref == -2) return NULL; else if (match_ref != -1) break; spin_count++; const uint cMaxSpinCount = 1000; if ((spin) && (spin_count < cMaxSpinCount)) { lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); LZHAM_MEMORY_IMPORT_BARRIER } else { scoped_perf_section sect("find_matches_sleep"); spin_count = cMaxSpinCount; lzham_sleep(1); } } LZHAM_MEMORY_IMPORT_BARRIER return &m_matches[match_ref]; } void search_accelerator::advance_bytes(uint num_bytes) { LZHAM_ASSERT(num_bytes <= m_lookahead_size); m_lookahead_pos += num_bytes; m_lookahead_size -= num_bytes; m_cur_dict_size += num_bytes; LZHAM_ASSERT(m_cur_dict_size <= m_max_dict_size); } }