Compare commits

..

No commits in common. "pristine-tar" and "master" have entirely different histories.

1293 changed files with 310054 additions and 1 deletions

100
Asm/x86/7zAsm.asm Normal file
View File

@ -0,0 +1,100 @@
; 7zAsm.asm -- ASM macros
; 2009-12-12 : Igor Pavlov : Public domain
; 2011-10-12 : P7ZIP : Public domain
%define NOT ~
%macro MY_ASM_START 0
SECTION .text
%endmacro
%macro MY_PROC 2 ; macro name:req, numParams:req
align 16
%define proc_numParams %2 ; numParams
global %1
global _%1
%1:
_%1:
%endmacro
%macro MY_ENDP 0
%ifdef x64
ret
; proc_name ENDP
%else
ret ; (proc_numParams - 2) * 4
%endif
%endmacro
%ifdef x64
REG_SIZE equ 8
%else
REG_SIZE equ 4
%endif
%define x0 EAX
%define x1 ECX
%define x2 EDX
%define x3 EBX
%define x4 ESP
%define x5 EBP
%define x6 ESI
%define x7 EDI
%define x0_L AL
%define x1_L CL
%define x2_L DL
%define x3_L BL
%define x0_H AH
%define x1_H CH
%define x2_H DH
%define x3_H BH
%ifdef x64
%define r0 RAX
%define r1 RCX
%define r2 RDX
%define r3 RBX
%define r4 RSP
%define r5 RBP
%define r6 RSI
%define r7 RDI
%else
%define r0 x0
%define r1 x1
%define r2 x2
%define r3 x3
%define r4 x4
%define r5 x5
%define r6 x6
%define r7 x7
%endif
%macro MY_PUSH_4_REGS 0
push r3
push r5
%ifdef x64
%ifdef CYGWIN64
push r6
push r7
%endif
%else
push r6
push r7
%endif
%endmacro
%macro MY_POP_4_REGS 0
%ifdef x64
%ifdef CYGWIN64
pop r7
pop r6
%endif
%else
pop r7
pop r6
%endif
pop r5
pop r3
%endmacro

171
Asm/x86/7zCrcOpt_asm.asm Normal file
View File

@ -0,0 +1,171 @@
; 7zCrcOpt.asm -- CRC32 calculation : optimized version
; 2009-12-12 : Igor Pavlov : Public domain
%include "7zAsm.asm"
MY_ASM_START
%define rD r2
%define rN r7
%ifdef x64
%define num_VAR r8
%define table_VAR r9
%else
data_size equ (REG_SIZE * 7)
crc_table equ (REG_SIZE + data_size)
%define num_VAR [r4 + data_size]
%define table_VAR [r4 + crc_table]
%endif
%define SRCDAT rN + rD + 4 *
%macro CRC 4 ;CRC macro op:req, dest:req, src:req, t:req
%1 %2, DWORD [r5 + %3 * 4 + 0400h * %4] ; op dest, DWORD [r5 + src * 4 + 0400h * t]
%endmacro
%macro CRC_XOR 3 ; CRC_XOR macro dest:req, src:req, t:req
CRC xor, %1, %2, %3
%endmacro
%macro CRC_MOV 3 ; CRC_MOV macro dest:req, src:req, t:req
CRC mov, %1, %2, %3 ; CRC mov, dest, src, t
%endmacro
%macro CRC1b 0
movzx x6, BYTE [rD]
inc rD
movzx x3, x0_L
xor x6, x3
shr x0, 8
CRC xor, x0, r6, 0
dec rN
%endmacro
%macro MY_PROLOG 1 ; MY_PROLOG macro crc_end:req
MY_PUSH_4_REGS
%ifdef x64
%ifdef CYGWIN64
;ECX=CRC, RDX=buf, R8=size R9=table
; already in R8 : mov num_VAR,R8 ; LEN
; already in RDX : mov rD, RDX ; BUF
; already in R9 : mov table_VAR,R9; table
mov x0, ECX ; CRC
%else
;EDI=CRC, RSI=buf, RDX=size RCX=table
mov num_VAR,RDX ; LEN
mov rD, RSI ; BUF
mov table_VAR,RCX; table
mov x0, EDI ; CRC
%endif
%else
mov x0, [r4 + 20] ; CRC
mov rD, [r4 + 24] ; buf
%endif
mov rN, num_VAR
mov r5, table_VAR
test rN, rN
jz near %1 ; crc_end
%%sl:
test rD, 7
jz %%sl_end
CRC1b
jnz %%sl
%%sl_end:
cmp rN, 16
jb near %1; crc_end
add rN, rD
mov num_VAR, rN
sub rN, 8
and rN, NOT 7
sub rD, rN
xor x0, [SRCDAT 0]
%endmacro
%macro MY_EPILOG 1 ; MY_EPILOG macro crc_end:req
xor x0, [SRCDAT 0]
mov rD, rN
mov rN, num_VAR
sub rN, rD
%1: ; crc_end:
test rN, rN
jz %%end ; @F
CRC1b
jmp %1 ; crc_end
%%end:
MY_POP_4_REGS
%endmacro
MY_PROC CrcUpdateT8, 4
MY_PROLOG crc_end_8
mov x1, [SRCDAT 1]
align 16
main_loop_8:
mov x6, [SRCDAT 2]
movzx x3, x1_L
CRC_XOR x6, r3, 3
movzx x3, x1_H
CRC_XOR x6, r3, 2
shr x1, 16
movzx x3, x1_L
movzx x1, x1_H
CRC_XOR x6, r3, 1
movzx x3, x0_L
CRC_XOR x6, r1, 0
mov x1, [SRCDAT 3]
CRC_XOR x6, r3, 7
movzx x3, x0_H
shr x0, 16
CRC_XOR x6, r3, 6
movzx x3, x0_L
CRC_XOR x6, r3, 5
movzx x3, x0_H
CRC_MOV x0, r3, 4
xor x0, x6
add rD, 8
jnz main_loop_8
MY_EPILOG crc_end_8
MY_ENDP
MY_PROC CrcUpdateT4, 4
MY_PROLOG crc_end_4
align 16
main_loop_4:
movzx x1, x0_L
movzx x3, x0_H
shr x0, 16
movzx x6, x0_H
and x0, 0FFh
CRC_MOV x1, r1, 3
xor x1, [SRCDAT 1]
CRC_XOR x1, r3, 2
CRC_XOR x1, r6, 0
CRC_XOR x1, r0, 1
movzx x0, x1_L
movzx x3, x1_H
shr x1, 16
movzx x6, x1_H
and x1, 0FFh
CRC_MOV x0, r0, 3
xor x0, [SRCDAT 2]
CRC_XOR x0, r3, 2
CRC_XOR x0, r6, 0
CRC_XOR x0, r1, 1
add rD, 8
jnz main_loop_4
MY_EPILOG crc_end_4
MY_ENDP
; end
%ifidn __OUTPUT_FORMAT__,elf
section .note.GNU-stack noalloc noexec nowrite progbits
%endif

310
Asm/x86/AesOpt.asm Normal file
View File

@ -0,0 +1,310 @@
; AesOpt.asm -- Intel's AES.
; 2009-12-12 : Igor Pavlov : Public domain
%include "7zAsm.asm"
MY_ASM_START
%ifndef x64
; FIXME .xmm
%endif
%define rD r2
%define rN r0
%macro MY_PROLOG 1 ; MY_PROLOG macro reg:req
%ifdef x64
%ifdef CYGWIN64
; ivAes : %rcx
; data : %rdx
; numBlocks : %r8
%else
mov RCX,RDI
mov R8 ,RDX
mov RDX,RSI
%endif
; movdqa [r4 + 8], xmm6
; movdqa [r4 + 8 + 16], xmm7
%endif
push r3
push r5
%ifdef x64
%ifdef CYGWIN64
push r6
%endif
mov rN, r8
%else
push r6
mov ecx, [r4 + REG_SIZE * 4]
mov edx, [r4 + REG_SIZE * 5]
mov rN, [r4 + REG_SIZE * 6]
%endif
mov x6, [r1 + 16]
shl x6, 5
movdqa %1, [r1] ; reg
add r1, 32
%endmacro
%macro MY_EPILOG 0
%ifdef x64
%ifdef CYGWIN64
pop r6
%endif
%else
pop r6
%endif
pop r5
pop r3
%ifdef x64
; movdqa xmm6, [r4 + 8]
; movdqa xmm7, [r4 + 8 + 16]
%endif
MY_ENDP
%endmacro
ways equ 4
ways16 equ (ways * 16)
%macro OP_W 2 ; op, op2
%define i 0
%1 xmm0,%2
%define i 1
%1 xmm1,%2
%define i 2
%1 xmm2,%2
%define i 3
%1 xmm3,%2
%endmacro
%macro LOAD_OP 2 ; LOAD_OP macro op:req, offs:req
%1 xmm0, [r1 + r3 %2]
%endmacro
%macro LOAD_OP_W 2 ; LOAD_OP_W macro op:req, offs:req
movdqa xmm7, [r1 + r3 %2]
; OP_W %1, xmm7
%1 xmm0,xmm7
%1 xmm1,xmm7
%1 xmm2,xmm7
%1 xmm3,xmm7
%endmacro
; ---------- AES-CBC Decode ----------
%macro CBC_DEC_UPDATE 2 ; CBC_DEC_UPDATE macro reg, offs
pxor %1, xmm6
movdqa xmm6, [rD + %2]
movdqa [rD + %2], %1
%endmacro
%macro DECODE 1 ; macro op:req
%1 aesdec, +16
%%B:
%1 aesdec, +0
%1 aesdec, -16
sub x3, 32
jnz %%B
%1 aesdeclast, +0
%endmacro
; void AesCbc_Decode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks)
MY_PROC AesCbc_Decode_Intel, 3
MY_PROLOG xmm6
sub x6, 32
jmp check2
align 16
nextBlocks2:
mov x3, x6
OP_W movdqa, [rD + i * 16]
LOAD_OP_W pxor, +32
DECODE LOAD_OP_W
;OP_W CBC_DEC_UPDATE, i * 16
CBC_DEC_UPDATE xmm0, 0 * 16
CBC_DEC_UPDATE xmm1, 1 * 16
CBC_DEC_UPDATE xmm2, 2 * 16
CBC_DEC_UPDATE xmm3, 3 * 16
add rD, ways16
check2:
sub rN, ways
jnc nextBlocks2
add rN, ways
jmp check
nextBlock:
mov x3, x6
movdqa xmm1, [rD]
LOAD_OP movdqa, +32
pxor xmm0, xmm1
DECODE LOAD_OP
pxor xmm0, xmm6
movdqa [rD], xmm0
movdqa xmm6, xmm1
add rD, 16
check:
sub rN, 1
jnc nextBlock
movdqa [r1 - 32], xmm6
MY_EPILOG
; ---------- AES-CBC Encode ----------
%macro ENCODE 1 ; macro op:req
%1 aesenc, -16
%%B:
%1 aesenc, +0
%1 aesenc, +16
add r3, 32
jnz %%B
%1 aesenclast, +0
%endmacro
MY_PROC AesCbc_Encode_Intel, 3
MY_PROLOG xmm0
add r1, r6
neg r6
add r6, 32
jmp check_e
align 16
nextBlock_e:
mov r3, r6
pxor xmm0, [rD]
pxor xmm0, [r1 + r3 - 32]
ENCODE LOAD_OP
movdqa [rD], xmm0
add rD, 16
check_e:
sub rN, 1
jnc nextBlock_e
movdqa [r1 + r6 - 64], xmm0
MY_EPILOG
; ---------- AES-CTR ----------
%macro XOR_UPD_1 2 ; reg, offs
pxor %1, [rD + %2]
%endmacro
%macro XOR_UPD_2 2 ; reg, offs
movdqa [rD + %2], %1
%endmacro
MY_PROC AesCtr_Code_Intel, 3
MY_PROLOG xmm6
mov r5, r4
shr r5, 4
dec r5
shl r5, 4
mov DWORD [r5], 1
mov DWORD [r5 + 4], 0
mov DWORD [r5 + 8], 0
mov DWORD [r5 + 12], 0
add r1, r6
neg r6
add r6, 32
jmp check2_c
align 16
nextBlocks2_c:
movdqa xmm7, [r5]
; i = 0
; rept ways
; paddq xmm6, xmm7
; movdqa @CatStr(xmm,%i), xmm6
; i = i + 1
; endm
paddq xmm6, xmm7
movdqa xmm0, xmm6
paddq xmm6, xmm7
movdqa xmm1, xmm6
paddq xmm6, xmm7
movdqa xmm2, xmm6
paddq xmm6, xmm7
movdqa xmm3, xmm6
mov r3, r6
LOAD_OP_W pxor, -32
ENCODE LOAD_OP_W
;OP_W XOR_UPD_1, i * 16
XOR_UPD_1 xmm0, 0 * 16
XOR_UPD_1 xmm1, 1 * 16
XOR_UPD_1 xmm2, 2 * 16
XOR_UPD_1 xmm3, 3 * 16
;OP_W XOR_UPD_2, i * 16
XOR_UPD_2 xmm0, 0 * 16
XOR_UPD_2 xmm1, 1 * 16
XOR_UPD_2 xmm2, 2 * 16
XOR_UPD_2 xmm3, 3 * 16
add rD, ways16
check2_c:
sub rN, ways
jnc nextBlocks2_c
add rN, ways
jmp check_c
nextBlock_c:
paddq xmm6, [r5]
mov r3, r6
movdqa xmm0, [r1 + r3 - 32]
pxor xmm0, xmm6
ENCODE LOAD_OP
XOR_UPD_1 xmm0, 0
XOR_UPD_2 xmm0, 0
add rD, 16
check_c:
sub rN, 1
jnc nextBlock_c
movdqa [r1 + r6 - 64], xmm6
MY_EPILOG
; end
%ifidn __OUTPUT_FORMAT__,elf
section .note.GNU-stack noalloc noexec nowrite progbits
%endif

35
C/7zBuf.h Normal file
View File

@ -0,0 +1,35 @@
/* 7zBuf.h -- Byte Buffer
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __7Z_BUF_H
#define __7Z_BUF_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
Byte *data;
size_t size;
} CBuf;
void Buf_Init(CBuf *p);
int Buf_Create(CBuf *p, size_t size, ISzAlloc *alloc);
void Buf_Free(CBuf *p, ISzAlloc *alloc);
typedef struct
{
Byte *data;
size_t size;
size_t pos;
} CDynBuf;
void DynBuf_Construct(CDynBuf *p);
void DynBuf_SeekToBeg(CDynBuf *p);
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAlloc *alloc);
void DynBuf_Free(CDynBuf *p, ISzAlloc *alloc);
EXTERN_C_END
#endif

51
C/7zBuf2.c Normal file
View File

@ -0,0 +1,51 @@
/* 7zBuf2.c -- Byte Buffer
2014-08-22 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zBuf.h"
void DynBuf_Construct(CDynBuf *p)
{
p->data = 0;
p->size = 0;
p->pos = 0;
}
void DynBuf_SeekToBeg(CDynBuf *p)
{
p->pos = 0;
}
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAlloc *alloc)
{
if (size > p->size - p->pos)
{
size_t newSize = p->pos + size;
Byte *data;
newSize += newSize / 4;
data = (Byte *)alloc->Alloc(alloc, newSize);
if (data == 0)
return 0;
p->size = newSize;
memcpy(data, p->data, p->pos);
alloc->Free(alloc, p->data);
p->data = data;
}
if (size != 0)
{
memcpy(p->data + p->pos, buf, size);
p->pos += size;
}
return 1;
}
void DynBuf_Free(CDynBuf *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->data);
p->data = 0;
p->size = 0;
p->pos = 0;
}

128
C/7zCrc.c Normal file
View File

@ -0,0 +1,128 @@
/* 7zCrc.c -- CRC32 init
2015-03-10 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#define kCrcPoly 0xEDB88320
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 8
#else
#define CRC_NUM_TABLES 9
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32 (MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
CRC_FUNC g_CrcUpdateT4;
CRC_FUNC g_CrcUpdateT8;
CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
UInt32 MY_FAST_CALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
const Byte *pEnd = p + size;
for (; p != pEnd; p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
void MY_FAST_CALL CrcGenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
g_CrcTable[i] = r;
}
for (; i < 256 * CRC_NUM_TABLES; i++)
{
UInt32 r = g_CrcTable[i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#if CRC_NUM_TABLES < 4
g_CrcUpdate = CrcUpdateT1;
#else
#ifdef MY_CPU_LE
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
g_CrcUpdate = CrcUpdateT8;
#endif
#endif
#else
{
#ifndef MY_CPU_BE
UInt32 k = 0x01020304;
const Byte *p = (const Byte *)&k;
if (p[0] == 4 && p[1] == 3)
{
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
// g_CrcUpdate = CrcUpdateT8;
#endif
}
else if (p[0] != 1 || p[1] != 2)
g_CrcUpdate = CrcUpdateT1;
else
#endif
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt32 x = g_CrcTable[i - 256];
g_CrcTable[i] = CRC_UINT32_SWAP(x);
}
g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
// g_CrcUpdate = CrcUpdateT1_BeT8;
#endif
}
}
#endif
#endif
}

25
C/7zCrc.h Normal file
View File

@ -0,0 +1,25 @@
/* 7zCrc.h -- CRC32 calculation
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __7Z_CRC_H
#define __7Z_CRC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
extern UInt32 g_CrcTable[];
/* Call CrcGenerateTable one time before other CRC functions */
void MY_FAST_CALL CrcGenerateTable(void);
#define CRC_INIT_VAL 0xFFFFFFFF
#define CRC_GET_DIGEST(crc) ((crc) ^ CRC_INIT_VAL)
#define CRC_UPDATE_BYTE(crc, b) (g_CrcTable[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdate(UInt32 crc, const void *data, size_t size);
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size);
EXTERN_C_END
#endif

115
C/7zCrcOpt.c Normal file
View File

@ -0,0 +1,115 @@
/* 7zCrcOpt.c -- CRC32 calculation
2015-03-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
table[0x300 + ((v ) & 0xFF)]
^ table[0x200 + ((v >> 8) & 0xFF)]
^ table[0x100 + ((v >> 16) & 0xFF)]
^ table[0x000 + ((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v =
table[0x700 + ((v ) & 0xFF)]
^ table[0x600 + ((v >> 8) & 0xFF)]
^ table[0x500 + ((v >> 16) & 0xFF)]
^ table[0x400 + ((v >> 24))];
d = *((const UInt32 *)p + 1);
v ^=
table[0x300 + ((d ) & 0xFF)]
^ table[0x200 + ((d >> 8) & 0xFF)]
^ table[0x100 + ((d >> 16) & 0xFF)]
^ table[0x000 + ((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
#define CRC_UPDATE_BYTE_2_BE(crc, b) (table[(((crc) >> 24) ^ (b))] ^ ((crc) << 8))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
table[0x000 + ((v ) & 0xFF)]
^ table[0x100 + ((v >> 8) & 0xFF)]
^ table[0x200 + ((v >> 16) & 0xFF)]
^ table[0x300 + ((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v =
table[0x400 + ((v ) & 0xFF)]
^ table[0x500 + ((v >> 8) & 0xFF)]
^ table[0x600 + ((v >> 16) & 0xFF)]
^ table[0x700 + ((v >> 24))];
d = *((const UInt32 *)p + 1);
v ^=
table[0x000 + ((d ) & 0xFF)]
^ table[0x100 + ((d >> 8) & 0xFF)]
^ table[0x200 + ((d >> 16) & 0xFF)]
^ table[0x300 + ((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
#endif

171
C/7zStream.c Normal file
View File

@ -0,0 +1,171 @@
/* 7zStream.c -- 7z Stream functions
2013-11-12 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zTypes.h"
SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size)
{
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf)
{
size_t processed = 1;
RINOK(stream->Read(stream, buf, &processed));
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
}
SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset)
{
Int64 t = offset;
return stream->Seek(stream, &t, SZ_SEEK_SET);
}
SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size)
{
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(stream->Look(stream, &lookBuf, size));
memcpy(buf, lookBuf, *size);
return stream->Skip(stream, *size);
}
SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(stream->Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size)
{
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
static SRes LookToRead_Look_Lookahead(void *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0)
{
p->pos = 0;
size2 = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, &size2);
p->size = size2;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead_Look_Exact(void *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
CLookToRead *p = (CLookToRead *)pp;
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size > 0)
{
p->pos = 0;
if (*size > LookToRead_BUF_SIZE)
*size = LookToRead_BUF_SIZE;
res = p->realStream->Read(p->realStream, p->buf, size);
size2 = p->size = *size;
}
if (size2 < *size)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead_Skip(void *pp, size_t offset)
{
CLookToRead *p = (CLookToRead *)pp;
p->pos += offset;
return SZ_OK;
}
static SRes LookToRead_Read(void *pp, void *buf, size_t *size)
{
CLookToRead *p = (CLookToRead *)pp;
size_t rem = p->size - p->pos;
if (rem == 0)
return p->realStream->Read(p->realStream, buf, size);
if (rem > *size)
rem = *size;
memcpy(buf, p->buf + p->pos, rem);
p->pos += rem;
*size = rem;
return SZ_OK;
}
static SRes LookToRead_Seek(void *pp, Int64 *pos, ESzSeek origin)
{
CLookToRead *p = (CLookToRead *)pp;
p->pos = p->size = 0;
return p->realStream->Seek(p->realStream, pos, origin);
}
void LookToRead_CreateVTable(CLookToRead *p, int lookahead)
{
p->s.Look = lookahead ?
LookToRead_Look_Lookahead :
LookToRead_Look_Exact;
p->s.Skip = LookToRead_Skip;
p->s.Read = LookToRead_Read;
p->s.Seek = LookToRead_Seek;
}
void LookToRead_Init(CLookToRead *p)
{
p->pos = p->size = 0;
}
static SRes SecToLook_Read(void *pp, void *buf, size_t *size)
{
CSecToLook *p = (CSecToLook *)pp;
return LookInStream_LookRead(p->realStream, buf, size);
}
void SecToLook_CreateVTable(CSecToLook *p)
{
p->s.Read = SecToLook_Read;
}
static SRes SecToRead_Read(void *pp, void *buf, size_t *size)
{
CSecToRead *p = (CSecToRead *)pp;
return p->realStream->Read(p->realStream, buf, size);
}
void SecToRead_CreateVTable(CSecToRead *p)
{
p->s.Read = SecToRead_Read;
}

256
C/7zTypes.h Normal file
View File

@ -0,0 +1,256 @@
/* 7zTypes.h -- Basic types
2013-11-12 : Igor Pavlov : Public domain */
#ifndef __7Z_TYPES_H
#define __7Z_TYPES_H
#ifdef _WIN32
/* #include <windows.h> */
#endif
#include <stddef.h>
#ifndef EXTERN_C_BEGIN
#ifdef __cplusplus
#define EXTERN_C_BEGIN extern "C" {
#define EXTERN_C_END }
#else
#define EXTERN_C_BEGIN
#define EXTERN_C_END
#endif
#endif
EXTERN_C_BEGIN
#define SZ_OK 0
#define SZ_ERROR_DATA 1
#define SZ_ERROR_MEM 2
#define SZ_ERROR_CRC 3
#define SZ_ERROR_UNSUPPORTED 4
#define SZ_ERROR_PARAM 5
#define SZ_ERROR_INPUT_EOF 6
#define SZ_ERROR_OUTPUT_EOF 7
#define SZ_ERROR_READ 8
#define SZ_ERROR_WRITE 9
#define SZ_ERROR_PROGRESS 10
#define SZ_ERROR_FAIL 11
#define SZ_ERROR_THREAD 12
#define SZ_ERROR_ARCHIVE 16
#define SZ_ERROR_NO_ARCHIVE 17
typedef int SRes;
#ifdef _WIN32
/* typedef DWORD WRes; */
typedef unsigned WRes;
#else
typedef int WRes;
#endif
#ifndef RINOK
#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
#endif
typedef unsigned char Byte;
typedef short Int16;
typedef unsigned short UInt16;
#ifdef _LZMA_UINT32_IS_ULONG
typedef long Int32;
typedef unsigned long UInt32;
#else
typedef int Int32;
typedef unsigned int UInt32;
#endif
#ifdef _SZ_NO_INT_64
/* define _SZ_NO_INT_64, if your compiler doesn't support 64-bit integers.
NOTES: Some code will work incorrectly in that case! */
typedef long Int64;
typedef unsigned long UInt64;
#else
#if defined(_MSC_VER) || defined(__BORLANDC__)
typedef __int64 Int64;
typedef unsigned __int64 UInt64;
#define UINT64_CONST(n) n
#else
typedef long long int Int64;
typedef unsigned long long int UInt64;
#define UINT64_CONST(n) n ## ULL
#endif
#endif
#ifdef _LZMA_NO_SYSTEM_SIZE_T
typedef UInt32 SizeT;
#else
typedef size_t SizeT;
#endif
typedef int Bool;
#define True 1
#define False 0
#ifdef _WIN32
#define MY_STD_CALL __stdcall
#else
#define MY_STD_CALL
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define MY_NO_INLINE __declspec(noinline)
#else
#define MY_NO_INLINE
#endif
#define MY_CDECL __cdecl
#define MY_FAST_CALL __fastcall
#else
#define MY_NO_INLINE
#define MY_CDECL
#define MY_FAST_CALL
#endif
/* The following interfaces use first parameter as pointer to structure */
typedef struct
{
Byte (*Read)(void *p); /* reads one byte, returns 0 in case of EOF or error */
} IByteIn;
typedef struct
{
void (*Write)(void *p, Byte b);
} IByteOut;
typedef struct
{
SRes (*Read)(void *p, void *buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) < input(*size)) is allowed */
} ISeqInStream;
/* it can return SZ_ERROR_INPUT_EOF */
SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size);
SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType);
SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf);
typedef struct
{
size_t (*Write)(void *p, const void *buf, size_t size);
/* Returns: result - the number of actually written bytes.
(result < size) means error */
} ISeqOutStream;
typedef enum
{
SZ_SEEK_SET = 0,
SZ_SEEK_CUR = 1,
SZ_SEEK_END = 2
} ESzSeek;
typedef struct
{
SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
} ISeekInStream;
typedef struct
{
SRes (*Look)(void *p, const void **buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) > input(*size)) is not allowed
(output(*size) < input(*size)) is allowed */
SRes (*Skip)(void *p, size_t offset);
/* offset must be <= output(*size) of Look */
SRes (*Read)(void *p, void *buf, size_t *size);
/* reads directly (without buffer). It's same as ISeqInStream::Read */
SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
} ILookInStream;
SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size);
SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset);
/* reads via ILookInStream::Read */
SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType);
SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size);
#define LookToRead_BUF_SIZE (1 << 14)
typedef struct
{
ILookInStream s;
ISeekInStream *realStream;
size_t pos;
size_t size;
Byte buf[LookToRead_BUF_SIZE];
} CLookToRead;
void LookToRead_CreateVTable(CLookToRead *p, int lookahead);
void LookToRead_Init(CLookToRead *p);
typedef struct
{
ISeqInStream s;
ILookInStream *realStream;
} CSecToLook;
void SecToLook_CreateVTable(CSecToLook *p);
typedef struct
{
ISeqInStream s;
ILookInStream *realStream;
} CSecToRead;
void SecToRead_CreateVTable(CSecToRead *p);
typedef struct
{
SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
/* Returns: result. (result != SZ_OK) means break.
Value (UInt64)(Int64)-1 for size means unknown value. */
} ICompressProgress;
typedef struct
{
void *(*Alloc)(void *p, size_t size);
void (*Free)(void *p, void *address); /* address can be 0 */
} ISzAlloc;
#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
#define IAlloc_Free(p, a) (p)->Free((p), a)
#ifdef _WIN32
#define CHAR_PATH_SEPARATOR '\\'
#define WCHAR_PATH_SEPARATOR L'\\'
#define STRING_PATH_SEPARATOR "\\"
#define WSTRING_PATH_SEPARATOR L"\\"
#else
#define CHAR_PATH_SEPARATOR '/'
#define WCHAR_PATH_SEPARATOR L'/'
#define STRING_PATH_SEPARATOR "/"
#define WSTRING_PATH_SEPARATOR L"/"
#endif
EXTERN_C_END
#endif

22
C/7zVersion.h Normal file
View File

@ -0,0 +1,22 @@
#define MY_VER_MAJOR 16
#define MY_VER_MINOR 02
#define MY_VER_BUILD 0
#define MY_VERSION_NUMBERS "16.02"
#define MY_VERSION "16.02"
#define MY_DATE "2016-05-21"
#undef MY_COPYRIGHT
#undef MY_VERSION_COPYRIGHT_DATE
#define MY_AUTHOR_NAME "Igor Pavlov"
#define MY_COPYRIGHT_PD "Igor Pavlov : Public domain"
#define MY_COPYRIGHT_CR "Copyright (c) 1999-2016 Igor Pavlov"
#ifdef USE_COPYRIGHT_CR
#define MY_COPYRIGHT MY_COPYRIGHT_CR
#else
#define MY_COPYRIGHT MY_COPYRIGHT_PD
#endif
#define MY_VERSION_COPYRIGHT_DATE MY_VERSION " : " MY_COPYRIGHT " : " MY_DATE
#define P7ZIP_VERSION "16.02"

297
C/Aes.c Normal file
View File

@ -0,0 +1,297 @@
/* Aes.c -- AES encryption / decryption
2016-05-21 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Aes.h"
#include "CpuArch.h"
static UInt32 T[256 * 4];
static const Byte Sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
void MY_FAST_CALL AesCbc_Encode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Encode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
AES_CODE_FUNC g_AesCbc_Encode;
AES_CODE_FUNC g_AesCbc_Decode;
AES_CODE_FUNC g_AesCtr_Code;
static UInt32 D[256 * 4];
static Byte InvS[256];
static const Byte Rcon[11] = { 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
#define xtime(x) ((((x) << 1) ^ (((x) & 0x80) != 0 ? 0x1B : 0)) & 0xFF)
#define Ui32(a0, a1, a2, a3) ((UInt32)(a0) | ((UInt32)(a1) << 8) | ((UInt32)(a2) << 16) | ((UInt32)(a3) << 24))
#define gb0(x) ( (x) & 0xFF)
#define gb1(x) (((x) >> ( 8)) & 0xFF)
#define gb2(x) (((x) >> (16)) & 0xFF)
#define gb3(x) (((x) >> (24)) & 0xFF)
void AesGenTables(void)
{
unsigned i;
for (i = 0; i < 256; i++)
InvS[Sbox[i]] = (Byte)i;
for (i = 0; i < 256; i++)
{
{
UInt32 a1 = Sbox[i];
UInt32 a2 = xtime(a1);
UInt32 a3 = a2 ^ a1;
T[ i] = Ui32(a2, a1, a1, a3);
T[0x100 + i] = Ui32(a3, a2, a1, a1);
T[0x200 + i] = Ui32(a1, a3, a2, a1);
T[0x300 + i] = Ui32(a1, a1, a3, a2);
}
{
UInt32 a1 = InvS[i];
UInt32 a2 = xtime(a1);
UInt32 a4 = xtime(a2);
UInt32 a8 = xtime(a4);
UInt32 a9 = a8 ^ a1;
UInt32 aB = a8 ^ a2 ^ a1;
UInt32 aD = a8 ^ a4 ^ a1;
UInt32 aE = a8 ^ a4 ^ a2;
D[ i] = Ui32(aE, a9, aD, aB);
D[0x100 + i] = Ui32(aB, aE, a9, aD);
D[0x200 + i] = Ui32(aD, aB, aE, a9);
D[0x300 + i] = Ui32(a9, aD, aB, aE);
}
}
g_AesCbc_Encode = AesCbc_Encode;
g_AesCbc_Decode = AesCbc_Decode;
g_AesCtr_Code = AesCtr_Code;
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _7ZIP_ASM
if (CPU_Is_Aes_Supported())
{
g_AesCbc_Encode = AesCbc_Encode_Intel;
g_AesCbc_Decode = AesCbc_Decode_Intel;
g_AesCtr_Code = AesCtr_Code_Intel;
}
#endif
#endif
}
#define HT(i, x, s) (T + (x << 8))[gb ## x(s[(i + x) & 3])]
#define HT4(m, i, s, p) m[i] = \
HT(i, 0, s) ^ \
HT(i, 1, s) ^ \
HT(i, 2, s) ^ \
HT(i, 3, s) ^ w[p + i]
#define HT16(m, s, p) \
HT4(m, 0, s, p); \
HT4(m, 1, s, p); \
HT4(m, 2, s, p); \
HT4(m, 3, s, p); \
#define FT(i, x) Sbox[gb ## x(m[(i + x) & 3])]
#define FT4(i) dest[i] = Ui32(FT(i, 0), FT(i, 1), FT(i, 2), FT(i, 3)) ^ w[i];
#define HD(i, x, s) (D + (x << 8))[gb ## x(s[(i - x) & 3])]
#define HD4(m, i, s, p) m[i] = \
HD(i, 0, s) ^ \
HD(i, 1, s) ^ \
HD(i, 2, s) ^ \
HD(i, 3, s) ^ w[p + i];
#define HD16(m, s, p) \
HD4(m, 0, s, p); \
HD4(m, 1, s, p); \
HD4(m, 2, s, p); \
HD4(m, 3, s, p); \
#define FD(i, x) InvS[gb ## x(m[(i - x) & 3])]
#define FD4(i) dest[i] = Ui32(FD(i, 0), FD(i, 1), FD(i, 2), FD(i, 3)) ^ w[i];
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, wSize;
wSize = keySize + 28;
keySize /= 4;
w[0] = ((UInt32)keySize / 2) + 3;
w += 4;
for (i = 0; i < keySize; i++, key += 4)
w[i] = GetUi32(key);
for (; i < wSize; i++)
{
UInt32 t = w[i - 1];
unsigned rem = i % keySize;
if (rem == 0)
t = Ui32(Sbox[gb1(t)] ^ Rcon[i / keySize], Sbox[gb2(t)], Sbox[gb3(t)], Sbox[gb0(t)]);
else if (keySize > 6 && rem == 4)
t = Ui32(Sbox[gb0(t)], Sbox[gb1(t)], Sbox[gb2(t)], Sbox[gb3(t)]);
w[i] = w[i - keySize] ^ t;
}
}
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, num;
Aes_SetKey_Enc(w, key, keySize);
num = keySize + 20;
w += 8;
for (i = 0; i < num; i++)
{
UInt32 r = w[i];
w[i] =
D[ (unsigned)Sbox[gb0(r)]] ^
D[0x100 + (unsigned)Sbox[gb1(r)]] ^
D[0x200 + (unsigned)Sbox[gb2(r)]] ^
D[0x300 + (unsigned)Sbox[gb3(r)]];
}
}
/* Aes_Encode and Aes_Decode functions work with little-endian words.
src and dest are pointers to 4 UInt32 words.
src and dest can point to same block */
static void Aes_Encode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
w += 4;
for (;;)
{
HT16(m, s, 0);
if (--numRounds2 == 0)
break;
HT16(s, m, 4);
w += 8;
}
w += 4;
FT4(0); FT4(1); FT4(2); FT4(3);
}
static void Aes_Decode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4 + numRounds2 * 8;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
for (;;)
{
w -= 8;
HD16(m, s, 4);
if (--numRounds2 == 0)
break;
HD16(s, m, 0);
}
FD4(0); FD4(1); FD4(2); FD4(3);
}
void AesCbc_Init(UInt32 *p, const Byte *iv)
{
unsigned i;
for (i = 0; i < 4; i++)
p[i] = GetUi32(iv + i * 4);
}
void MY_FAST_CALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
p[0] ^= GetUi32(data);
p[1] ^= GetUi32(data + 4);
p[2] ^= GetUi32(data + 8);
p[3] ^= GetUi32(data + 12);
Aes_Encode(p + 4, p, p);
SetUi32(data, p[0]);
SetUi32(data + 4, p[1]);
SetUi32(data + 8, p[2]);
SetUi32(data + 12, p[3]);
}
}
void MY_FAST_CALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
{
UInt32 in[4], out[4];
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
in[0] = GetUi32(data);
in[1] = GetUi32(data + 4);
in[2] = GetUi32(data + 8);
in[3] = GetUi32(data + 12);
Aes_Decode(p + 4, out, in);
SetUi32(data, p[0] ^ out[0]);
SetUi32(data + 4, p[1] ^ out[1]);
SetUi32(data + 8, p[2] ^ out[2]);
SetUi32(data + 12, p[3] ^ out[3]);
p[0] = in[0];
p[1] = in[1];
p[2] = in[2];
p[3] = in[3];
}
}
void MY_FAST_CALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--)
{
UInt32 temp[4];
Byte buf[16];
int i;
if (++p[0] == 0)
p[1]++;
Aes_Encode(p + 4, temp, p);
SetUi32(buf, temp[0]);
SetUi32(buf + 4, temp[1]);
SetUi32(buf + 8, temp[2]);
SetUi32(buf + 12, temp[3]);
for (i = 0; i < 16; i++)
*data++ ^= buf[i];
}
}

38
C/Aes.h Normal file
View File

@ -0,0 +1,38 @@
/* Aes.h -- AES encryption / decryption
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __AES_H
#define __AES_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define AES_BLOCK_SIZE 16
/* Call AesGenTables one time before other AES functions */
void AesGenTables(void);
/* UInt32 pointers must be 16-byte aligned */
/* 16-byte (4 * 32-bit words) blocks: 1 (IV) + 1 (keyMode) + 15 (AES-256 roundKeys) */
#define AES_NUM_IVMRK_WORDS ((1 + 1 + 15) * 4)
/* aes - 16-byte aligned pointer to keyMode+roundKeys sequence */
/* keySize = 16 or 24 or 32 (bytes) */
typedef void (MY_FAST_CALL *AES_SET_KEY_FUNC)(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *aes, const Byte *key, unsigned keySize);
/* ivAes - 16-byte aligned pointer to iv+keyMode+roundKeys sequence: UInt32[AES_NUM_IVMRK_WORDS] */
void AesCbc_Init(UInt32 *ivAes, const Byte *iv); /* iv size is AES_BLOCK_SIZE */
/* data - 16-byte aligned pointer to data */
/* numBlocks - the number of 16-byte blocks in data array */
typedef void (MY_FAST_CALL *AES_CODE_FUNC)(UInt32 *ivAes, Byte *data, size_t numBlocks);
extern AES_CODE_FUNC g_AesCbc_Encode;
extern AES_CODE_FUNC g_AesCbc_Decode;
extern AES_CODE_FUNC g_AesCtr_Code;
EXTERN_C_END
#endif

328
C/Alloc.c Normal file
View File

@ -0,0 +1,328 @@
/* Alloc.c -- Memory allocation functions
2015-02-21 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#ifdef _7ZIP_LARGE_PAGES
#ifdef __linux__
#ifndef _7ZIP_ST
#include <pthread.h>
#endif
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <mntent.h>
#endif
#endif
#include "Alloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountMid = 0;
int g_allocCountBig = 0;
#endif
#ifdef _7ZIP_ASM
// #include <emmintrin.h>
extern int posix_memalign (void **, size_t, size_t);
void *align_alloc(size_t size)
{
// return _mm_malloc(size,16);
void * ptr = 0;
if (posix_memalign (&ptr, 16, size) == 0)
return ptr;
else
return NULL;
}
void align_free(void * ptr)
{
// _mm_free(ptr);
free(ptr);
}
#else
void *align_alloc(size_t size)
{
return malloc(size);
}
void align_free(void * ptr)
{
free(ptr);
}
#endif
void *MyAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
{
void *p = align_alloc(size);
fprintf(stderr, "\nAlloc %10d bytes, count = %10d, addr = %8X", size, g_allocCount++, (unsigned)p);
return p;
}
#else
return align_alloc(size);
#endif
}
void MyFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree; count = %10d, addr = %8X", --g_allocCount, (unsigned)address);
#endif
align_free(address);
}
#ifndef _WIN32
#ifdef _7ZIP_LARGE_PAGES
#ifdef __linux__
#define _7ZIP_MAX_HUGE_ALLOCS 64
static void *g_HugePageAddr[_7ZIP_MAX_HUGE_ALLOCS] = { NULL };
static size_t g_HugePageLen[_7ZIP_MAX_HUGE_ALLOCS];
static char *g_HugetlbPath;
#endif
#endif
#ifdef _7ZIP_LARGE_PAGES
static void *VirtualAlloc(size_t size, int memLargePages)
{
if (memLargePages)
{
#ifdef __linux__
/* huge pages support for Linux; added by Joachim Henke */
#ifndef _7ZIP_ST
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
int i;
void * address = NULL;
#ifndef _7ZIP_ST
pthread_mutex_lock(&mutex);
#endif
for (i = 0; i < _7ZIP_MAX_HUGE_ALLOCS; ++i)
{
if (g_HugePageAddr[i] == NULL)
{
int fd, pathlen = strlen(g_HugetlbPath);
char tempname[pathlen+12];
memcpy(tempname, g_HugetlbPath, pathlen);
memcpy(tempname + pathlen, "/7z-XXXXXX", 11);
fd = mkstemp(tempname);
unlink(tempname);
if (fd < 0)
{
fprintf(stderr,"cant't open %s (%s)\n",tempname,strerror(errno));
break;
}
address = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
if (address == MAP_FAILED)
{
address = NULL;
break;
}
g_HugePageLen[i] = size;
g_HugePageAddr[i] = address;
// fprintf(stderr,"HUGE[%d]=%ld %p\n",i,(long)size,address);
break;
}
}
#ifndef _7ZIP_ST
pthread_mutex_unlock(&mutex);
#endif
return address;
#endif
}
return align_alloc(size);
}
#else
static void *VirtualAlloc(size_t size, int memLargePages )
{
return align_alloc(size);
}
#endif
static int VirtualFree(void *address)
{
#ifdef _7ZIP_LARGE_PAGES
#ifdef __linux__
int i;
for (i = 0; i < _7ZIP_MAX_HUGE_ALLOCS; ++i)
{
if (g_HugePageAddr[i] == address)
{
munmap(address, g_HugePageLen[i]);
g_HugePageAddr[i] = NULL;
return 1;
}
}
#endif
#endif
align_free(address);
return 1;
}
#endif
void *MidAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Mid %10d bytes; count = %10d", size, g_allocCountMid++);
#endif
return VirtualAlloc(size, 0);
}
void MidFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Mid; count = %10d", --g_allocCountMid);
#endif
if (address == 0)
return;
VirtualFree(address);
}
#ifdef _7ZIP_LARGE_PAGES
size_t g_LargePageSize = 0;
#ifdef _WIN32
typedef SIZE_T (WINAPI *GetLargePageMinimumP)();
#elif defined(__linux__)
size_t largePageMinimum()
{
size_t size;
g_HugetlbPath = getenv("HUGETLB_PATH");
if (g_HugetlbPath == NULL)
{
// not defined => try to find out the directory
static char dir_hugetlbfs[1024];
const char * filename = "/etc/mtab"; // mounted filesystems
FILE *fp;
struct mntent * info;
dir_hugetlbfs[0]=0;
fp = setmntent(filename,"r");
if (fp)
{
info = getmntent(fp);
while(info)
{
/*
printf("%s:\n",info->mnt_fsname);
printf(" dir='%s'\n",info->mnt_dir);
printf(" type='%s'\n",info->mnt_type);
*/
if (strcmp(info->mnt_type,"hugetlbfs") == 0)
{
strcpy(dir_hugetlbfs,info->mnt_dir);
break;
}
info = getmntent(fp);
}
endmntent(fp);
}
if (dir_hugetlbfs[0])
{
g_HugetlbPath = dir_hugetlbfs;
// fprintf(stderr," Found hugetlbfs = '%s'\n",g_HugetlbPath);
}
}
if (g_HugetlbPath == NULL || (size = pathconf(g_HugetlbPath, _PC_REC_MIN_XFER_SIZE)) <= getpagesize())
return 0;
return size;
}
#else
#define largePageMinimum() 0
#endif
#endif
void SetLargePageSize()
{
#ifdef _7ZIP_LARGE_PAGES
size_t size;
#ifdef _WIN32
GetLargePageMinimumP largePageMinimum = (GetLargePageMinimumP)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "GetLargePageMinimum");
if (largePageMinimum == 0)
return;
#endif
size = largePageMinimum();
if (size == 0 || (size & (size - 1)) != 0)
return;
g_LargePageSize = size;
// fprintf(stderr,"SetLargePageSize : %ld\n",(long)g_LargePageSize);
#endif
}
void *BigAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Big %10d bytes; count = %10d", size, g_allocCountBig++);
#endif
#ifdef _7ZIP_LARGE_PAGES
if (g_LargePageSize != 0 && g_LargePageSize <= (1 << 30) && size >= (1 << 18))
{
void *res = VirtualAlloc( (size + g_LargePageSize - 1) & (~(g_LargePageSize - 1)), 1);
if (res != 0)
return res;
}
#endif
return VirtualAlloc(size, 0);
}
void BigFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Big; count = %10d", --g_allocCountBig);
#endif
if (address == 0)
return;
VirtualFree(address);
}
static void *SzAlloc(void *p, size_t size) { UNUSED_VAR(p); return MyAlloc(size); }
static void SzFree(void *p, void *address) { UNUSED_VAR(p); MyFree(address); }
ISzAlloc g_Alloc = { SzAlloc, SzFree };
static void *SzBigAlloc(void *p, size_t size) { UNUSED_VAR(p); return BigAlloc(size); }
static void SzBigFree(void *p, void *address) { UNUSED_VAR(p); BigFree(address); }
ISzAlloc g_BigAlloc = { SzBigAlloc, SzBigFree };

26
C/Alloc.h Normal file
View File

@ -0,0 +1,26 @@
/* Alloc.h -- Memory allocation functions
2009-02-07 : Igor Pavlov : Public domain */
#ifndef __COMMON_ALLOC_H
#define __COMMON_ALLOC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void *MyAlloc(size_t size);
void MyFree(void *address);
void SetLargePageSize();
void *MidAlloc(size_t size);
void MidFree(void *address);
void *BigAlloc(size_t size);
void BigFree(void *address);
extern ISzAlloc g_Alloc;
extern ISzAlloc g_BigAlloc;
EXTERN_C_END
#endif

256
C/Bcj2.c Normal file
View File

@ -0,0 +1,256 @@
/* Bcj2.c -- BCJ2 Decoder (Converter for x86 code)
2015-08-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumMoveBits 5
#define _IF_BIT_0 ttt = *prob; bound = (p->range >> kNumModelBits) * ttt; if (p->code < bound)
#define _UPDATE_0 p->range = bound; *prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define _UPDATE_1 p->range -= bound; p->code -= bound; *prob = (CProb)(ttt - (ttt >> kNumMoveBits));
void Bcj2Dec_Init(CBcj2Dec *p)
{
unsigned i;
p->state = BCJ2_DEC_STATE_OK;
p->ip = 0;
p->temp[3] = 0;
p->range = 0;
p->code = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
SRes Bcj2Dec_Decode(CBcj2Dec *p)
{
if (p->range <= 5)
{
p->state = BCJ2_DEC_STATE_OK;
for (; p->range != 5; p->range++)
{
if (p->range == 1 && p->code != 0)
return SZ_ERROR_DATA;
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
if (p->code == 0xFFFFFFFF)
return SZ_ERROR_DATA;
p->range = 0xFFFFFFFF;
}
else if (p->state >= BCJ2_DEC_STATE_ORIG_0)
{
while (p->state <= BCJ2_DEC_STATE_ORIG_3)
{
Byte *dest = p->dest;
if (dest == p->destLim)
return SZ_OK;
*dest = p->temp[p->state++ - BCJ2_DEC_STATE_ORIG_0];
p->dest = dest + 1;
}
}
/*
if (BCJ2_IS_32BIT_STREAM(p->state))
{
const Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return SZ_OK;
p->bufs[p->state] = cur + 4;
{
UInt32 val;
Byte *dest;
SizeT rem;
p->ip += 4;
val = GetBe32(cur) - p->ip;
dest = p->dest;
rem = p->destLim - dest;
if (rem < 4)
{
SizeT i;
SetUi32(p->temp, val);
for (i = 0; i < rem; i++)
dest[i] = p->temp[i];
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
return SZ_OK;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
p->dest = dest + 4;
p->state = BCJ2_DEC_STATE_OK;
}
}
*/
for (;;)
{
if (BCJ2_IS_32BIT_STREAM(p->state))
p->state = BCJ2_DEC_STATE_OK;
else
{
if (p->range < kTopValue)
{
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
{
const Byte *src = p->bufs[BCJ2_STREAM_MAIN];
const Byte *srcLim;
Byte *dest;
SizeT num = p->lims[BCJ2_STREAM_MAIN] - src;
if (num == 0)
{
p->state = BCJ2_STREAM_MAIN;
return SZ_OK;
}
dest = p->dest;
if (num > (SizeT)(p->destLim - dest))
{
num = p->destLim - dest;
if (num == 0)
{
p->state = BCJ2_DEC_STATE_ORIG;
return SZ_OK;
}
}
srcLim = src + num;
if (p->temp[3] == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
break;
}
num = src - p->bufs[BCJ2_STREAM_MAIN];
if (src == srcLim)
{
p->temp[3] = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = src;
p->ip += (UInt32)num;
p->dest += num;
p->state =
p->bufs[BCJ2_STREAM_MAIN] ==
p->lims[BCJ2_STREAM_MAIN] ?
(unsigned)BCJ2_STREAM_MAIN :
(unsigned)BCJ2_DEC_STATE_ORIG;
return SZ_OK;
}
{
UInt32 bound, ttt;
CProb *prob;
Byte b = src[0];
Byte prev = (Byte)(num == 0 ? p->temp[3] : src[-1]);
p->temp[3] = b;
p->bufs[BCJ2_STREAM_MAIN] = src + 1;
num++;
p->ip += (UInt32)num;
p->dest += num;
prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)prev : (b == 0xE9 ? 1 : 0));
_IF_BIT_0
{
_UPDATE_0
continue;
}
_UPDATE_1
}
}
}
{
UInt32 val;
unsigned cj = (p->temp[3] == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
const Byte *cur = p->bufs[cj];
Byte *dest;
SizeT rem;
if (cur == p->lims[cj])
{
p->state = cj;
break;
}
val = GetBe32(cur);
p->bufs[cj] = cur + 4;
p->ip += 4;
val -= p->ip;
dest = p->dest;
rem = p->destLim - dest;
if (rem < 4)
{
SizeT i;
SetUi32(p->temp, val);
for (i = 0; i < rem; i++)
dest[i] = p->temp[i];
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
break;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
p->dest = dest + 4;
}
}
if (p->range < kTopValue && p->bufs[BCJ2_STREAM_RC] != p->lims[BCJ2_STREAM_RC])
{
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
return SZ_OK;
}

146
C/Bcj2.h Normal file
View File

@ -0,0 +1,146 @@
/* Bcj2.h -- BCJ2 Converter for x86 code
2014-11-10 : Igor Pavlov : Public domain */
#ifndef __BCJ2_H
#define __BCJ2_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define BCJ2_NUM_STREAMS 4
enum
{
BCJ2_STREAM_MAIN,
BCJ2_STREAM_CALL,
BCJ2_STREAM_JUMP,
BCJ2_STREAM_RC
};
enum
{
BCJ2_DEC_STATE_ORIG_0 = BCJ2_NUM_STREAMS,
BCJ2_DEC_STATE_ORIG_1,
BCJ2_DEC_STATE_ORIG_2,
BCJ2_DEC_STATE_ORIG_3,
BCJ2_DEC_STATE_ORIG,
BCJ2_DEC_STATE_OK
};
enum
{
BCJ2_ENC_STATE_ORIG = BCJ2_NUM_STREAMS,
BCJ2_ENC_STATE_OK
};
#define BCJ2_IS_32BIT_STREAM(s) ((s) == BCJ2_STREAM_CALL || (s) == BCJ2_STREAM_JUMP)
/*
CBcj2Dec / CBcj2Enc
bufs sizes:
BUF_SIZE(n) = lims[n] - bufs[n]
bufs sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP must be mutliply of 4:
(BUF_SIZE(BCJ2_STREAM_CALL) & 3) == 0
(BUF_SIZE(BCJ2_STREAM_JUMP) & 3) == 0
*/
/*
CBcj2Dec:
dest is allowed to overlap with bufs[BCJ2_STREAM_MAIN], with the following conditions:
bufs[BCJ2_STREAM_MAIN] >= dest &&
bufs[BCJ2_STREAM_MAIN] - dest >= tempReserv +
BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP)
tempReserv = 0 : for first call of Bcj2Dec_Decode
tempReserv = 4 : for any other calls of Bcj2Dec_Decode
overlap with offset = 1 is not allowed
*/
typedef struct
{
const Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
Byte *dest;
const Byte *destLim;
unsigned state; /* BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
UInt32 ip;
Byte temp[4];
UInt32 range;
UInt32 code;
UInt16 probs[2 + 256];
} CBcj2Dec;
void Bcj2Dec_Init(CBcj2Dec *p);
/* Returns: SZ_OK or SZ_ERROR_DATA */
SRes Bcj2Dec_Decode(CBcj2Dec *p);
#define Bcj2Dec_IsFinished(_p_) ((_p_)->code == 0)
typedef enum
{
BCJ2_ENC_FINISH_MODE_CONTINUE,
BCJ2_ENC_FINISH_MODE_END_BLOCK,
BCJ2_ENC_FINISH_MODE_END_STREAM
} EBcj2Enc_FinishMode;
typedef struct
{
Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
const Byte *src;
const Byte *srcLim;
unsigned state;
EBcj2Enc_FinishMode finishMode;
Byte prevByte;
Byte cache;
UInt32 range;
UInt64 low;
UInt64 cacheSize;
UInt32 ip;
/* 32-bit ralative offset in JUMP/CALL commands is
- (mod 4 GB) in 32-bit mode
- signed Int32 in 64-bit mode
We use (mod 4 GB) check for fileSize.
Use fileSize up to 2 GB, if you want to support 32-bit and 64-bit code conversion. */
UInt32 fileIp;
UInt32 fileSize; /* (fileSize <= ((UInt32)1 << 31)), 0 means no_limit */
UInt32 relatLimit; /* (relatLimit <= ((UInt32)1 << 31)), 0 means desable_conversion */
UInt32 tempTarget;
unsigned tempPos;
Byte temp[4 * 2];
unsigned flushPos;
UInt16 probs[2 + 256];
} CBcj2Enc;
void Bcj2Enc_Init(CBcj2Enc *p);
void Bcj2Enc_Encode(CBcj2Enc *p);
#define Bcj2Enc_Get_InputData_Size(p) ((SizeT)((p)->srcLim - (p)->src) + (p)->tempPos)
#define Bcj2Enc_IsFinished(p) ((p)->flushPos == 5)
#define BCJ2_RELAT_LIMIT_NUM_BITS 26
#define BCJ2_RELAT_LIMIT ((UInt32)1 << BCJ2_RELAT_LIMIT_NUM_BITS)
/* limit for CBcj2Enc::fileSize variable */
#define BCJ2_FileSize_MAX ((UInt32)1 << 31)
EXTERN_C_END
#endif

312
C/Bcj2Enc.c Normal file
View File

@ -0,0 +1,312 @@
/* Bcj2Enc.c -- BCJ2 Encoder (Converter for x86 code)
2014-11-10 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #define SHOW_STAT */
#ifdef SHOW_STAT
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
#include <windows.h>
#include <string.h>
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumMoveBits 5
void Bcj2Enc_Init(CBcj2Enc *p)
{
unsigned i;
p->state = BCJ2_ENC_STATE_OK;
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
p->prevByte = 0;
p->cache = 0;
p->range = 0xFFFFFFFF;
p->low = 0;
p->cacheSize = 1;
p->ip = 0;
p->fileIp = 0;
p->fileSize = 0;
p->relatLimit = BCJ2_RELAT_LIMIT;
p->tempPos = 0;
p->flushPos = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
static Bool MY_FAST_CALL RangeEnc_ShiftLow(CBcj2Enc *p)
{
if ((UInt32)p->low < (UInt32)0xFF000000 || (UInt32)(p->low >> 32) != 0)
{
Byte *buf = p->bufs[BCJ2_STREAM_RC];
do
{
if (buf == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
p->bufs[BCJ2_STREAM_RC] = buf;
return True;
}
*buf++ = (Byte)(p->cache + (Byte)(p->low >> 32));
p->cache = 0xFF;
}
while (--p->cacheSize);
p->bufs[BCJ2_STREAM_RC] = buf;
p->cache = (Byte)((UInt32)p->low >> 24);
}
p->cacheSize++;
p->low = (UInt32)p->low << 8;
return False;
}
static void Bcj2Enc_Encode_2(CBcj2Enc *p)
{
if (BCJ2_IS_32BIT_STREAM(p->state))
{
Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return;
SetBe32(cur, p->tempTarget);
p->bufs[p->state] = cur + 4;
}
p->state = BCJ2_ENC_STATE_ORIG;
for (;;)
{
if (p->range < kTopValue)
{
if (RangeEnc_ShiftLow(p))
return;
p->range <<= 8;
}
{
{
const Byte *src = p->src;
const Byte *srcLim;
Byte *dest;
SizeT num = p->srcLim - src;
if (p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
{
if (num <= 4)
return;
num -= 4;
}
else if (num == 0)
break;
dest = p->bufs[BCJ2_STREAM_MAIN];
if (num > (SizeT)(p->lims[BCJ2_STREAM_MAIN] - dest))
{
num = p->lims[BCJ2_STREAM_MAIN] - dest;
if (num == 0)
{
p->state = BCJ2_STREAM_MAIN;
return;
}
}
srcLim = src + num;
if (p->prevByte == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
break;
}
num = src - p->src;
if (src == srcLim)
{
p->prevByte = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = dest;
p->src = src;
p->ip += (UInt32)num;
continue;
}
{
Byte context = (Byte)(num == 0 ? p->prevByte : src[-1]);
Bool needConvert;
p->bufs[BCJ2_STREAM_MAIN] = dest + 1;
p->ip += (UInt32)num + 1;
src++;
needConvert = False;
if ((SizeT)(p->srcLim - src) >= 4)
{
UInt32 relatVal = GetUi32(src);
if ((p->fileSize == 0 || (UInt32)(p->ip + 4 + relatVal - p->fileIp) < p->fileSize)
&& ((relatVal + p->relatLimit) >> 1) < p->relatLimit)
needConvert = True;
}
{
UInt32 bound;
unsigned ttt;
Byte b = src[-1];
CProb *prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)context : (b == 0xE9 ? 1 : 0));
ttt = *prob;
bound = (p->range >> kNumModelBits) * ttt;
if (!needConvert)
{
p->range = bound;
*prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
p->src = src;
p->prevByte = b;
continue;
}
p->low += bound;
p->range -= bound;
*prob = (CProb)(ttt - (ttt >> kNumMoveBits));
{
UInt32 relatVal = GetUi32(src);
UInt32 absVal;
p->ip += 4;
absVal = p->ip + relatVal;
p->prevByte = src[3];
src += 4;
p->src = src;
{
unsigned cj = (b == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
Byte *cur = p->bufs[cj];
if (cur == p->lims[cj])
{
p->state = cj;
p->tempTarget = absVal;
return;
}
SetBe32(cur, absVal);
p->bufs[cj] = cur + 4;
}
}
}
}
}
}
}
if (p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
return;
for (; p->flushPos < 5; p->flushPos++)
if (RangeEnc_ShiftLow(p))
return;
p->state = BCJ2_ENC_STATE_OK;
}
void Bcj2Enc_Encode(CBcj2Enc *p)
{
PRF(printf("\n"));
PRF(printf("---- ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
if (p->tempPos != 0)
{
unsigned extra = 0;
for (;;)
{
const Byte *src = p->src;
const Byte *srcLim = p->srcLim;
unsigned finishMode = p->finishMode;
p->src = p->temp;
p->srcLim = p->temp + p->tempPos;
if (src != srcLim)
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
PRF(printf(" ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
Bcj2Enc_Encode_2(p);
{
unsigned num = (unsigned)(p->src - p->temp);
unsigned tempPos = p->tempPos - num;
unsigned i;
p->tempPos = tempPos;
for (i = 0; i < tempPos; i++)
p->temp[i] = p->temp[i + num];
p->src = src;
p->srcLim = srcLim;
p->finishMode = finishMode;
if (p->state != BCJ2_ENC_STATE_ORIG || src == srcLim)
return;
if (extra >= tempPos)
{
p->src = src - tempPos;
p->tempPos = 0;
break;
}
p->temp[tempPos] = src[0];
p->tempPos = tempPos + 1;
p->src = src + 1;
extra++;
}
}
}
PRF(printf("++++ ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
Bcj2Enc_Encode_2(p);
if (p->state == BCJ2_ENC_STATE_ORIG)
{
const Byte *src = p->src;
unsigned rem = (unsigned)(p->srcLim - src);
unsigned i;
for (i = 0; i < rem; i++)
p->temp[i] = src[i];
p->tempPos = rem;
p->src = src + rem;
}
}

48
C/Blake2.h Normal file
View File

@ -0,0 +1,48 @@
/* Blake2.h -- BLAKE2 Hash
2015-06-30 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#ifndef __BLAKE2_H
#define __BLAKE2_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define BLAKE2S_BLOCK_SIZE 64
#define BLAKE2S_DIGEST_SIZE 32
#define BLAKE2SP_PARALLEL_DEGREE 8
typedef struct
{
UInt32 h[8];
UInt32 t[2];
UInt32 f[2];
Byte buf[BLAKE2S_BLOCK_SIZE];
UInt32 bufPos;
UInt32 lastNode_f1;
UInt32 dummy[2]; /* for sizeof(CBlake2s) alignment */
} CBlake2s;
/* You need to xor CBlake2s::h[i] with input parameter block after Blake2s_Init0() */
/*
void Blake2s_Init0(CBlake2s *p);
void Blake2s_Update(CBlake2s *p, const Byte *data, size_t size);
void Blake2s_Final(CBlake2s *p, Byte *digest);
*/
typedef struct
{
CBlake2s S[BLAKE2SP_PARALLEL_DEGREE];
unsigned bufPos;
} CBlake2sp;
void Blake2sp_Init(CBlake2sp *p);
void Blake2sp_Update(CBlake2sp *p, const Byte *data, size_t size);
void Blake2sp_Final(CBlake2sp *p, Byte *digest);
EXTERN_C_END
#endif

244
C/Blake2s.c Normal file
View File

@ -0,0 +1,244 @@
/* Blake2s.c -- BLAKE2s and BLAKE2sp Hash
2015-06-30 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#include <string.h>
#include "Blake2.h"
#include "CpuArch.h"
#include "RotateDefs.h"
#define rotr32 rotrFixed
#define BLAKE2S_NUM_ROUNDS 10
#define BLAKE2S_FINAL_FLAG (~(UInt32)0)
static const UInt32 k_Blake2s_IV[8] =
{
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
static const Byte k_Blake2s_Sigma[BLAKE2S_NUM_ROUNDS][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
void Blake2s_Init0(CBlake2s *p)
{
unsigned i;
for (i = 0; i < 8; i++)
p->h[i] = k_Blake2s_IV[i];
p->t[0] = 0;
p->t[1] = 0;
p->f[0] = 0;
p->f[1] = 0;
p->bufPos = 0;
p->lastNode_f1 = 0;
}
static void Blake2s_Compress(CBlake2s *p)
{
UInt32 m[16];
UInt32 v[16];
{
unsigned i;
for (i = 0; i < 16; i++)
m[i] = GetUi32(p->buf + i * sizeof(m[i]));
for (i = 0; i < 8; i++)
v[i] = p->h[i];
}
v[ 8] = k_Blake2s_IV[0];
v[ 9] = k_Blake2s_IV[1];
v[10] = k_Blake2s_IV[2];
v[11] = k_Blake2s_IV[3];
v[12] = p->t[0] ^ k_Blake2s_IV[4];
v[13] = p->t[1] ^ k_Blake2s_IV[5];
v[14] = p->f[0] ^ k_Blake2s_IV[6];
v[15] = p->f[1] ^ k_Blake2s_IV[7];
#define G(r,i,a,b,c,d) \
a += b + m[sigma[2*i+0]]; d ^= a; d = rotr32(d, 16); c += d; b ^= c; b = rotr32(b, 12); \
a += b + m[sigma[2*i+1]]; d ^= a; d = rotr32(d, 8); c += d; b ^= c; b = rotr32(b, 7); \
#define R(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
{
unsigned r;
for (r = 0; r < BLAKE2S_NUM_ROUNDS; r++)
{
const Byte *sigma = k_Blake2s_Sigma[r];
R(r);
}
/* R(0); R(1); R(2); R(3); R(4); R(5); R(6); R(7); R(8); R(9); */
}
#undef G
#undef R
{
unsigned i;
for (i = 0; i < 8; i++)
p->h[i] ^= v[i] ^ v[i + 8];
}
}
#define Blake2s_Increment_Counter(S, inc) \
{ p->t[0] += (inc); p->t[1] += (p->t[0] < (inc)); }
#define Blake2s_Set_LastBlock(p) \
{ p->f[0] = BLAKE2S_FINAL_FLAG; p->f[1] = p->lastNode_f1; }
static void Blake2s_Update(CBlake2s *p, const Byte *data, size_t size)
{
while (size != 0)
{
unsigned pos = (unsigned)p->bufPos;
unsigned rem = BLAKE2S_BLOCK_SIZE - pos;
if (size <= rem)
{
memcpy(p->buf + pos, data, size);
p->bufPos += (UInt32)size;
return;
}
memcpy(p->buf + pos, data, rem);
Blake2s_Increment_Counter(S, BLAKE2S_BLOCK_SIZE);
Blake2s_Compress(p);
p->bufPos = 0;
data += rem;
size -= rem;
}
}
static void Blake2s_Final(CBlake2s *p, Byte *digest)
{
unsigned i;
Blake2s_Increment_Counter(S, (UInt32)p->bufPos);
Blake2s_Set_LastBlock(p);
memset(p->buf + p->bufPos, 0, BLAKE2S_BLOCK_SIZE - p->bufPos);
Blake2s_Compress(p);
for (i = 0; i < 8; i++)
SetUi32(digest + sizeof(p->h[i]) * i, p->h[i]);
}
/* ---------- BLAKE2s ---------- */
/* we need to xor CBlake2s::h[i] with input parameter block after Blake2s_Init0() */
/*
typedef struct
{
Byte digest_length;
Byte key_length;
Byte fanout;
Byte depth;
UInt32 leaf_length;
Byte node_offset[6];
Byte node_depth;
Byte inner_length;
Byte salt[BLAKE2S_SALTBYTES];
Byte personal[BLAKE2S_PERSONALBYTES];
} CBlake2sParam;
*/
static void Blake2sp_Init_Spec(CBlake2s *p, unsigned node_offset, unsigned node_depth)
{
Blake2s_Init0(p);
p->h[0] ^= (BLAKE2S_DIGEST_SIZE | ((UInt32)BLAKE2SP_PARALLEL_DEGREE << 16) | ((UInt32)2 << 24));
p->h[2] ^= ((UInt32)node_offset);
p->h[3] ^= ((UInt32)node_depth << 16) | ((UInt32)BLAKE2S_DIGEST_SIZE << 24);
/*
P->digest_length = BLAKE2S_DIGEST_SIZE;
P->key_length = 0;
P->fanout = BLAKE2SP_PARALLEL_DEGREE;
P->depth = 2;
P->leaf_length = 0;
store48(P->node_offset, node_offset);
P->node_depth = node_depth;
P->inner_length = BLAKE2S_DIGEST_SIZE;
*/
}
void Blake2sp_Init(CBlake2sp *p)
{
unsigned i;
p->bufPos = 0;
for (i = 0; i < BLAKE2SP_PARALLEL_DEGREE; i++)
Blake2sp_Init_Spec(&p->S[i], i, 0);
p->S[BLAKE2SP_PARALLEL_DEGREE - 1].lastNode_f1 = BLAKE2S_FINAL_FLAG;
}
void Blake2sp_Update(CBlake2sp *p, const Byte *data, size_t size)
{
unsigned pos = p->bufPos;
while (size != 0)
{
unsigned index = pos / BLAKE2S_BLOCK_SIZE;
unsigned rem = BLAKE2S_BLOCK_SIZE - (pos & (BLAKE2S_BLOCK_SIZE - 1));
if (rem > size)
rem = (unsigned)size;
Blake2s_Update(&p->S[index], data, rem);
size -= rem;
data += rem;
pos += rem;
pos &= (BLAKE2S_BLOCK_SIZE * BLAKE2SP_PARALLEL_DEGREE - 1);
}
p->bufPos = pos;
}
void Blake2sp_Final(CBlake2sp *p, Byte *digest)
{
CBlake2s R;
unsigned i;
Blake2sp_Init_Spec(&R, 0, 1);
R.lastNode_f1 = BLAKE2S_FINAL_FLAG;
for (i = 0; i < BLAKE2SP_PARALLEL_DEGREE; i++)
{
Byte hash[BLAKE2S_DIGEST_SIZE];
Blake2s_Final(&p->S[i], hash);
Blake2s_Update(&R, hash, BLAKE2S_DIGEST_SIZE);
}
Blake2s_Final(&R, digest);
}

135
C/Bra.c Normal file
View File

@ -0,0 +1,135 @@
/* Bra.c -- Converters for RISC code
2010-04-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 8;
for (i = 0; i <= size; i += 4)
{
if (data[i + 3] == 0xEB)
{
UInt32 dest;
UInt32 src = ((UInt32)data[i + 2] << 16) | ((UInt32)data[i + 1] << 8) | (data[i + 0]);
src <<= 2;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 2;
data[i + 2] = (Byte)(dest >> 16);
data[i + 1] = (Byte)(dest >> 8);
data[i + 0] = (Byte)dest;
}
}
return i;
}
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 4;
for (i = 0; i <= size; i += 2)
{
if ((data[i + 1] & 0xF8) == 0xF0 &&
(data[i + 3] & 0xF8) == 0xF8)
{
UInt32 dest;
UInt32 src =
(((UInt32)data[i + 1] & 0x7) << 19) |
((UInt32)data[i + 0] << 11) |
(((UInt32)data[i + 3] & 0x7) << 8) |
(data[i + 2]);
src <<= 1;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 1;
data[i + 1] = (Byte)(0xF0 | ((dest >> 19) & 0x7));
data[i + 0] = (Byte)(dest >> 11);
data[i + 3] = (Byte)(0xF8 | ((dest >> 8) & 0x7));
data[i + 2] = (Byte)dest;
i += 2;
}
}
return i;
}
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] >> 2) == 0x12 && (data[i + 3] & 3) == 1)
{
UInt32 src = ((UInt32)(data[i + 0] & 3) << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3] & (~3));
UInt32 dest;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
data[i + 0] = (Byte)(0x48 | ((dest >> 24) & 0x3));
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] &= 0x3;
data[i + 3] |= dest;
}
}
return i;
}
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
UInt32 i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] == 0x40 && (data[i + 1] & 0xC0) == 0x00) ||
(data[i] == 0x7F && (data[i + 1] & 0xC0) == 0xC0))
{
UInt32 src =
((UInt32)data[i + 0] << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3]);
UInt32 dest;
src <<= 2;
if (encoding)
dest = ip + i + src;
else
dest = src - (ip + i);
dest >>= 2;
dest = (((0 - ((dest >> 22) & 1)) << 22) & 0x3FFFFFFF) | (dest & 0x3FFFFF) | 0x40000000;
data[i + 0] = (Byte)(dest >> 24);
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] = (Byte)dest;
}
}
return i;
}

64
C/Bra.h Normal file
View File

@ -0,0 +1,64 @@
/* Bra.h -- Branch converters for executables
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __BRA_H
#define __BRA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
These functions convert relative addresses to absolute addresses
in CALL instructions to increase the compression ratio.
In:
data - data buffer
size - size of data
ip - current virtual Instruction Pinter (IP) value
state - state variable for x86 converter
encoding - 0 (for decoding), 1 (for encoding)
Out:
state - state variable for x86 converter
Returns:
The number of processed bytes. If you call these functions with multiple calls,
you must start next call with first byte after block of processed bytes.
Type Endian Alignment LookAhead
x86 little 1 4
ARMT little 2 2
ARM little 4 0
PPC big 4 0
SPARC big 4 0
IA64 little 16 0
size must be >= Alignment + LookAhead, if it's not last block.
If (size < Alignment + LookAhead), converter returns 0.
Example:
UInt32 ip = 0;
for ()
{
; size must be >= Alignment + LookAhead, if it's not last block
SizeT processed = Convert(data, size, ip, 1);
data += processed;
size -= processed;
ip += processed;
}
*/
#define x86_Convert_Init(state) { state = 0; }
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding);
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
EXTERN_C_END
#endif

82
C/Bra86.c Normal file
View File

@ -0,0 +1,82 @@
/* Bra86.c -- Converter for x86 code (BCJ)
2013-11-12 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
#define Test86MSByte(b) ((((b) + 1) & 0xFE) == 0)
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding)
{
SizeT pos = 0;
UInt32 mask = *state & 7;
if (size < 5)
return 0;
size -= 4;
ip += 5;
for (;;)
{
Byte *p = data + pos;
const Byte *limit = data + size;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
{
SizeT d = (SizeT)(p - data - pos);
pos = (SizeT)(p - data);
if (p >= limit)
{
*state = (d > 2 ? 0 : mask >> (unsigned)d);
return pos;
}
if (d > 2)
mask = 0;
else
{
mask >>= (unsigned)d;
if (mask != 0 && (mask > 4 || mask == 3 || Test86MSByte(p[(mask >> 1) + 1])))
{
mask = (mask >> 1) | 4;
pos++;
continue;
}
}
}
if (Test86MSByte(p[4]))
{
UInt32 v = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) | ((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 cur = ip + (UInt32)pos;
pos += 5;
if (encoding)
v += cur;
else
v -= cur;
if (mask != 0)
{
unsigned sh = (mask & 6) << 2;
if (Test86MSByte((Byte)(v >> sh)))
{
v ^= (((UInt32)0x100 << sh) - 1);
if (encoding)
v += cur;
else
v -= cur;
}
mask = 0;
}
p[1] = (Byte)v;
p[2] = (Byte)(v >> 8);
p[3] = (Byte)(v >> 16);
p[4] = (Byte)(0 - ((v >> 24) & 1));
}
else
{
mask = (mask >> 1) | 4;
pos++;
}
}
}

69
C/BraIA64.c Normal file
View File

@ -0,0 +1,69 @@
/* BraIA64.c -- Converter for IA-64 code
2013-11-12 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
static const Byte kBranchTable[32] =
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
4, 4, 6, 6, 0, 0, 7, 7,
4, 4, 0, 0, 4, 4, 0, 0
};
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 16)
return 0;
size -= 16;
for (i = 0; i <= size; i += 16)
{
UInt32 instrTemplate = data[i] & 0x1F;
UInt32 mask = kBranchTable[instrTemplate];
UInt32 bitPos = 5;
int slot;
for (slot = 0; slot < 3; slot++, bitPos += 41)
{
UInt32 bytePos, bitRes;
UInt64 instruction, instNorm;
int j;
if (((mask >> slot) & 1) == 0)
continue;
bytePos = (bitPos >> 3);
bitRes = bitPos & 0x7;
instruction = 0;
for (j = 0; j < 6; j++)
instruction += (UInt64)data[i + j + bytePos] << (8 * j);
instNorm = instruction >> bitRes;
if (((instNorm >> 37) & 0xF) == 0x5 && ((instNorm >> 9) & 0x7) == 0)
{
UInt32 src = (UInt32)((instNorm >> 13) & 0xFFFFF);
UInt32 dest;
src |= ((UInt32)(instNorm >> 36) & 1) << 20;
src <<= 4;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 4;
instNorm &= ~((UInt64)(0x8FFFFF) << 13);
instNorm |= ((UInt64)(dest & 0xFFFFF) << 13);
instNorm |= ((UInt64)(dest & 0x100000) << (36 - 20));
instruction &= (1 << bitRes) - 1;
instruction |= (instNorm << bitRes);
for (j = 0; j < 6; j++)
data[i + j + bytePos] = (Byte)(instruction >> (8 * j));
}
}
}
return i;
}

515
C/BwtSort.c Normal file
View File

@ -0,0 +1,515 @@
/* BwtSort.c -- BWT block sorting
2013-11-12 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "BwtSort.h"
#include "Sort.h"
/* #define BLOCK_SORT_USE_HEAP_SORT */
#define NO_INLINE MY_FAST_CALL
/* Don't change it !!! */
#define kNumHashBytes 2
#define kNumHashValues (1 << (kNumHashBytes * 8))
/* kNumRefBitsMax must be < (kNumHashBytes * 8) = 16 */
#define kNumRefBitsMax 12
#define BS_TEMP_SIZE kNumHashValues
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
/* 32 Flags in UInt32 word */
#define kNumFlagsBits 5
#define kNumFlagsInWord (1 << kNumFlagsBits)
#define kFlagsMask (kNumFlagsInWord - 1)
#define kAllFlags 0xFFFFFFFF
#else
#define kNumBitsMax 20
#define kIndexMask ((1 << kNumBitsMax) - 1)
#define kNumExtraBits (32 - kNumBitsMax)
#define kNumExtra0Bits (kNumExtraBits - 2)
#define kNumExtra0Mask ((1 << kNumExtra0Bits) - 1)
#define SetFinishedGroupSize(p, size) \
{ *(p) |= ((((size) - 1) & kNumExtra0Mask) << kNumBitsMax); \
if ((size) > (1 << kNumExtra0Bits)) { \
*(p) |= 0x40000000; *((p) + 1) |= ((((size) - 1)>> kNumExtra0Bits) << kNumBitsMax); } } \
static void SetGroupSize(UInt32 *p, UInt32 size)
{
if (--size == 0)
return;
*p |= 0x80000000 | ((size & kNumExtra0Mask) << kNumBitsMax);
if (size >= (1 << kNumExtra0Bits))
{
*p |= 0x40000000;
p[1] |= ((size >> kNumExtra0Bits) << kNumBitsMax);
}
}
#endif
/*
SortGroup - is recursive Range-Sort function with HeapSort optimization for small blocks
"range" is not real range. It's only for optimization.
returns: 1 - if there are groups, 0 - no more groups
*/
UInt32 NO_INLINE SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 groupOffset, UInt32 groupSize, int NumRefBits, UInt32 *Indices
#ifndef BLOCK_SORT_USE_HEAP_SORT
, UInt32 left, UInt32 range
#endif
)
{
UInt32 *ind2 = Indices + groupOffset;
UInt32 *Groups;
if (groupSize <= 1)
{
/*
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetFinishedGroupSize(ind2, 1);
#endif
*/
return 0;
}
Groups = Indices + BlockSize + BS_TEMP_SIZE;
if (groupSize <= ((UInt32)1 << NumRefBits)
#ifndef BLOCK_SORT_USE_HEAP_SORT
&& groupSize <= range
#endif
)
{
UInt32 *temp = Indices + BlockSize;
UInt32 j;
UInt32 mask, thereAreGroups, group, cg;
{
UInt32 gPrev;
UInt32 gRes = 0;
{
UInt32 sp = ind2[0] + NumSortedBytes;
if (sp >= BlockSize) sp -= BlockSize;
gPrev = Groups[sp];
temp[0] = (gPrev << NumRefBits);
}
for (j = 1; j < groupSize; j++)
{
UInt32 sp = ind2[j] + NumSortedBytes;
UInt32 g;
if (sp >= BlockSize) sp -= BlockSize;
g = Groups[sp];
temp[j] = (g << NumRefBits) | j;
gRes |= (gPrev ^ g);
}
if (gRes == 0)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
}
HeapSort(temp, groupSize);
mask = ((1 << NumRefBits) - 1);
thereAreGroups = 0;
group = groupOffset;
cg = (temp[0] >> NumRefBits);
temp[0] = ind2[temp[0] & mask];
{
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags = Groups + BlockSize;
#else
UInt32 prevGroupStart = 0;
#endif
for (j = 1; j < groupSize; j++)
{
UInt32 val = temp[j];
UInt32 cgCur = (val >> NumRefBits);
if (cgCur != cg)
{
cg = cgCur;
group = groupOffset + j;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = group - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#else
SetGroupSize(temp + prevGroupStart, j - prevGroupStart);
prevGroupStart = j;
#endif
}
else
thereAreGroups = 1;
{
UInt32 ind = ind2[val & mask];
temp[j] = ind;
Groups[ind] = group;
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(temp + prevGroupStart, j - prevGroupStart);
#endif
}
for (j = 0; j < groupSize; j++)
ind2[j] = temp[j];
return thereAreGroups;
}
/* Check that all strings are in one group (cannot sort) */
{
UInt32 group, j;
UInt32 sp = ind2[0] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
group = Groups[sp];
for (j = 1; j < groupSize; j++)
{
sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] != group)
break;
}
if (j == groupSize)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
}
#ifndef BLOCK_SORT_USE_HEAP_SORT
{
/* ---------- Range Sort ---------- */
UInt32 i;
UInt32 mid;
for (;;)
{
UInt32 j;
if (range <= 1)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
mid = left + ((range + 1) >> 1);
j = groupSize;
i = 0;
do
{
UInt32 sp = ind2[i] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] >= mid)
{
for (j--; j > i; j--)
{
sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] < mid)
{
UInt32 temp = ind2[i]; ind2[i] = ind2[j]; ind2[j] = temp;
break;
}
}
if (i >= j)
break;
}
}
while (++i < j);
if (i == 0)
{
range = range - (mid - left);
left = mid;
}
else if (i == groupSize)
range = (mid - left);
else
break;
}
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = (groupOffset + i - 1);
UInt32 *Flags = Groups + BlockSize;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#endif
{
UInt32 j;
for (j = i; j < groupSize; j++)
Groups[ind2[j]] = groupOffset + i;
}
{
UInt32 res = SortGroup(BlockSize, NumSortedBytes, groupOffset, i, NumRefBits, Indices, left, mid - left);
return res | SortGroup(BlockSize, NumSortedBytes, groupOffset + i, groupSize - i, NumRefBits, Indices, mid, range - (mid - left));
}
}
#else
/* ---------- Heap Sort ---------- */
{
UInt32 j;
for (j = 0; j < groupSize; j++)
{
UInt32 sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
ind2[j] = sp;
}
HeapSortRef(ind2, Groups, groupSize);
/* Write Flags */
{
UInt32 sp = ind2[0];
UInt32 group = Groups[sp];
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags = Groups + BlockSize;
#else
UInt32 prevGroupStart = 0;
#endif
for (j = 1; j < groupSize; j++)
{
sp = ind2[j];
if (Groups[sp] != group)
{
group = Groups[sp];
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = groupOffset + j - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#else
SetGroupSize(ind2 + prevGroupStart, j - prevGroupStart);
prevGroupStart = j;
#endif
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2 + prevGroupStart, j - prevGroupStart);
#endif
}
{
/* Write new Groups values and Check that there are groups */
UInt32 thereAreGroups = 0;
for (j = 0; j < groupSize; j++)
{
UInt32 group = groupOffset + j;
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 subGroupSize = ((ind2[j] & ~0xC0000000) >> kNumBitsMax);
if ((ind2[j] & 0x40000000) != 0)
subGroupSize += ((ind2[j + 1] >> kNumBitsMax) << kNumExtra0Bits);
subGroupSize++;
for (;;)
{
UInt32 original = ind2[j];
UInt32 sp = original & kIndexMask;
if (sp < NumSortedBytes) sp += BlockSize; sp -= NumSortedBytes;
ind2[j] = sp | (original & ~kIndexMask);
Groups[sp] = group;
if (--subGroupSize == 0)
break;
j++;
thereAreGroups = 1;
}
#else
UInt32 *Flags = Groups + BlockSize;
for (;;)
{
UInt32 sp = ind2[j]; if (sp < NumSortedBytes) sp += BlockSize; sp -= NumSortedBytes;
ind2[j] = sp;
Groups[sp] = group;
if ((Flags[(groupOffset + j) >> kNumFlagsBits] & (1 << ((groupOffset + j) & kFlagsMask))) == 0)
break;
j++;
thereAreGroups = 1;
}
#endif
}
return thereAreGroups;
}
}
#endif
}
/* conditions: blockSize > 0 */
UInt32 BlockSort(UInt32 *Indices, const Byte *data, UInt32 blockSize)
{
UInt32 *counters = Indices + blockSize;
UInt32 i;
UInt32 *Groups;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags;
#endif
/* Radix-Sort for 2 bytes */
for (i = 0; i < kNumHashValues; i++)
counters[i] = 0;
for (i = 0; i < blockSize - 1; i++)
counters[((UInt32)data[i] << 8) | data[i + 1]]++;
counters[((UInt32)data[i] << 8) | data[0]]++;
Groups = counters + BS_TEMP_SIZE;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
Flags = Groups + blockSize;
{
UInt32 numWords = (blockSize + kFlagsMask) >> kNumFlagsBits;
for (i = 0; i < numWords; i++)
Flags[i] = kAllFlags;
}
#endif
{
UInt32 sum = 0;
for (i = 0; i < kNumHashValues; i++)
{
UInt32 groupSize = counters[i];
if (groupSize > 0)
{
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 t = sum + groupSize - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
#endif
sum += groupSize;
}
counters[i] = sum - groupSize;
}
for (i = 0; i < blockSize - 1; i++)
Groups[i] = counters[((UInt32)data[i] << 8) | data[i + 1]];
Groups[i] = counters[((UInt32)data[i] << 8) | data[0]];
for (i = 0; i < blockSize - 1; i++)
Indices[counters[((UInt32)data[i] << 8) | data[i + 1]]++] = i;
Indices[counters[((UInt32)data[i] << 8) | data[0]]++] = i;
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 prev = 0;
for (i = 0; i < kNumHashValues; i++)
{
UInt32 prevGroupSize = counters[i] - prev;
if (prevGroupSize == 0)
continue;
SetGroupSize(Indices + prev, prevGroupSize);
prev = counters[i];
}
}
#endif
}
{
int NumRefBits;
UInt32 NumSortedBytes;
for (NumRefBits = 0; ((blockSize - 1) >> NumRefBits) != 0; NumRefBits++);
NumRefBits = 32 - NumRefBits;
if (NumRefBits > kNumRefBitsMax)
NumRefBits = kNumRefBitsMax;
for (NumSortedBytes = kNumHashBytes; ; NumSortedBytes <<= 1)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 finishedGroupSize = 0;
#endif
UInt32 newLimit = 0;
for (i = 0; i < blockSize;)
{
UInt32 groupSize;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
if ((Flags[i >> kNumFlagsBits] & (1 << (i & kFlagsMask))) == 0)
{
i++;
continue;
}
for (groupSize = 1;
(Flags[(i + groupSize) >> kNumFlagsBits] & (1 << ((i + groupSize) & kFlagsMask))) != 0;
groupSize++);
groupSize++;
#else
groupSize = ((Indices[i] & ~0xC0000000) >> kNumBitsMax);
{
Bool finishedGroup = ((Indices[i] & 0x80000000) == 0);
if ((Indices[i] & 0x40000000) != 0)
{
groupSize += ((Indices[i + 1] >> kNumBitsMax) << kNumExtra0Bits);
Indices[i + 1] &= kIndexMask;
}
Indices[i] &= kIndexMask;
groupSize++;
if (finishedGroup || groupSize == 1)
{
Indices[i - finishedGroupSize] &= kIndexMask;
if (finishedGroupSize > 1)
Indices[i - finishedGroupSize + 1] &= kIndexMask;
{
UInt32 newGroupSize = groupSize + finishedGroupSize;
SetFinishedGroupSize(Indices + i - finishedGroupSize, newGroupSize);
finishedGroupSize = newGroupSize;
}
i += groupSize;
continue;
}
finishedGroupSize = 0;
}
#endif
if (NumSortedBytes >= blockSize)
{
UInt32 j;
for (j = 0; j < groupSize; j++)
{
UInt32 t = (i + j);
/* Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask)); */
Groups[Indices[t]] = t;
}
}
else
if (SortGroup(blockSize, NumSortedBytes, i, groupSize, NumRefBits, Indices
#ifndef BLOCK_SORT_USE_HEAP_SORT
, 0, blockSize
#endif
) != 0)
newLimit = i + groupSize;
i += groupSize;
}
if (newLimit == 0)
break;
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
for (i = 0; i < blockSize;)
{
UInt32 groupSize = ((Indices[i] & ~0xC0000000) >> kNumBitsMax);
if ((Indices[i] & 0x40000000) != 0)
{
groupSize += ((Indices[i + 1] >> kNumBitsMax) << kNumExtra0Bits);
Indices[i + 1] &= kIndexMask;
}
Indices[i] &= kIndexMask;
groupSize++;
i += groupSize;
}
#endif
return Groups[0];
}

26
C/BwtSort.h Normal file
View File

@ -0,0 +1,26 @@
/* BwtSort.h -- BWT block sorting
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __BWT_SORT_H
#define __BWT_SORT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* use BLOCK_SORT_EXTERNAL_FLAGS if blockSize can be > 1M */
/* #define BLOCK_SORT_EXTERNAL_FLAGS */
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
#define BLOCK_SORT_EXTERNAL_SIZE(blockSize) ((((blockSize) + 31) >> 5))
#else
#define BLOCK_SORT_EXTERNAL_SIZE(blockSize) 0
#endif
#define BLOCK_SORT_BUF_SIZE(blockSize) ((blockSize) * 2 + BLOCK_SORT_EXTERNAL_SIZE(blockSize) + (1 << 16))
UInt32 BlockSort(UInt32 *indices, const Byte *data, UInt32 blockSize);
EXTERN_C_END
#endif

32
C/Compiler.h Normal file
View File

@ -0,0 +1,32 @@
/* Compiler.h
2015-08-02 : Igor Pavlov : Public domain */
#ifndef __7Z_COMPILER_H
#define __7Z_COMPILER_H
#ifdef _MSC_VER
#ifdef UNDER_CE
#define RPC_NO_WINDOWS_H
/* #pragma warning(disable : 4115) // '_RPC_ASYNC_STATE' : named type definition in parentheses */
#pragma warning(disable : 4201) // nonstandard extension used : nameless struct/union
#pragma warning(disable : 4214) // nonstandard extension used : bit field types other than int
#endif
#if _MSC_VER >= 1300
#pragma warning(disable : 4996) // This function or variable may be unsafe
#else
#pragma warning(disable : 4511) // copy constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4702) // unreachable code
#pragma warning(disable : 4710) // not inlined
#pragma warning(disable : 4786) // identifier was truncated to '255' characters in the debug information
#endif
#endif
#define UNUSED_VAR(x) (void)x;
/* #define UNUSED_VAR(x) x=x; */
#endif

211
C/CpuArch.c Normal file
View File

@ -0,0 +1,211 @@
/* CpuArch.c -- CPU specific code
2016-02-25: Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifdef _7ZIP_ASM
#ifdef MY_CPU_X86_OR_AMD64
#if (defined(_MSC_VER) && !defined(MY_CPU_AMD64)) || defined(__GNUC__)
#define USE_ASM
#endif
#if !defined(USE_ASM) && _MSC_VER >= 1500
#include <intrin.h>
#endif
#if defined(USE_ASM) && !defined(MY_CPU_AMD64)
static UInt32 CheckFlag(UInt32 flag)
{
#ifdef _MSC_VER
__asm pushfd;
__asm pop EAX;
__asm mov EDX, EAX;
__asm xor EAX, flag;
__asm push EAX;
__asm popfd;
__asm pushfd;
__asm pop EAX;
__asm xor EAX, EDX;
__asm push EDX;
__asm popfd;
__asm and flag, EAX;
#else
__asm__ __volatile__ (
"pushf\n\t"
"pop %%EAX\n\t"
"movl %%EAX,%%EDX\n\t"
"xorl %0,%%EAX\n\t"
"push %%EAX\n\t"
"popf\n\t"
"pushf\n\t"
"pop %%EAX\n\t"
"xorl %%EDX,%%EAX\n\t"
"push %%EDX\n\t"
"popf\n\t"
"andl %%EAX, %0\n\t":
"=c" (flag) : "c" (flag) :
"%eax", "%edx");
#endif
return flag;
}
#define CHECK_CPUID_IS_SUPPORTED if (CheckFlag(1 << 18) == 0 || CheckFlag(1 << 21) == 0) return False;
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d)
{
#ifdef USE_ASM
#ifdef _MSC_VER
UInt32 a2, b2, c2, d2;
__asm xor EBX, EBX;
__asm xor ECX, ECX;
__asm xor EDX, EDX;
__asm mov EAX, function;
__asm cpuid;
__asm mov a2, EAX;
__asm mov b2, EBX;
__asm mov c2, ECX;
__asm mov d2, EDX;
*a = a2;
*b = b2;
*c = c2;
*d = d2;
#else
__asm__ __volatile__ (
#if defined(MY_CPU_AMD64) && defined(__PIC__)
"mov %%rbx, %%rdi;"
"cpuid;"
"xchg %%rbx, %%rdi;"
: "=a" (*a) ,
"=D" (*b) ,
#elif defined(MY_CPU_X86) && defined(__PIC__)
"mov %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=a" (*a) ,
"=D" (*b) ,
#else
"cpuid"
: "=a" (*a) ,
"=b" (*b) ,
#endif
"=c" (*c) ,
"=d" (*d)
: "0" (function)) ;
#endif
#else
int CPUInfo[4];
__cpuid(CPUInfo, function);
*a = CPUInfo[0];
*b = CPUInfo[1];
*c = CPUInfo[2];
*d = CPUInfo[3];
#endif
}
Bool x86cpuid_CheckAndRead(Cx86cpuid *p)
{
CHECK_CPUID_IS_SUPPORTED
MyCPUID(0, &p->maxFunc, &p->vendor[0], &p->vendor[2], &p->vendor[1]);
MyCPUID(1, &p->ver, &p->b, &p->c, &p->d);
return True;
}
static const UInt32 kVendors[][3] =
{
{ 0x756E6547, 0x49656E69, 0x6C65746E},
{ 0x68747541, 0x69746E65, 0x444D4163},
{ 0x746E6543, 0x48727561, 0x736C7561}
};
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[i]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0] &&
v[1] == p->vendor[1] &&
v[2] == p->vendor[2])
return (int)i;
}
return -1;
}
Bool CPU_Is_InOrder()
{
Cx86cpuid p;
int firm;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_GetFamily(p.ver);
model = x86cpuid_GetModel(p.ver);
firm = x86cpuid_GetFirm(&p);
switch (firm)
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
/* In-Order Atom CPU */
model == 0x1C /* 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330 */
|| model == 0x26 /* 45 nm, Z6xx */
|| model == 0x27 /* 32 nm, Z2460 */
|| model == 0x35 /* 32 nm, Z2760 */
|| model == 0x36 /* 32 nm, N2xxx, D2xxx */
)));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return True;
}
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
#include <windows.h>
static Bool CPU_Sys_Is_SSE_Supported()
{
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi))
return False;
return (vi.dwMajorVersion >= 5);
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
Bool CPU_Is_Aes_Supported()
{
Cx86cpuid p;
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_CheckAndRead(&p))
return False;
return (p.c >> 25) & 1;
}
#endif
#else
Bool CPU_Is_InOrder()
{
return True;
}
#endif // ifdef _7ZIP_ASM

226
C/CpuArch.h Normal file
View File

@ -0,0 +1,226 @@
/* CpuArch.h -- CPU specific code
2015-12-01: Igor Pavlov : Public domain */
#ifndef __CPU_ARCH_H
#define __CPU_ARCH_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MY_CPU_LE means that CPU is LITTLE ENDIAN.
MY_CPU_BE means that CPU is BIG ENDIAN.
If MY_CPU_LE and MY_CPU_BE are not defined, we don't know about ENDIANNESS of platform.
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
*/
#if defined(_M_X64) \
|| defined(_M_AMD64) \
|| defined(__x86_64__) \
|| defined(__AMD64__) \
|| defined(__amd64__)
#define MY_CPU_AMD64
#endif
#if defined(MY_CPU_AMD64) \
|| defined(_M_IA64) \
|| defined(__AARCH64EL__) \
|| defined(__AARCH64EB__)
#define MY_CPU_64BIT
#endif
#if defined(_M_IX86) || defined(__i386__)
#define MY_CPU_X86
#endif
#if defined(MY_CPU_X86) || defined(MY_CPU_AMD64)
#define MY_CPU_X86_OR_AMD64
#endif
#if defined(MY_CPU_X86) \
|| defined(_M_ARM) \
|| defined(__ARMEL__) \
|| defined(__THUMBEL__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEB__)
#define MY_CPU_32BIT
#endif
#if defined(_WIN32) && defined(_M_ARM)
#define MY_CPU_ARM_LE
#endif
#if defined(_WIN32) && defined(_M_IA64)
#define MY_CPU_IA64_LE
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_LE) \
|| defined(MY_CPU_IA64_LE) \
|| defined(__LITTLE_ENDIAN__) \
|| defined(__ARMEL__) \
|| defined(__THUMBEL__) \
|| defined(__AARCH64EL__) \
|| defined(__MIPSEL__) \
|| defined(__MIPSEL) \
|| defined(_MIPSEL) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
#define MY_CPU_LE
#endif
#if defined(__BIG_ENDIAN__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEB__) \
|| defined(__AARCH64EB__) \
|| defined(__MIPSEB__) \
|| defined(__MIPSEB) \
|| defined(_MIPSEB) \
|| defined(__m68k__) \
|| defined(__s390__) \
|| defined(__s390x__) \
|| defined(__zarch__) \
|| defined(__sparc) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
#define MY_CPU_BE
#endif
#if defined(MY_CPU_LE) && defined(MY_CPU_BE)
Stop_Compiling_Bad_Endian
#endif
#ifdef MY_CPU_LE
#if defined(MY_CPU_X86_OR_AMD64) \
/* || defined(__AARCH64EL__) */
#define MY_CPU_LE_UNALIGN
#endif
#endif
#ifdef MY_CPU_LE_UNALIGN
#define GetUi16(p) (*(const UInt16 *)(const void *)(p))
#define GetUi32(p) (*(const UInt32 *)(const void *)(p))
#define GetUi64(p) (*(const UInt64 *)(const void *)(p))
#define SetUi16(p, v) { *(UInt16 *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(p) = (v); }
#define SetUi64(p, v) { *(UInt64 *)(p) = (v); }
#else
#define GetUi16(p) ( (UInt16) ( \
((const Byte *)(p))[0] | \
((UInt16)((const Byte *)(p))[1] << 8) ))
#define GetUi32(p) ( \
((const Byte *)(p))[0] | \
((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#define SetUi16(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); }
#define SetUi32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); \
_ppp_[2] = (Byte)(_vvv_ >> 16); \
_ppp_[3] = (Byte)(_vvv_ >> 24); }
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_); \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)); }
#endif
#if defined(MY_CPU_LE_UNALIGN) && /* defined(_WIN64) && */ (_MSC_VER >= 1300)
/* Note: we use bswap instruction, that is unsupported in 386 cpu */
#include <stdlib.h>
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define GetBe32(p) _byteswap_ulong(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) _byteswap_uint64(*(const UInt64 *)(const Byte *)(p))
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = _byteswap_ulong(v)
#elif defined(MY_CPU_LE_UNALIGN) && defined (__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define GetBe32(p) __builtin_bswap32(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) __builtin_bswap64(*(const UInt64 *)(const Byte *)(p))
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = __builtin_bswap32(v)
#else
#define GetBe32(p) ( \
((UInt32)((const Byte *)(p))[0] << 24) | \
((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#define SetBe32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)(_vvv_ >> 24); \
_ppp_[1] = (Byte)(_vvv_ >> 16); \
_ppp_[2] = (Byte)(_vvv_ >> 8); \
_ppp_[3] = (Byte)_vvv_; }
#endif
#define GetBe16(p) ( (UInt16) ( \
((UInt16)((const Byte *)(p))[0] << 8) | \
((const Byte *)(p))[1] ))
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _7ZIP_ASM
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d);
Bool x86cpuid_CheckAndRead(Cx86cpuid *p);
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_GetFamily(ver) (((ver >> 16) & 0xFF0) | ((ver >> 8) & 0xF))
#define x86cpuid_GetModel(ver) (((ver >> 12) & 0xF0) | ((ver >> 4) & 0xF))
#define x86cpuid_GetStepping(ver) (ver & 0xF)
#endif
Bool CPU_Is_InOrder();
Bool CPU_Is_Aes_Supported();
#endif
EXTERN_C_END
#endif

64
C/Delta.c Normal file
View File

@ -0,0 +1,64 @@
/* Delta.c -- Delta converter
2009-05-26 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Delta.h"
void Delta_Init(Byte *state)
{
unsigned i;
for (i = 0; i < DELTA_STATE_SIZE; i++)
state[i] = 0;
}
static void MyMemCpy(Byte *dest, const Byte *src, unsigned size)
{
unsigned i;
for (i = 0; i < size; i++)
dest[i] = src[i];
}
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
{
SizeT i;
for (i = 0; i < size;)
{
for (j = 0; j < delta && i < size; i++, j++)
{
Byte b = data[i];
data[i] = (Byte)(b - buf[j]);
buf[j] = b;
}
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
}
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
{
SizeT i;
for (i = 0; i < size;)
{
for (j = 0; j < delta && i < size; i++, j++)
{
buf[j] = data[i] = (Byte)(buf[j] + data[i]);
}
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
}

19
C/Delta.h Normal file
View File

@ -0,0 +1,19 @@
/* Delta.h -- Delta converter
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __DELTA_H
#define __DELTA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define DELTA_STATE_SIZE 256
void Delta_Init(Byte *state);
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size);
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size);
EXTERN_C_END
#endif

148
C/HuffEnc.c Normal file
View File

@ -0,0 +1,148 @@
/* HuffEnc.c -- functions for Huffman encoding
2016-05-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "HuffEnc.h"
#include "Sort.h"
#define kMaxLen 16
#define NUM_BITS 10
#define MASK ((1 << NUM_BITS) - 1)
#define NUM_COUNTERS 64
#define HUFFMAN_SPEED_OPT
void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 numSymbols, UInt32 maxLen)
{
UInt32 num = 0;
/* if (maxLen > 10) maxLen = 10; */
{
UInt32 i;
#ifdef HUFFMAN_SPEED_OPT
UInt32 counters[NUM_COUNTERS];
for (i = 0; i < NUM_COUNTERS; i++)
counters[i] = 0;
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
counters[(freq < NUM_COUNTERS - 1) ? freq : NUM_COUNTERS - 1]++;
}
for (i = 1; i < NUM_COUNTERS; i++)
{
UInt32 temp = counters[i];
counters[i] = num;
num += temp;
}
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
if (freq == 0)
lens[i] = 0;
else
p[counters[((freq < NUM_COUNTERS - 1) ? freq : NUM_COUNTERS - 1)]++] = i | (freq << NUM_BITS);
}
counters[0] = 0;
HeapSort(p + counters[NUM_COUNTERS - 2], counters[NUM_COUNTERS - 1] - counters[NUM_COUNTERS - 2]);
#else
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
if (freq == 0)
lens[i] = 0;
else
p[num++] = i | (freq << NUM_BITS);
}
HeapSort(p, num);
#endif
}
if (num < 2)
{
unsigned minCode = 0;
unsigned maxCode = 1;
if (num == 1)
{
maxCode = (unsigned)p[0] & MASK;
if (maxCode == 0)
maxCode++;
}
p[minCode] = 0;
p[maxCode] = 1;
lens[minCode] = lens[maxCode] = 1;
return;
}
{
UInt32 b, e, i;
i = b = e = 0;
do
{
UInt32 n, m, freq;
n = (i != num && (b == e || (p[i] >> NUM_BITS) <= (p[b] >> NUM_BITS))) ? i++ : b++;
freq = (p[n] & ~MASK);
p[n] = (p[n] & MASK) | (e << NUM_BITS);
m = (i != num && (b == e || (p[i] >> NUM_BITS) <= (p[b] >> NUM_BITS))) ? i++ : b++;
freq += (p[m] & ~MASK);
p[m] = (p[m] & MASK) | (e << NUM_BITS);
p[e] = (p[e] & MASK) | freq;
e++;
}
while (num - e > 1);
{
UInt32 lenCounters[kMaxLen + 1];
for (i = 0; i <= kMaxLen; i++)
lenCounters[i] = 0;
p[--e] &= MASK;
lenCounters[1] = 2;
while (e > 0)
{
UInt32 len = (p[p[--e] >> NUM_BITS] >> NUM_BITS) + 1;
p[e] = (p[e] & MASK) | (len << NUM_BITS);
if (len >= maxLen)
for (len = maxLen - 1; lenCounters[len] == 0; len--);
lenCounters[len]--;
lenCounters[len + 1] += 2;
}
{
UInt32 len;
i = 0;
for (len = maxLen; len != 0; len--)
{
UInt32 k;
for (k = lenCounters[len]; k != 0; k--)
lens[p[i++] & MASK] = (Byte)len;
}
}
{
UInt32 nextCodes[kMaxLen + 1];
{
UInt32 code = 0;
UInt32 len;
for (len = 1; len <= kMaxLen; len++)
nextCodes[len] = code = (code + lenCounters[len - 1]) << 1;
}
/* if (code + lenCounters[kMaxLen] - 1 != (1 << kMaxLen) - 1) throw 1; */
{
UInt32 k;
for (k = 0; k < numSymbols; k++)
p[k] = nextCodes[lens[k]]++;
}
}
}
}
}

23
C/HuffEnc.h Normal file
View File

@ -0,0 +1,23 @@
/* HuffEnc.h -- Huffman encoding
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __HUFF_ENC_H
#define __HUFF_ENC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
Conditions:
num <= 1024 = 2 ^ NUM_BITS
Sum(freqs) < 4M = 2 ^ (32 - NUM_BITS)
maxLen <= 16 = kMaxLen
Num_Items(p) >= HUFFMAN_TEMP_SIZE(num)
*/
void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 num, UInt32 maxLen);
EXTERN_C_END
#endif

1044
C/LzFind.c Normal file

File diff suppressed because it is too large Load Diff

117
C/LzFind.h Normal file
View File

@ -0,0 +1,117 @@
/* LzFind.h -- Match finder for LZ algorithms
2015-10-15 : Igor Pavlov : Public domain */
#ifndef __LZ_FIND_H
#define __LZ_FIND_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef UInt32 CLzRef;
typedef struct _CMatchFinder
{
Byte *buffer;
UInt32 pos;
UInt32 posLimit;
UInt32 streamPos;
UInt32 lenLimit;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
Byte streamEndWasReached;
Byte btMode;
Byte bigHash;
Byte directInput;
UInt32 matchMaxLen;
CLzRef *hash;
CLzRef *son;
UInt32 hashMask;
UInt32 cutValue;
Byte *bufferBase;
ISeqInStream *stream;
UInt32 blockSize;
UInt32 keepSizeBefore;
UInt32 keepSizeAfter;
UInt32 numHashBytes;
size_t directInputRem;
UInt32 historySize;
UInt32 fixedHashSize;
UInt32 hashSizeSum;
SRes result;
UInt32 crc[256];
size_t numRefs;
} CMatchFinder;
#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
#define Inline_MatchFinder_IsFinishedOK(p) \
((p)->streamEndWasReached \
&& (p)->streamPos == (p)->pos \
&& (!(p)->directInput || (p)->directInputRem == 0))
int MatchFinder_NeedMove(CMatchFinder *p);
Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
void MatchFinder_MoveBlock(CMatchFinder *p);
void MatchFinder_ReadIfRequired(CMatchFinder *p);
void MatchFinder_Construct(CMatchFinder *p);
/* Conditions:
historySize <= 3 GB
keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
*/
int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
ISzAlloc *alloc);
void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, size_t numItems);
void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *distances, UInt32 maxLen);
/*
Conditions:
Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
*/
typedef void (*Mf_Init_Func)(void *object);
typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
typedef void (*Mf_Skip_Func)(void *object, UInt32);
typedef struct _IMatchFinder
{
Mf_Init_Func Init;
Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
Mf_GetMatches_Func GetMatches;
Mf_Skip_Func Skip;
} IMatchFinder;
void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
void MatchFinder_Init_2(CMatchFinder *p, int readData);
void MatchFinder_Init(CMatchFinder *p);
UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
EXTERN_C_END
#endif

803
C/LzFindMt.c Normal file
View File

@ -0,0 +1,803 @@
/* LzFindMt.c -- multithreaded Match finder for LZ algorithms
2015-10-15 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "LzHash.h"
#include "LzFindMt.h"
static void MtSync_Construct(CMtSync *p)
{
p->wasCreated = False;
p->csWasInitialized = False;
p->csWasEntered = False;
Thread_Construct(&p->thread);
Event_Construct(&p->canStart);
Event_Construct(&p->wasStarted);
Event_Construct(&p->wasStopped);
Semaphore_Construct(&p->freeSemaphore);
Semaphore_Construct(&p->filledSemaphore);
}
static void MtSync_GetNextBlock(CMtSync *p)
{
if (p->needStart)
{
p->numProcessedBlocks = 1;
p->needStart = False;
p->stopWriting = False;
p->exit = False;
Event_Reset(&p->wasStarted);
Event_Reset(&p->wasStopped);
Event_Set(&p->canStart);
Event_Wait(&p->wasStarted);
}
else
{
CriticalSection_Leave(&p->cs);
p->csWasEntered = False;
p->numProcessedBlocks++;
Semaphore_Release1(&p->freeSemaphore);
}
Semaphore_Wait(&p->filledSemaphore);
CriticalSection_Enter(&p->cs);
p->csWasEntered = True;
}
/* MtSync_StopWriting must be called if Writing was started */
static void MtSync_StopWriting(CMtSync *p)
{
UInt32 myNumBlocks = p->numProcessedBlocks;
if (!Thread_WasCreated(&p->thread) || p->needStart)
return;
p->stopWriting = True;
if (p->csWasEntered)
{
CriticalSection_Leave(&p->cs);
p->csWasEntered = False;
}
Semaphore_Release1(&p->freeSemaphore);
Event_Wait(&p->wasStopped);
while (myNumBlocks++ != p->numProcessedBlocks)
{
Semaphore_Wait(&p->filledSemaphore);
Semaphore_Release1(&p->freeSemaphore);
}
p->needStart = True;
}
static void MtSync_Destruct(CMtSync *p)
{
if (Thread_WasCreated(&p->thread))
{
MtSync_StopWriting(p);
p->exit = True;
if (p->needStart)
Event_Set(&p->canStart);
Thread_Wait(&p->thread);
Thread_Close(&p->thread);
}
if (p->csWasInitialized)
{
CriticalSection_Delete(&p->cs);
p->csWasInitialized = False;
}
Event_Close(&p->canStart);
Event_Close(&p->wasStarted);
Event_Close(&p->wasStopped);
Semaphore_Close(&p->freeSemaphore);
Semaphore_Close(&p->filledSemaphore);
p->wasCreated = False;
}
#define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
static SRes MtSync_Create2(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj, UInt32 numBlocks)
{
if (p->wasCreated)
return SZ_OK;
RINOK_THREAD(CriticalSection_Init(&p->cs));
p->csWasInitialized = True;
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canStart));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->wasStarted));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->wasStopped));
RINOK_THREAD(Semaphore_Create(&p->freeSemaphore, numBlocks, numBlocks));
RINOK_THREAD(Semaphore_Create(&p->filledSemaphore, 0, numBlocks));
p->needStart = True;
RINOK_THREAD(Thread_Create(&p->thread, startAddress, obj));
p->wasCreated = True;
return SZ_OK;
}
static SRes MtSync_Create(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj, UInt32 numBlocks)
{
SRes res = MtSync_Create2(p, startAddress, obj, numBlocks);
if (res != SZ_OK)
MtSync_Destruct(p);
return res;
}
void MtSync_Init(CMtSync *p) { p->needStart = True; }
#define kMtMaxValForNormalize 0xFFFFFFFF
#define DEF_GetHeads2(name, v, action) \
static void GetHeads ## name(const Byte *p, UInt32 pos, \
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc) \
{ action; for (; numHeads != 0; numHeads--) { \
const UInt32 value = (v); p++; *heads++ = pos - hash[value]; hash[value] = pos++; } }
#define DEF_GetHeads(name, v) DEF_GetHeads2(name, v, ;)
DEF_GetHeads2(2, (p[0] | ((UInt32)p[1] << 8)), UNUSED_VAR(hashMask); UNUSED_VAR(crc); )
DEF_GetHeads(3, (crc[p[0]] ^ p[1] ^ ((UInt32)p[2] << 8)) & hashMask)
DEF_GetHeads(4, (crc[p[0]] ^ p[1] ^ ((UInt32)p[2] << 8) ^ (crc[p[3]] << 5)) & hashMask)
DEF_GetHeads(4b, (crc[p[0]] ^ p[1] ^ ((UInt32)p[2] << 8) ^ ((UInt32)p[3] << 16)) & hashMask)
/* DEF_GetHeads(5, (crc[p[0]] ^ p[1] ^ ((UInt32)p[2] << 8) ^ (crc[p[3]] << 5) ^ (crc[p[4]] << 3)) & hashMask) */
static void HashThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->hashSync;
for (;;)
{
UInt32 numProcessedBlocks = 0;
Event_Wait(&p->canStart);
Event_Set(&p->wasStarted);
for (;;)
{
if (p->exit)
return;
if (p->stopWriting)
{
p->numProcessedBlocks = numProcessedBlocks;
Event_Set(&p->wasStopped);
break;
}
{
CMatchFinder *mf = mt->MatchFinder;
if (MatchFinder_NeedMove(mf))
{
CriticalSection_Enter(&mt->btSync.cs);
CriticalSection_Enter(&mt->hashSync.cs);
{
const Byte *beforePtr = Inline_MatchFinder_GetPointerToCurrentPos(mf);
ptrdiff_t offset;
MatchFinder_MoveBlock(mf);
offset = beforePtr - Inline_MatchFinder_GetPointerToCurrentPos(mf);
mt->pointerToCurPos -= offset;
mt->buffer -= offset;
}
CriticalSection_Leave(&mt->btSync.cs);
CriticalSection_Leave(&mt->hashSync.cs);
continue;
}
Semaphore_Wait(&p->freeSemaphore);
MatchFinder_ReadIfRequired(mf);
if (mf->pos > (kMtMaxValForNormalize - kMtHashBlockSize))
{
UInt32 subValue = (mf->pos - mf->historySize - 1);
MatchFinder_ReduceOffsets(mf, subValue);
MatchFinder_Normalize3(subValue, mf->hash + mf->fixedHashSize, (size_t)mf->hashMask + 1);
}
{
UInt32 *heads = mt->hashBuf + ((numProcessedBlocks++) & kMtHashNumBlocksMask) * kMtHashBlockSize;
UInt32 num = mf->streamPos - mf->pos;
heads[0] = 2;
heads[1] = num;
if (num >= mf->numHashBytes)
{
num = num - mf->numHashBytes + 1;
if (num > kMtHashBlockSize - 2)
num = kMtHashBlockSize - 2;
mt->GetHeadsFunc(mf->buffer, mf->pos, mf->hash + mf->fixedHashSize, mf->hashMask, heads + 2, num, mf->crc);
heads[0] += num;
}
mf->pos += num;
mf->buffer += num;
}
}
Semaphore_Release1(&p->filledSemaphore);
}
}
}
static void MatchFinderMt_GetNextBlock_Hash(CMatchFinderMt *p)
{
MtSync_GetNextBlock(&p->hashSync);
p->hashBufPosLimit = p->hashBufPos = ((p->hashSync.numProcessedBlocks - 1) & kMtHashNumBlocksMask) * kMtHashBlockSize;
p->hashBufPosLimit += p->hashBuf[p->hashBufPos++];
p->hashNumAvail = p->hashBuf[p->hashBufPos++];
}
#define kEmptyHashValue 0
/* #define MFMT_GM_INLINE */
#ifdef MFMT_GM_INLINE
#define NO_INLINE MY_FAST_CALL
static Int32 NO_INLINE GetMatchesSpecN(UInt32 lenLimit, UInt32 pos, const Byte *cur, CLzRef *son,
UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *_distances, UInt32 _maxLen, const UInt32 *hash, Int32 limit, UInt32 size, UInt32 *posRes)
{
do
{
UInt32 *distances = _distances + 1;
UInt32 curMatch = pos - *hash++;
CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
UInt32 len0 = 0, len1 = 0;
UInt32 cutValue = _cutValue;
UInt32 maxLen = _maxLen;
for (;;)
{
UInt32 delta = pos - curMatch;
if (cutValue-- == 0 || delta >= _cyclicBufferSize)
{
*ptr0 = *ptr1 = kEmptyHashValue;
break;
}
{
CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
const Byte *pb = cur - delta;
UInt32 len = (len0 < len1 ? len0 : len1);
if (pb[len] == cur[len])
{
if (++len != lenLimit && pb[len] == cur[len])
while (++len != lenLimit)
if (pb[len] != cur[len])
break;
if (maxLen < len)
{
*distances++ = maxLen = len;
*distances++ = delta - 1;
if (len == lenLimit)
{
*ptr1 = pair[0];
*ptr0 = pair[1];
break;
}
}
}
if (pb[len] < cur[len])
{
*ptr1 = curMatch;
ptr1 = pair + 1;
curMatch = *ptr1;
len1 = len;
}
else
{
*ptr0 = curMatch;
ptr0 = pair;
curMatch = *ptr0;
len0 = len;
}
}
}
pos++;
_cyclicBufferPos++;
cur++;
{
UInt32 num = (UInt32)(distances - _distances);
*_distances = num - 1;
_distances += num;
limit -= num;
}
}
while (limit > 0 && --size != 0);
*posRes = pos;
return limit;
}
#endif
static void BtGetMatches(CMatchFinderMt *p, UInt32 *distances)
{
UInt32 numProcessed = 0;
UInt32 curPos = 2;
UInt32 limit = kMtBtBlockSize - (p->matchMaxLen * 2);
distances[1] = p->hashNumAvail;
while (curPos < limit)
{
if (p->hashBufPos == p->hashBufPosLimit)
{
MatchFinderMt_GetNextBlock_Hash(p);
distances[1] = numProcessed + p->hashNumAvail;
if (p->hashNumAvail >= p->numHashBytes)
continue;
distances[0] = curPos + p->hashNumAvail;
distances += curPos;
for (; p->hashNumAvail != 0; p->hashNumAvail--)
*distances++ = 0;
return;
}
{
UInt32 size = p->hashBufPosLimit - p->hashBufPos;
UInt32 lenLimit = p->matchMaxLen;
UInt32 pos = p->pos;
UInt32 cyclicBufferPos = p->cyclicBufferPos;
if (lenLimit >= p->hashNumAvail)
lenLimit = p->hashNumAvail;
{
UInt32 size2 = p->hashNumAvail - lenLimit + 1;
if (size2 < size)
size = size2;
size2 = p->cyclicBufferSize - cyclicBufferPos;
if (size2 < size)
size = size2;
}
#ifndef MFMT_GM_INLINE
while (curPos < limit && size-- != 0)
{
UInt32 *startDistances = distances + curPos;
UInt32 num = (UInt32)(GetMatchesSpec1(lenLimit, pos - p->hashBuf[p->hashBufPos++],
pos, p->buffer, p->son, cyclicBufferPos, p->cyclicBufferSize, p->cutValue,
startDistances + 1, p->numHashBytes - 1) - startDistances);
*startDistances = num - 1;
curPos += num;
cyclicBufferPos++;
pos++;
p->buffer++;
}
#else
{
UInt32 posRes;
curPos = limit - GetMatchesSpecN(lenLimit, pos, p->buffer, p->son, cyclicBufferPos, p->cyclicBufferSize, p->cutValue,
distances + curPos, p->numHashBytes - 1, p->hashBuf + p->hashBufPos, (Int32)(limit - curPos), size, &posRes);
p->hashBufPos += posRes - pos;
cyclicBufferPos += posRes - pos;
p->buffer += posRes - pos;
pos = posRes;
}
#endif
numProcessed += pos - p->pos;
p->hashNumAvail -= pos - p->pos;
p->pos = pos;
if (cyclicBufferPos == p->cyclicBufferSize)
cyclicBufferPos = 0;
p->cyclicBufferPos = cyclicBufferPos;
}
}
distances[0] = curPos;
}
static void BtFillBlock(CMatchFinderMt *p, UInt32 globalBlockIndex)
{
CMtSync *sync = &p->hashSync;
if (!sync->needStart)
{
CriticalSection_Enter(&sync->cs);
sync->csWasEntered = True;
}
BtGetMatches(p, p->btBuf + (globalBlockIndex & kMtBtNumBlocksMask) * kMtBtBlockSize);
if (p->pos > kMtMaxValForNormalize - kMtBtBlockSize)
{
UInt32 subValue = p->pos - p->cyclicBufferSize;
MatchFinder_Normalize3(subValue, p->son, (size_t)p->cyclicBufferSize * 2);
p->pos -= subValue;
}
if (!sync->needStart)
{
CriticalSection_Leave(&sync->cs);
sync->csWasEntered = False;
}
}
void BtThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->btSync;
for (;;)
{
UInt32 blockIndex = 0;
Event_Wait(&p->canStart);
Event_Set(&p->wasStarted);
for (;;)
{
if (p->exit)
return;
if (p->stopWriting)
{
p->numProcessedBlocks = blockIndex;
MtSync_StopWriting(&mt->hashSync);
Event_Set(&p->wasStopped);
break;
}
Semaphore_Wait(&p->freeSemaphore);
BtFillBlock(mt, blockIndex++);
Semaphore_Release1(&p->filledSemaphore);
}
}
}
void MatchFinderMt_Construct(CMatchFinderMt *p)
{
p->hashBuf = NULL;
MtSync_Construct(&p->hashSync);
MtSync_Construct(&p->btSync);
}
static void MatchFinderMt_FreeMem(CMatchFinderMt *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->hashBuf);
p->hashBuf = NULL;
}
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAlloc *alloc)
{
MtSync_Destruct(&p->hashSync);
MtSync_Destruct(&p->btSync);
MatchFinderMt_FreeMem(p, alloc);
}
#define kHashBufferSize (kMtHashBlockSize * kMtHashNumBlocks)
#define kBtBufferSize (kMtBtBlockSize * kMtBtNumBlocks)
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE HashThreadFunc2(void *p) { HashThreadFunc((CMatchFinderMt *)p); return 0; }
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE BtThreadFunc2(void *p)
{
Byte allocaDummy[0x180];
unsigned i = 0;
for (i = 0; i < 16; i++)
allocaDummy[i] = (Byte)0;
if (allocaDummy[0] == 0)
BtThreadFunc((CMatchFinderMt *)p);
return 0;
}
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAlloc *alloc)
{
CMatchFinder *mf = p->MatchFinder;
p->historySize = historySize;
if (kMtBtBlockSize <= matchMaxLen * 4)
return SZ_ERROR_PARAM;
if (!p->hashBuf)
{
p->hashBuf = (UInt32 *)alloc->Alloc(alloc, (kHashBufferSize + kBtBufferSize) * sizeof(UInt32));
if (!p->hashBuf)
return SZ_ERROR_MEM;
p->btBuf = p->hashBuf + kHashBufferSize;
}
keepAddBufferBefore += (kHashBufferSize + kBtBufferSize);
keepAddBufferAfter += kMtHashBlockSize;
if (!MatchFinder_Create(mf, historySize, keepAddBufferBefore, matchMaxLen, keepAddBufferAfter, alloc))
return SZ_ERROR_MEM;
RINOK(MtSync_Create(&p->hashSync, HashThreadFunc2, p, kMtHashNumBlocks));
RINOK(MtSync_Create(&p->btSync, BtThreadFunc2, p, kMtBtNumBlocks));
return SZ_OK;
}
/* Call it after ReleaseStream / SetStream */
void MatchFinderMt_Init(CMatchFinderMt *p)
{
CMatchFinder *mf = p->MatchFinder;
p->btBufPos = p->btBufPosLimit = 0;
p->hashBufPos = p->hashBufPosLimit = 0;
/* Init without data reading. We don't want to read data in this thread */
MatchFinder_Init_2(mf, False);
p->pointerToCurPos = Inline_MatchFinder_GetPointerToCurrentPos(mf);
p->btNumAvailBytes = 0;
p->lzPos = p->historySize + 1;
p->hash = mf->hash;
p->fixedHashSize = mf->fixedHashSize;
p->crc = mf->crc;
p->son = mf->son;
p->matchMaxLen = mf->matchMaxLen;
p->numHashBytes = mf->numHashBytes;
p->pos = mf->pos;
p->buffer = mf->buffer;
p->cyclicBufferPos = mf->cyclicBufferPos;
p->cyclicBufferSize = mf->cyclicBufferSize;
p->cutValue = mf->cutValue;
}
/* ReleaseStream is required to finish multithreading */
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p)
{
MtSync_StopWriting(&p->btSync);
/* p->MatchFinder->ReleaseStream(); */
}
static void MatchFinderMt_Normalize(CMatchFinderMt *p)
{
MatchFinder_Normalize3(p->lzPos - p->historySize - 1, p->hash, p->fixedHashSize);
p->lzPos = p->historySize + 1;
}
static void MatchFinderMt_GetNextBlock_Bt(CMatchFinderMt *p)
{
UInt32 blockIndex;
MtSync_GetNextBlock(&p->btSync);
blockIndex = ((p->btSync.numProcessedBlocks - 1) & kMtBtNumBlocksMask);
p->btBufPosLimit = p->btBufPos = blockIndex * kMtBtBlockSize;
p->btBufPosLimit += p->btBuf[p->btBufPos++];
p->btNumAvailBytes = p->btBuf[p->btBufPos++];
if (p->lzPos >= kMtMaxValForNormalize - kMtBtBlockSize)
MatchFinderMt_Normalize(p);
}
static const Byte * MatchFinderMt_GetPointerToCurrentPos(CMatchFinderMt *p)
{
return p->pointerToCurPos;
}
#define GET_NEXT_BLOCK_IF_REQUIRED if (p->btBufPos == p->btBufPosLimit) MatchFinderMt_GetNextBlock_Bt(p);
static UInt32 MatchFinderMt_GetNumAvailableBytes(CMatchFinderMt *p)
{
GET_NEXT_BLOCK_IF_REQUIRED;
return p->btNumAvailBytes;
}
static UInt32 * MixMatches2(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *distances)
{
UInt32 h2, curMatch2;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 lzPos = p->lzPos;
MT_HASH2_CALC
curMatch2 = hash[h2];
hash[h2] = lzPos;
if (curMatch2 >= matchMinPos)
if (cur[(ptrdiff_t)curMatch2 - lzPos] == cur[0])
{
*distances++ = 2;
*distances++ = lzPos - curMatch2 - 1;
}
return distances;
}
static UInt32 * MixMatches3(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *distances)
{
UInt32 h2, h3, curMatch2, curMatch3;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 lzPos = p->lzPos;
MT_HASH3_CALC
curMatch2 = hash[ h2];
curMatch3 = hash[kFix3HashSize + h3];
hash[ h2] = lzPos;
hash[kFix3HashSize + h3] = lzPos;
if (curMatch2 >= matchMinPos && cur[(ptrdiff_t)curMatch2 - lzPos] == cur[0])
{
distances[1] = lzPos - curMatch2 - 1;
if (cur[(ptrdiff_t)curMatch2 - lzPos + 2] == cur[2])
{
distances[0] = 3;
return distances + 2;
}
distances[0] = 2;
distances += 2;
}
if (curMatch3 >= matchMinPos && cur[(ptrdiff_t)curMatch3 - lzPos] == cur[0])
{
*distances++ = 3;
*distances++ = lzPos - curMatch3 - 1;
}
return distances;
}
/*
static UInt32 *MixMatches4(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *distances)
{
UInt32 h2, h3, h4, curMatch2, curMatch3, curMatch4;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 lzPos = p->lzPos;
MT_HASH4_CALC
curMatch2 = hash[ h2];
curMatch3 = hash[kFix3HashSize + h3];
curMatch4 = hash[kFix4HashSize + h4];
hash[ h2] = lzPos;
hash[kFix3HashSize + h3] = lzPos;
hash[kFix4HashSize + h4] = lzPos;
if (curMatch2 >= matchMinPos && cur[(ptrdiff_t)curMatch2 - lzPos] == cur[0])
{
distances[1] = lzPos - curMatch2 - 1;
if (cur[(ptrdiff_t)curMatch2 - lzPos + 2] == cur[2])
{
distances[0] = (cur[(ptrdiff_t)curMatch2 - lzPos + 3] == cur[3]) ? 4 : 3;
return distances + 2;
}
distances[0] = 2;
distances += 2;
}
if (curMatch3 >= matchMinPos && cur[(ptrdiff_t)curMatch3 - lzPos] == cur[0])
{
distances[1] = lzPos - curMatch3 - 1;
if (cur[(ptrdiff_t)curMatch3 - lzPos + 3] == cur[3])
{
distances[0] = 4;
return distances + 2;
}
distances[0] = 3;
distances += 2;
}
if (curMatch4 >= matchMinPos)
if (
cur[(ptrdiff_t)curMatch4 - lzPos] == cur[0] &&
cur[(ptrdiff_t)curMatch4 - lzPos + 3] == cur[3]
)
{
*distances++ = 4;
*distances++ = lzPos - curMatch4 - 1;
}
return distances;
}
*/
#define INCREASE_LZ_POS p->lzPos++; p->pointerToCurPos++;
static UInt32 MatchFinderMt2_GetMatches(CMatchFinderMt *p, UInt32 *distances)
{
const UInt32 *btBuf = p->btBuf + p->btBufPos;
UInt32 len = *btBuf++;
p->btBufPos += 1 + len;
p->btNumAvailBytes--;
{
UInt32 i;
for (i = 0; i < len; i += 2)
{
*distances++ = *btBuf++;
*distances++ = *btBuf++;
}
}
INCREASE_LZ_POS
return len;
}
static UInt32 MatchFinderMt_GetMatches(CMatchFinderMt *p, UInt32 *distances)
{
const UInt32 *btBuf = p->btBuf + p->btBufPos;
UInt32 len = *btBuf++;
p->btBufPos += 1 + len;
if (len == 0)
{
/* change for bt5 ! */
if (p->btNumAvailBytes-- >= 4)
len = (UInt32)(p->MixMatchesFunc(p, p->lzPos - p->historySize, distances) - (distances));
}
else
{
/* Condition: there are matches in btBuf with length < p->numHashBytes */
UInt32 *distances2;
p->btNumAvailBytes--;
distances2 = p->MixMatchesFunc(p, p->lzPos - btBuf[1], distances);
do
{
*distances2++ = *btBuf++;
*distances2++ = *btBuf++;
}
while ((len -= 2) != 0);
len = (UInt32)(distances2 - (distances));
}
INCREASE_LZ_POS
return len;
}
#define SKIP_HEADER2_MT do { GET_NEXT_BLOCK_IF_REQUIRED
#define SKIP_HEADER_MT(n) SKIP_HEADER2_MT if (p->btNumAvailBytes-- >= (n)) { const Byte *cur = p->pointerToCurPos; UInt32 *hash = p->hash;
#define SKIP_FOOTER_MT } INCREASE_LZ_POS p->btBufPos += p->btBuf[p->btBufPos] + 1; } while (--num != 0);
static void MatchFinderMt0_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER2_MT { p->btNumAvailBytes--;
SKIP_FOOTER_MT
}
static void MatchFinderMt2_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(2)
UInt32 h2;
MT_HASH2_CALC
hash[h2] = p->lzPos;
SKIP_FOOTER_MT
}
static void MatchFinderMt3_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(3)
UInt32 h2, h3;
MT_HASH3_CALC
hash[kFix3HashSize + h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
/*
static void MatchFinderMt4_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(4)
UInt32 h2, h3, h4;
MT_HASH4_CALC
hash[kFix4HashSize + h4] =
hash[kFix3HashSize + h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
*/
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder *vTable)
{
vTable->Init = (Mf_Init_Func)MatchFinderMt_Init;
vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinderMt_GetNumAvailableBytes;
vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinderMt_GetPointerToCurrentPos;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt_GetMatches;
switch (p->MatchFinder->numHashBytes)
{
case 2:
p->GetHeadsFunc = GetHeads2;
p->MixMatchesFunc = (Mf_Mix_Matches)0;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt0_Skip;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt2_GetMatches;
break;
case 3:
p->GetHeadsFunc = GetHeads3;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches2;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt2_Skip;
break;
default:
/* case 4: */
p->GetHeadsFunc = p->MatchFinder->bigHash ? GetHeads4b : GetHeads4;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches3;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt3_Skip;
break;
/*
default:
p->GetHeadsFunc = GetHeads5;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches4;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt4_Skip;
break;
*/
}
}

101
C/LzFindMt.h Normal file
View File

@ -0,0 +1,101 @@
/* LzFindMt.h -- multithreaded Match finder for LZ algorithms
2015-05-03 : Igor Pavlov : Public domain */
#ifndef __LZ_FIND_MT_H
#define __LZ_FIND_MT_H
#include "LzFind.h"
#include "Threads.h"
EXTERN_C_BEGIN
#define kMtHashBlockSize (1 << 13)
#define kMtHashNumBlocks (1 << 3)
#define kMtHashNumBlocksMask (kMtHashNumBlocks - 1)
#define kMtBtBlockSize (1 << 14)
#define kMtBtNumBlocks (1 << 6)
#define kMtBtNumBlocksMask (kMtBtNumBlocks - 1)
typedef struct _CMtSync
{
Bool wasCreated;
Bool needStart;
Bool exit;
Bool stopWriting;
CThread thread;
CAutoResetEvent canStart;
CAutoResetEvent wasStarted;
CAutoResetEvent wasStopped;
CSemaphore freeSemaphore;
CSemaphore filledSemaphore;
Bool csWasInitialized;
Bool csWasEntered;
CCriticalSection cs;
UInt32 numProcessedBlocks;
} CMtSync;
typedef UInt32 * (*Mf_Mix_Matches)(void *p, UInt32 matchMinPos, UInt32 *distances);
/* kMtCacheLineDummy must be >= size_of_CPU_cache_line */
#define kMtCacheLineDummy 128
typedef void (*Mf_GetHeads)(const Byte *buffer, UInt32 pos,
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc);
typedef struct _CMatchFinderMt
{
/* LZ */
const Byte *pointerToCurPos;
UInt32 *btBuf;
UInt32 btBufPos;
UInt32 btBufPosLimit;
UInt32 lzPos;
UInt32 btNumAvailBytes;
UInt32 *hash;
UInt32 fixedHashSize;
UInt32 historySize;
const UInt32 *crc;
Mf_Mix_Matches MixMatchesFunc;
/* LZ + BT */
CMtSync btSync;
Byte btDummy[kMtCacheLineDummy];
/* BT */
UInt32 *hashBuf;
UInt32 hashBufPos;
UInt32 hashBufPosLimit;
UInt32 hashNumAvail;
CLzRef *son;
UInt32 matchMaxLen;
UInt32 numHashBytes;
UInt32 pos;
const Byte *buffer;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be historySize + 1 */
UInt32 cutValue;
/* BT + Hash */
CMtSync hashSync;
/* Byte hashDummy[kMtCacheLineDummy]; */
/* Hash */
Mf_GetHeads GetHeadsFunc;
CMatchFinder *MatchFinder;
} CMatchFinderMt;
void MatchFinderMt_Construct(CMatchFinderMt *p);
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAlloc *alloc);
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAlloc *alloc);
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder *vTable);
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p);
EXTERN_C_END
#endif

57
C/LzHash.h Normal file
View File

@ -0,0 +1,57 @@
/* LzHash.h -- HASH functions for LZ algorithms
2015-04-12 : Igor Pavlov : Public domain */
#ifndef __LZ_HASH_H
#define __LZ_HASH_H
#define kHash2Size (1 << 10)
#define kHash3Size (1 << 16)
#define kHash4Size (1 << 20)
#define kFix3HashSize (kHash2Size)
#define kFix4HashSize (kHash2Size + kHash3Size)
#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
#define HASH2_CALC hv = cur[0] | ((UInt32)cur[1] << 8);
#define HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
hv = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
#define HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
hv = (temp ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
#define HASH5_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
temp ^= (p->crc[cur[3]] << 5); \
h4 = temp & (kHash4Size - 1); \
hv = (temp ^ (p->crc[cur[4]] << 3)) & p->hashMask; }
/* #define HASH_ZIP_CALC hv = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
#define HASH_ZIP_CALC hv = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
#define MT_HASH2_CALC \
h2 = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
#define MT_HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
#define MT_HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
h4 = (temp ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
#endif

378
C/Lzma2Dec.c Normal file
View File

@ -0,0 +1,378 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2015-11-09 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
#include "Precomp.h"
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#include <string.h>
#include "Lzma2Dec.h"
/*
00000000 - EOS
00000001 U U - Uncompressed Reset Dic
00000010 U U - Uncompressed No Reset
100uuuuu U U P P - LZMA no reset
101uuuuu U U P P - LZMA reset state
110uuuuu U U P P S - LZMA reset state + new prop
111uuuuu U U P P S - LZMA reset state + new prop + reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & LZMA2_CONTROL_LZMA) == 0)
#define LZMA2_GET_LZMA_MODE(p) (((p)->control >> 5) & 3)
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} ELzma2State;
static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
{
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
}
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True;
p->needInitState = True;
p->needInitProp = True;
LzmaDec_Init(&p->decoder);
}
static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch (p->state)
{
case LZMA2_STATE_CONTROL:
p->control = b;
PRF(printf("\n %4X ", (unsigned)p->decoder.dicPos));
PRF(printf(" %2X", (unsigned)b));
if (p->control == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if ((p->control & 0x7F) > 2)
return LZMA2_STATE_ERROR;
p->unpackSize = 0;
}
else
p->unpackSize = (UInt32)(p->control & 0x1F) << 16;
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %8u", (unsigned)p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
PRF(printf(" %8u", (unsigned)p->packSize));
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p)) ? LZMA2_STATE_PROP:
(p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA);
case LZMA2_STATE_PROP:
{
unsigned lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = b / 5;
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc;
p->decoder.prop.lp = lp;
p->needInitProp = False;
return LZMA2_STATE_DATA;
}
}
return LZMA2_STATE_ERROR;
}
static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT size)
{
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
while (p->state != LZMA2_STATE_FINISHED)
{
SizeT dicPos = p->decoder.dicPos;
if (p->state == LZMA2_STATE_ERROR)
return SZ_ERROR_DATA;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (dicPos == dicLimit && p->state != LZMA2_STATE_FINISHED)
{
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
continue;
}
{
SizeT destSizeCur = dicLimit - dicPos;
SizeT srcSizeCur = inSize - *srcLen;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (p->unpackSize <= destSizeCur)
{
destSizeCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->state == LZMA2_STATE_DATA)
{
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
{
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
p->needInitDic = False;
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (srcSizeCur > destSizeCur)
srcSizeCur = destSizeCur;
if (srcSizeCur == 0)
{
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
LzmaDec_UpdateWithUncompressed(&p->decoder, src, srcSizeCur);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->unpackSize -= (UInt32)srcSizeCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
SizeT outSizeProcessed;
SRes res;
if (p->state == LZMA2_STATE_DATA)
{
unsigned mode = LZMA2_GET_LZMA_MODE(p);
Bool initDic = (mode == 3);
Bool initState = (mode != 0);
if ((!initDic && p->needInitDic) || (!initState && p->needInitState))
{
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT;
}
if (srcSizeCur > p->packSize)
srcSizeCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + destSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->packSize -= (UInt32)srcSizeCur;
outSizeProcessed = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outSizeProcessed;
RINOK(res);
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
return res;
if (srcSizeCur == 0 && outSizeProcessed == 0)
{
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
|| p->unpackSize != 0
|| p->packSize != 0)
{
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
p->state = LZMA2_STATE_CONTROL;
}
if (*status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
*status = LZMA_STATUS_NOT_FINISHED;
}
}
}
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT srcSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
if (outSize > p->decoder.dicBufSize - dicPos)
{
outSizeCur = p->decoder.dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
}
else
{
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, outSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
inSize -= srcSizeCur;
*srcLen += srcSizeCur;
outSizeCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc)
{
CLzma2Dec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
Lzma2Dec_Construct(&p);
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc));
p.decoder.dic = dest;
p.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&p);
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
Lzma2Dec_FreeProbs(&p, alloc);
return res;
}

80
C/Lzma2Dec.h Normal file
View File

@ -0,0 +1,80 @@
/* Lzma2Dec.h -- LZMA2 Decoder
2015-05-13 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_H
#define __LZMA2_DEC_H
#include "LzmaDec.h"
EXTERN_C_BEGIN
/* ---------- State Interface ---------- */
typedef struct
{
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
unsigned state;
Byte control;
Bool needInitDic;
Bool needInitState;
Bool needInitProp;
} CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc);
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc);
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
SZ_ERROR_DATA - Data error
*/
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc);
EXTERN_C_END
#endif

520
C/Lzma2Enc.c Normal file
View File

@ -0,0 +1,520 @@
/* Lzma2Enc.c -- LZMA2 Encoder
2015-10-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #include <stdio.h> */
#include <string.h>
/* #define _7ZIP_ST */
#include "Lzma2Enc.h"
#ifndef _7ZIP_ST
#include "MtCoder.h"
#else
#define NUM_MT_CODER_THREADS_MAX 1
#endif
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#define LZMA2_PACK_SIZE_MAX (1 << 16)
#define LZMA2_COPY_CHUNK_SIZE LZMA2_PACK_SIZE_MAX
#define LZMA2_UNPACK_SIZE_MAX (1 << 21)
#define LZMA2_KEEP_WINDOW_SIZE LZMA2_UNPACK_SIZE_MAX
#define LZMA2_CHUNK_SIZE_COMPRESSED_MAX ((1 << 16) + 16)
#define PRF(x) /* x */
/* ---------- CLzma2EncInt ---------- */
typedef struct
{
CLzmaEncHandle enc;
UInt64 srcPos;
Byte props;
Bool needInitState;
Bool needInitProp;
} CLzma2EncInt;
static SRes Lzma2EncInt_Init(CLzma2EncInt *p, const CLzma2EncProps *props)
{
Byte propsEncoded[LZMA_PROPS_SIZE];
SizeT propsSize = LZMA_PROPS_SIZE;
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps));
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize));
p->srcPos = 0;
p->props = propsEncoded[0];
p->needInitState = True;
p->needInitProp = True;
return SZ_OK;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAlloc *alloc, ISzAlloc *allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp);
void LzmaEnc_Finish(CLzmaEncHandle pp);
void LzmaEnc_SaveState(CLzmaEncHandle pp);
void LzmaEnc_RestoreState(CLzmaEncHandle pp);
static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
size_t *packSizeRes, ISeqOutStream *outStream)
{
size_t packSizeLimit = *packSizeRes;
size_t packSize = packSizeLimit;
UInt32 unpackSize = LZMA2_UNPACK_SIZE_MAX;
unsigned lzHeaderSize = 5 + (p->needInitProp ? 1 : 0);
Bool useCopyBlock;
SRes res;
*packSizeRes = 0;
if (packSize < lzHeaderSize)
return SZ_ERROR_OUTPUT_EOF;
packSize -= lzHeaderSize;
LzmaEnc_SaveState(p->enc);
res = LzmaEnc_CodeOneMemBlock(p->enc, p->needInitState,
outBuf + lzHeaderSize, &packSize, LZMA2_PACK_SIZE_MAX, &unpackSize);
PRF(printf("\npackSize = %7d unpackSize = %7d ", packSize, unpackSize));
if (unpackSize == 0)
return res;
if (res == SZ_OK)
useCopyBlock = (packSize + 2 >= unpackSize || packSize > (1 << 16));
else
{
if (res != SZ_ERROR_OUTPUT_EOF)
return res;
res = SZ_OK;
useCopyBlock = True;
}
if (useCopyBlock)
{
size_t destPos = 0;
PRF(printf("################# COPY "));
while (unpackSize > 0)
{
UInt32 u = (unpackSize < LZMA2_COPY_CHUNK_SIZE) ? unpackSize : LZMA2_COPY_CHUNK_SIZE;
if (packSizeLimit - destPos < u + 3)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos++] = (Byte)(p->srcPos == 0 ? LZMA2_CONTROL_COPY_RESET_DIC : LZMA2_CONTROL_COPY_NO_RESET);
outBuf[destPos++] = (Byte)((u - 1) >> 8);
outBuf[destPos++] = (Byte)(u - 1);
memcpy(outBuf + destPos, LzmaEnc_GetCurBuf(p->enc) - unpackSize, u);
unpackSize -= u;
destPos += u;
p->srcPos += u;
if (outStream)
{
*packSizeRes += destPos;
if (outStream->Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
destPos = 0;
}
else
*packSizeRes = destPos;
/* needInitState = True; */
}
LzmaEnc_RestoreState(p->enc);
return SZ_OK;
}
{
size_t destPos = 0;
UInt32 u = unpackSize - 1;
UInt32 pm = (UInt32)(packSize - 1);
unsigned mode = (p->srcPos == 0) ? 3 : (p->needInitState ? (p->needInitProp ? 2 : 1) : 0);
PRF(printf(" "));
outBuf[destPos++] = (Byte)(LZMA2_CONTROL_LZMA | (mode << 5) | ((u >> 16) & 0x1F));
outBuf[destPos++] = (Byte)(u >> 8);
outBuf[destPos++] = (Byte)u;
outBuf[destPos++] = (Byte)(pm >> 8);
outBuf[destPos++] = (Byte)pm;
if (p->needInitProp)
outBuf[destPos++] = p->props;
p->needInitProp = False;
p->needInitState = False;
destPos += packSize;
p->srcPos += unpackSize;
if (outStream)
if (outStream->Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
*packSizeRes = destPos;
return SZ_OK;
}
}
/* ---------- Lzma2 Props ---------- */
void Lzma2EncProps_Init(CLzma2EncProps *p)
{
LzmaEncProps_Init(&p->lzmaProps);
p->numTotalThreads = -1;
p->numBlockThreads = -1;
p->blockSize = 0;
}
void Lzma2EncProps_Normalize(CLzma2EncProps *p)
{
int t1, t1n, t2, t3;
{
CLzmaEncProps lzmaProps = p->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
t1n = lzmaProps.numThreads;
}
t1 = p->lzmaProps.numThreads;
t2 = p->numBlockThreads;
t3 = p->numTotalThreads;
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
if (t3 <= 0)
{
if (t2 <= 0)
t2 = 1;
t3 = t1n * t2;
}
else if (t2 <= 0)
{
t2 = t3 / t1n;
if (t2 == 0)
{
t1 = 1;
t2 = t3;
}
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
}
else if (t1 <= 0)
{
t1 = t3 / t2;
if (t1 == 0)
t1 = 1;
}
else
t3 = t1n * t2;
p->lzmaProps.numThreads = t1;
LzmaEncProps_Normalize(&p->lzmaProps);
t1 = p->lzmaProps.numThreads;
if (p->blockSize == 0)
{
UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
p->blockSize = (size_t)blockSize;
}
if (t2 > 1 && p->lzmaProps.reduceSize != (UInt64)(Int64)-1)
{
UInt64 temp = p->lzmaProps.reduceSize + p->blockSize - 1;
if (temp > p->lzmaProps.reduceSize)
{
UInt64 numBlocks = temp / p->blockSize;
if (numBlocks < (unsigned)t2)
{
t2 = (unsigned)numBlocks;
if (t2 == 0)
t2 = 1;
t3 = t1 * t2;
}
}
}
p->numBlockThreads = t2;
p->numTotalThreads = t3;
}
static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
{
return (p && p->Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
/* ---------- Lzma2 ---------- */
typedef struct
{
Byte propEncoded;
CLzma2EncProps props;
Byte *outBuf;
ISzAlloc *alloc;
ISzAlloc *allocBig;
CLzma2EncInt coders[NUM_MT_CODER_THREADS_MAX];
#ifndef _7ZIP_ST
CMtCoder mtCoder;
#endif
} CLzma2Enc;
/* ---------- Lzma2EncThread ---------- */
static SRes Lzma2Enc_EncodeMt1(CLzma2EncInt *p, CLzma2Enc *mainEncoder,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
UInt64 packTotal = 0;
SRes res = SZ_OK;
if (!mainEncoder->outBuf)
{
mainEncoder->outBuf = (Byte *)IAlloc_Alloc(mainEncoder->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!mainEncoder->outBuf)
return SZ_ERROR_MEM;
}
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_PrepareForLzma2(p->enc, inStream, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
res = Lzma2EncInt_EncodeSubblock(p, mainEncoder->outBuf, &packSize, outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
res = Progress(progress, p->srcPos, packTotal);
if (res != SZ_OK)
break;
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
if (res == SZ_OK)
{
Byte b = 0;
if (outStream->Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
return res;
}
#ifndef _7ZIP_ST
typedef struct
{
IMtCoderCallback funcTable;
CLzma2Enc *lzma2Enc;
} CMtCallbackImp;
static SRes MtCallbackImp_Code(void *pp, unsigned index, Byte *dest, size_t *destSize,
const Byte *src, size_t srcSize, int finished)
{
CMtCallbackImp *imp = (CMtCallbackImp *)pp;
CLzma2Enc *mainEncoder = imp->lzma2Enc;
CLzma2EncInt *p = &mainEncoder->coders[index];
SRes res = SZ_OK;
{
size_t destLim = *destSize;
*destSize = 0;
if (srcSize != 0)
{
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_MemPrepare(p->enc, src, srcSize, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
while (p->srcPos < srcSize)
{
size_t packSize = destLim - *destSize;
res = Lzma2EncInt_EncodeSubblock(p, dest + *destSize, &packSize, NULL);
if (res != SZ_OK)
break;
*destSize += packSize;
if (packSize == 0)
{
res = SZ_ERROR_FAIL;
break;
}
if (MtProgress_Set(&mainEncoder->mtCoder.mtProgress, index, p->srcPos, *destSize) != SZ_OK)
{
res = SZ_ERROR_PROGRESS;
break;
}
}
LzmaEnc_Finish(p->enc);
if (res != SZ_OK)
return res;
}
if (finished)
{
if (*destSize == destLim)
return SZ_ERROR_OUTPUT_EOF;
dest[(*destSize)++] = 0;
}
}
return res;
}
#endif
/* ---------- Lzma2Enc ---------- */
CLzma2EncHandle Lzma2Enc_Create(ISzAlloc *alloc, ISzAlloc *allocBig)
{
CLzma2Enc *p = (CLzma2Enc *)alloc->Alloc(alloc, sizeof(CLzma2Enc));
if (!p)
return NULL;
Lzma2EncProps_Init(&p->props);
Lzma2EncProps_Normalize(&p->props);
p->outBuf = 0;
p->alloc = alloc;
p->allocBig = allocBig;
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->coders[i].enc = 0;
}
#ifndef _7ZIP_ST
MtCoder_Construct(&p->mtCoder);
#endif
return p;
}
void Lzma2Enc_Destroy(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
{
CLzma2EncInt *t = &p->coders[i];
if (t->enc)
{
LzmaEnc_Destroy(t->enc, p->alloc, p->allocBig);
t->enc = 0;
}
}
#ifndef _7ZIP_ST
MtCoder_Destruct(&p->mtCoder);
#endif
IAlloc_Free(p->alloc, p->outBuf);
IAlloc_Free(p->alloc, pp);
}
SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
CLzmaEncProps lzmaProps = props->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
if (lzmaProps.lc + lzmaProps.lp > LZMA2_LCLP_MAX)
return SZ_ERROR_PARAM;
p->props = *props;
Lzma2EncProps_Normalize(&p->props);
return SZ_OK;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
UInt32 dicSize = LzmaEncProps_GetDictSize(&p->props.lzmaProps);
for (i = 0; i < 40; i++)
if (dicSize <= LZMA2_DIC_SIZE_FROM_PROP(i))
break;
return (Byte)i;
}
SRes Lzma2Enc_Encode(CLzma2EncHandle pp,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
int i;
for (i = 0; i < p->props.numBlockThreads; i++)
{
CLzma2EncInt *t = &p->coders[(unsigned)i];
if (!t->enc)
{
t->enc = LzmaEnc_Create(p->alloc);
if (!t->enc)
return SZ_ERROR_MEM;
}
}
#ifndef _7ZIP_ST
if (p->props.numBlockThreads > 1)
{
CMtCallbackImp mtCallback;
mtCallback.funcTable.Code = MtCallbackImp_Code;
mtCallback.lzma2Enc = p;
p->mtCoder.progress = progress;
p->mtCoder.inStream = inStream;
p->mtCoder.outStream = outStream;
p->mtCoder.alloc = p->alloc;
p->mtCoder.mtCallback = &mtCallback.funcTable;
p->mtCoder.blockSize = p->props.blockSize;
p->mtCoder.destBlockSize = p->props.blockSize + (p->props.blockSize >> 10) + 16;
if (p->mtCoder.destBlockSize < p->props.blockSize)
{
p->mtCoder.destBlockSize = (size_t)0 - 1;
if (p->mtCoder.destBlockSize < p->props.blockSize)
return SZ_ERROR_FAIL;
}
p->mtCoder.numThreads = p->props.numBlockThreads;
return MtCoder_Code(&p->mtCoder);
}
#endif
return Lzma2Enc_EncodeMt1(&p->coders[0], p, outStream, inStream, progress);
}

62
C/Lzma2Enc.h Normal file
View File

@ -0,0 +1,62 @@
/* Lzma2Enc.h -- LZMA2 Encoder
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA2_ENC_H
#define __LZMA2_ENC_H
#include "LzmaEnc.h"
EXTERN_C_BEGIN
typedef struct
{
CLzmaEncProps lzmaProps;
size_t blockSize;
int numBlockThreads;
int numTotalThreads;
} CLzma2EncProps;
void Lzma2EncProps_Init(CLzma2EncProps *p);
void Lzma2EncProps_Normalize(CLzma2EncProps *p);
/* ---------- CLzmaEnc2Handle Interface ---------- */
/* Lzma2Enc_* functions can return the following exit codes:
Returns:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - Write callback error
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
typedef void * CLzma2EncHandle;
CLzma2EncHandle Lzma2Enc_Create(ISzAlloc *alloc, ISzAlloc *allocBig);
void Lzma2Enc_Destroy(CLzma2EncHandle p);
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props);
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p);
SRes Lzma2Enc_Encode(CLzma2EncHandle p,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress);
/* ---------- One Call Interface ---------- */
/* Lzma2Encode
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
/*
SRes Lzma2Encode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, int writeEndMark,
ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
*/
EXTERN_C_END
#endif

111
C/Lzma86.h Normal file
View File

@ -0,0 +1,111 @@
/* Lzma86.h -- LZMA + x86 (BCJ) Filter
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA86_H
#define __LZMA86_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA86_SIZE_OFFSET (1 + 5)
#define LZMA86_HEADER_SIZE (LZMA86_SIZE_OFFSET + 8)
/*
It's an example for LZMA + x86 Filter use.
You can use .lzma86 extension, if you write that stream to file.
.lzma86 header adds one additional byte to standard .lzma header.
.lzma86 header (14 bytes):
Offset Size Description
0 1 = 0 - no filter, pure LZMA
= 1 - x86 filter + LZMA
1 1 lc, lp and pb in encoded form
2 4 dictSize (little endian)
6 8 uncompressed size (little endian)
Lzma86_Encode
-------------
level - compression level: 0 <= level <= 9, the default value for "level" is 5.
dictSize - The dictionary size in bytes. The maximum value is
128 MB = (1 << 27) bytes for 32-bit version
1 GB = (1 << 30) bytes for 64-bit version
The default value is 16 MB = (1 << 24) bytes, for level = 5.
It's recommended to use the dictionary that is larger than 4 KB and
that can be calculated as (1 << N) or (3 << N) sizes.
For better compression ratio dictSize must be >= inSize.
filterMode:
SZ_FILTER_NO - no Filter
SZ_FILTER_YES - x86 Filter
SZ_FILTER_AUTO - it tries both alternatives to select best.
Encoder will use 2 or 3 passes:
2 passes when FILTER_NO provides better compression.
3 passes when FILTER_YES provides better compression.
Lzma86Encode allocates Data with MyAlloc functions.
RAM Requirements for compressing:
RamSize = dictionarySize * 11.5 + 6MB + FilterBlockSize
filterMode FilterBlockSize
SZ_FILTER_NO 0
SZ_FILTER_YES inSize
SZ_FILTER_AUTO inSize
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
enum ESzFilterMode
{
SZ_FILTER_NO,
SZ_FILTER_YES,
SZ_FILTER_AUTO
};
SRes Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode);
/*
Lzma86_GetUnpackSize:
In:
src - input data
srcLen - input data size
Out:
unpackSize - size of uncompressed stream
Return code:
SZ_OK - OK
SZ_ERROR_INPUT_EOF - Error in headers
*/
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize);
/*
Lzma86_Decode:
In:
dest - output data
destLen - output data size
src - input data
srcLen - input data size
Out:
destLen - processed output size
srcLen - processed input size
Return code:
SZ_OK - OK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - unsupported file
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer
*/
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen);
EXTERN_C_END
#endif

54
C/Lzma86Dec.c Normal file
View File

@ -0,0 +1,54 @@
/* Lzma86Dec.c -- LZMA + x86 (BCJ) Filter Decoder
2016-05-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaDec.h"
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize)
{
unsigned i;
if (srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
*unpackSize = 0;
for (i = 0; i < sizeof(UInt64); i++)
*unpackSize += ((UInt64)src[LZMA86_SIZE_OFFSET + i]) << (8 * i);
return SZ_OK;
}
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen)
{
SRes res;
int useFilter;
SizeT inSizePure;
ELzmaStatus status;
if (*srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
useFilter = src[0];
if (useFilter > 1)
{
*destLen = 0;
return SZ_ERROR_UNSUPPORTED;
}
inSizePure = *srcLen - LZMA86_HEADER_SIZE;
res = LzmaDecode(dest, destLen, src + LZMA86_HEADER_SIZE, &inSizePure,
src + 1, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, &g_Alloc);
*srcLen = inSizePure + LZMA86_HEADER_SIZE;
if (res != SZ_OK)
return res;
if (useFilter == 1)
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(dest, *destLen, 0, &x86State, 0);
}
return SZ_OK;
}

106
C/Lzma86Enc.c Normal file
View File

@ -0,0 +1,106 @@
/* Lzma86Enc.c -- LZMA + x86 (BCJ) Filter Encoder
2016-05-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaEnc.h"
#define SZE_OUT_OVERFLOW SZE_DATA_ERROR
int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode)
{
size_t outSize2 = *destLen;
Byte *filteredStream;
Bool useFilter;
int mainResult = SZ_ERROR_OUTPUT_EOF;
CLzmaEncProps props;
LzmaEncProps_Init(&props);
props.level = level;
props.dictSize = dictSize;
*destLen = 0;
if (outSize2 < LZMA86_HEADER_SIZE)
return SZ_ERROR_OUTPUT_EOF;
{
int i;
UInt64 t = srcLen;
for (i = 0; i < 8; i++, t >>= 8)
dest[LZMA86_SIZE_OFFSET + i] = (Byte)t;
}
filteredStream = 0;
useFilter = (filterMode != SZ_FILTER_NO);
if (useFilter)
{
if (srcLen != 0)
{
filteredStream = (Byte *)MyAlloc(srcLen);
if (filteredStream == 0)
return SZ_ERROR_MEM;
memcpy(filteredStream, src, srcLen);
}
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(filteredStream, srcLen, 0, &x86State, 1);
}
}
{
size_t minSize = 0;
Bool bestIsFiltered = False;
/* passes for SZ_FILTER_AUTO:
0 - BCJ + LZMA
1 - LZMA
2 - BCJ + LZMA agaian, if pass 0 (BCJ + LZMA) is better.
*/
int numPasses = (filterMode == SZ_FILTER_AUTO) ? 3 : 1;
int i;
for (i = 0; i < numPasses; i++)
{
size_t outSizeProcessed = outSize2 - LZMA86_HEADER_SIZE;
size_t outPropsSize = 5;
SRes curRes;
Bool curModeIsFiltered = (numPasses > 1 && i == numPasses - 1);
if (curModeIsFiltered && !bestIsFiltered)
break;
if (useFilter && i == 0)
curModeIsFiltered = True;
curRes = LzmaEncode(dest + LZMA86_HEADER_SIZE, &outSizeProcessed,
curModeIsFiltered ? filteredStream : src, srcLen,
&props, dest + 1, &outPropsSize, 0,
NULL, &g_Alloc, &g_Alloc);
if (curRes != SZ_ERROR_OUTPUT_EOF)
{
if (curRes != SZ_OK)
{
mainResult = curRes;
break;
}
if (outSizeProcessed <= minSize || mainResult != SZ_OK)
{
minSize = outSizeProcessed;
bestIsFiltered = curModeIsFiltered;
mainResult = SZ_OK;
}
}
}
dest[0] = (Byte)(bestIsFiltered ? 1 : 0);
*destLen = LZMA86_HEADER_SIZE + minSize;
}
if (useFilter)
MyFree(filteredStream);
return mainResult;
}

1100
C/LzmaDec.c Normal file

File diff suppressed because it is too large Load Diff

227
C/LzmaDec.h Normal file
View File

@ -0,0 +1,227 @@
/* LzmaDec.h -- LZMA Decoder
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA_DEC_H
#define __LZMA_DEC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* #define _LZMA_PROB32 */
/* _LZMA_PROB32 can increase the speed on some CPUs,
but memory usage for CLzmaDec::probs will be doubled in that case */
#ifdef _LZMA_PROB32
#define CLzmaProb UInt32
#else
#define CLzmaProb UInt16
#endif
/* ---------- LZMA Properties ---------- */
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaProps
{
unsigned lc, lp, pb;
UInt32 dicSize;
} CLzmaProps;
/* LzmaProps_Decode - decodes properties
Returns:
SZ_OK
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
/* ---------- LZMA Decoder state ---------- */
/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
#define LZMA_REQUIRED_INPUT_MAX 20
typedef struct
{
CLzmaProps prop;
CLzmaProb *probs;
Byte *dic;
const Byte *buf;
UInt32 range, code;
SizeT dicPos;
SizeT dicBufSize;
UInt32 processedPos;
UInt32 checkDicSize;
unsigned state;
UInt32 reps[4];
unsigned remainLen;
int needFlush;
int needInitState;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec;
#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
void LzmaDec_Init(CLzmaDec *p);
/* There are two types of LZMA streams:
0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum
{
LZMA_FINISH_ANY, /* finish at any point */
LZMA_FINISH_END /* block must be finished at the end */
} ELzmaFinishMode;
/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
You must use LZMA_FINISH_END, when you know that current output buffer
covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
and output value of destLen will be less than output buffer size limit.
You can check status result also.
You can use multiple checks to test data integrity after full decompression:
1) Check Result and "status" variable.
2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
You must use correct finish mode in that case. */
typedef enum
{
LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
} ELzmaStatus;
/* ELzmaStatus is used only as output value for function call */
/* ---------- Interfaces ---------- */
/* There are 3 levels of interfaces:
1) Dictionary Interface
2) Buffer Interface
3) One Call Interface
You can select any of these interfaces, but don't mix functions from different
groups for same object. */
/* There are two variants to allocate state for Dictionary Interface:
1) LzmaDec_Allocate / LzmaDec_Free
2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
You can use variant 2, if you set dictionary buffer manually.
For Buffer Interface you must always use variant 1.
LzmaDec_Allocate* can return:
SZ_OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
/* ---------- Dictionary Interface ---------- */
/* You can use it, if you want to eliminate the overhead for data copying from
dictionary to some other external buffer.
You must work with CLzmaDec variables directly in this interface.
STEPS:
LzmaDec_Constr()
LzmaDec_Allocate()
for (each new stream)
{
LzmaDec_Init()
while (it needs more decompression)
{
LzmaDec_DecodeToDic()
use data from CLzmaDec::dic and update CLzmaDec::dicPos
}
}
LzmaDec_Free()
*/
/* LzmaDec_DecodeToDic
The decoding to internal dictionary buffer (CLzmaDec::dic).
You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
finishMode:
It has meaning only if the decoding reaches output limit (dicLimit).
LZMA_FINISH_ANY - Decode just dicLimit bytes.
LZMA_FINISH_END - Stream must be finished after dicLimit.
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
*/
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- Buffer Interface ---------- */
/* It's zlib-like interface.
See LzmaDec_DecodeToDic description for information about STEPS and return results,
but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
to work with CLzmaDec variables manually.
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
*/
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
/* LzmaDecode
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAlloc *alloc);
EXTERN_C_END
#endif

2351
C/LzmaEnc.c Normal file

File diff suppressed because it is too large Load Diff

78
C/LzmaEnc.h Normal file
View File

@ -0,0 +1,78 @@
/* LzmaEnc.h -- LZMA Encoder
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA_ENC_H
#define __LZMA_ENC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaEncProps
{
int level; /* 0 <= level <= 9 */
UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
(1 << 12) <= dictSize <= (1 << 30) for 64-bit version
default = (1 << 24) */
UInt64 reduceSize; /* estimated size of data that will be compressed. default = 0xFFFFFFFF.
Encoder uses this value to reduce dictionary size */
int lc; /* 0 <= lc <= 8, default = 3 */
int lp; /* 0 <= lp <= 4, default = 0 */
int pb; /* 0 <= pb <= 4, default = 2 */
int algo; /* 0 - fast, 1 - normal, default = 1 */
int fb; /* 5 <= fb <= 273, default = 32 */
int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
int numHashBytes; /* 2, 3 or 4, default = 4 */
UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
int numThreads; /* 1 or 2, default = 2 */
} CLzmaEncProps;
void LzmaEncProps_Init(CLzmaEncProps *p);
void LzmaEncProps_Normalize(CLzmaEncProps *p);
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
/* ---------- CLzmaEncHandle Interface ---------- */
/* LzmaEnc_* functions can return the following exit codes:
Returns:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - Write callback error.
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
typedef void * CLzmaEncHandle;
CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
/* ---------- One Call Interface ---------- */
/* LzmaEncode
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
EXTERN_C_END
#endif

327
C/MtCoder.c Normal file
View File

@ -0,0 +1,327 @@
/* MtCoder.c -- Multi-thread Coder
2015-10-13 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "MtCoder.h"
void LoopThread_Construct(CLoopThread *p)
{
Thread_Construct(&p->thread);
Event_Construct(&p->startEvent);
Event_Construct(&p->finishedEvent);
}
void LoopThread_Close(CLoopThread *p)
{
Thread_Close(&p->thread);
Event_Close(&p->startEvent);
Event_Close(&p->finishedEvent);
}
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE LoopThreadFunc(void *pp)
{
CLoopThread *p = (CLoopThread *)pp;
for (;;)
{
if (Event_Wait(&p->startEvent) != 0)
return SZ_ERROR_THREAD;
if (p->stop)
return 0;
p->res = p->func(p->param);
if (Event_Set(&p->finishedEvent) != 0)
return SZ_ERROR_THREAD;
}
}
WRes LoopThread_Create(CLoopThread *p)
{
p->stop = 0;
RINOK(AutoResetEvent_CreateNotSignaled(&p->startEvent));
RINOK(AutoResetEvent_CreateNotSignaled(&p->finishedEvent));
return Thread_Create(&p->thread, LoopThreadFunc, p);
}
WRes LoopThread_StopAndWait(CLoopThread *p)
{
p->stop = 1;
if (Event_Set(&p->startEvent) != 0)
return SZ_ERROR_THREAD;
return Thread_Wait(&p->thread);
}
WRes LoopThread_StartSubThread(CLoopThread *p) { return Event_Set(&p->startEvent); }
WRes LoopThread_WaitSubThread(CLoopThread *p) { return Event_Wait(&p->finishedEvent); }
static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
{
return (p && p->Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
static void MtProgress_Init(CMtProgress *p, ICompressProgress *progress)
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->inSizes[i] = p->outSizes[i] = 0;
p->totalInSize = p->totalOutSize = 0;
p->progress = progress;
p->res = SZ_OK;
}
static void MtProgress_Reinit(CMtProgress *p, unsigned index)
{
p->inSizes[index] = 0;
p->outSizes[index] = 0;
}
#define UPDATE_PROGRESS(size, prev, total) \
if (size != (UInt64)(Int64)-1) { total += size - prev; prev = size; }
SRes MtProgress_Set(CMtProgress *p, unsigned index, UInt64 inSize, UInt64 outSize)
{
SRes res;
CriticalSection_Enter(&p->cs);
UPDATE_PROGRESS(inSize, p->inSizes[index], p->totalInSize)
UPDATE_PROGRESS(outSize, p->outSizes[index], p->totalOutSize)
if (p->res == SZ_OK)
p->res = Progress(p->progress, p->totalInSize, p->totalOutSize);
res = p->res;
CriticalSection_Leave(&p->cs);
return res;
}
static void MtProgress_SetError(CMtProgress *p, SRes res)
{
CriticalSection_Enter(&p->cs);
if (p->res == SZ_OK)
p->res = res;
CriticalSection_Leave(&p->cs);
}
static void MtCoder_SetError(CMtCoder* p, SRes res)
{
CriticalSection_Enter(&p->cs);
if (p->res == SZ_OK)
p->res = res;
CriticalSection_Leave(&p->cs);
}
/* ---------- MtThread ---------- */
void CMtThread_Construct(CMtThread *p, CMtCoder *mtCoder)
{
p->mtCoder = mtCoder;
p->outBuf = 0;
p->inBuf = 0;
Event_Construct(&p->canRead);
Event_Construct(&p->canWrite);
LoopThread_Construct(&p->thread);
}
#define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
static void CMtThread_CloseEvents(CMtThread *p)
{
Event_Close(&p->canRead);
Event_Close(&p->canWrite);
}
static void CMtThread_Destruct(CMtThread *p)
{
CMtThread_CloseEvents(p);
if (Thread_WasCreated(&p->thread.thread))
{
LoopThread_StopAndWait(&p->thread);
LoopThread_Close(&p->thread);
}
if (p->mtCoder->alloc)
IAlloc_Free(p->mtCoder->alloc, p->outBuf);
p->outBuf = 0;
if (p->mtCoder->alloc)
IAlloc_Free(p->mtCoder->alloc, p->inBuf);
p->inBuf = 0;
}
#define MY_BUF_ALLOC(buf, size, newSize) \
if (buf == 0 || size != newSize) \
{ IAlloc_Free(p->mtCoder->alloc, buf); \
size = newSize; buf = (Byte *)IAlloc_Alloc(p->mtCoder->alloc, size); \
if (buf == 0) return SZ_ERROR_MEM; }
static SRes CMtThread_Prepare(CMtThread *p)
{
MY_BUF_ALLOC(p->inBuf, p->inBufSize, p->mtCoder->blockSize)
MY_BUF_ALLOC(p->outBuf, p->outBufSize, p->mtCoder->destBlockSize)
p->stopReading = False;
p->stopWriting = False;
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canRead));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canWrite));
return SZ_OK;
}
static SRes FullRead(ISeqInStream *stream, Byte *data, size_t *processedSize)
{
size_t size = *processedSize;
*processedSize = 0;
while (size != 0)
{
size_t curSize = size;
SRes res = stream->Read(stream, data, &curSize);
*processedSize += curSize;
data += curSize;
size -= curSize;
RINOK(res);
if (curSize == 0)
return SZ_OK;
}
return SZ_OK;
}
#define GET_NEXT_THREAD(p) &p->mtCoder->threads[p->index == p->mtCoder->numThreads - 1 ? 0 : p->index + 1]
static SRes MtThread_Process(CMtThread *p, Bool *stop)
{
CMtThread *next;
*stop = True;
if (Event_Wait(&p->canRead) != 0)
return SZ_ERROR_THREAD;
next = GET_NEXT_THREAD(p);
if (p->stopReading)
{
next->stopReading = True;
return Event_Set(&next->canRead) == 0 ? SZ_OK : SZ_ERROR_THREAD;
}
{
size_t size = p->mtCoder->blockSize;
size_t destSize = p->outBufSize;
RINOK(FullRead(p->mtCoder->inStream, p->inBuf, &size));
next->stopReading = *stop = (size != p->mtCoder->blockSize);
if (Event_Set(&next->canRead) != 0)
return SZ_ERROR_THREAD;
RINOK(p->mtCoder->mtCallback->Code(p->mtCoder->mtCallback, p->index,
p->outBuf, &destSize, p->inBuf, size, *stop));
MtProgress_Reinit(&p->mtCoder->mtProgress, p->index);
if (Event_Wait(&p->canWrite) != 0)
return SZ_ERROR_THREAD;
if (p->stopWriting)
return SZ_ERROR_FAIL;
if (p->mtCoder->outStream->Write(p->mtCoder->outStream, p->outBuf, destSize) != destSize)
return SZ_ERROR_WRITE;
return Event_Set(&next->canWrite) == 0 ? SZ_OK : SZ_ERROR_THREAD;
}
}
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE ThreadFunc(void *pp)
{
CMtThread *p = (CMtThread *)pp;
for (;;)
{
Bool stop;
CMtThread *next = GET_NEXT_THREAD(p);
SRes res = MtThread_Process(p, &stop);
if (res != SZ_OK)
{
MtCoder_SetError(p->mtCoder, res);
MtProgress_SetError(&p->mtCoder->mtProgress, res);
next->stopReading = True;
next->stopWriting = True;
Event_Set(&next->canRead);
Event_Set(&next->canWrite);
return res;
}
if (stop)
return 0;
}
}
void MtCoder_Construct(CMtCoder* p)
{
unsigned i;
p->alloc = 0;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
{
CMtThread *t = &p->threads[i];
t->index = i;
CMtThread_Construct(t, p);
}
CriticalSection_Init(&p->cs);
CriticalSection_Init(&p->mtProgress.cs);
}
void MtCoder_Destruct(CMtCoder* p)
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
CMtThread_Destruct(&p->threads[i]);
CriticalSection_Delete(&p->cs);
CriticalSection_Delete(&p->mtProgress.cs);
}
SRes MtCoder_Code(CMtCoder *p)
{
unsigned i, numThreads = p->numThreads;
SRes res = SZ_OK;
p->res = SZ_OK;
MtProgress_Init(&p->mtProgress, p->progress);
for (i = 0; i < numThreads; i++)
{
RINOK(CMtThread_Prepare(&p->threads[i]));
}
for (i = 0; i < numThreads; i++)
{
CMtThread *t = &p->threads[i];
CLoopThread *lt = &t->thread;
if (!Thread_WasCreated(&lt->thread))
{
lt->func = ThreadFunc;
lt->param = t;
if (LoopThread_Create(lt) != SZ_OK)
{
res = SZ_ERROR_THREAD;
break;
}
}
}
if (res == SZ_OK)
{
unsigned j;
for (i = 0; i < numThreads; i++)
{
CMtThread *t = &p->threads[i];
if (LoopThread_StartSubThread(&t->thread) != SZ_OK)
{
res = SZ_ERROR_THREAD;
p->threads[0].stopReading = True;
break;
}
}
Event_Set(&p->threads[0].canWrite);
Event_Set(&p->threads[0].canRead);
for (j = 0; j < i; j++)
LoopThread_WaitSubThread(&p->threads[j].thread);
}
for (i = 0; i < numThreads; i++)
CMtThread_CloseEvents(&p->threads[i]);
return (res == SZ_OK) ? p->res : res;
}

98
C/MtCoder.h Normal file
View File

@ -0,0 +1,98 @@
/* MtCoder.h -- Multi-thread Coder
2009-11-19 : Igor Pavlov : Public domain */
#ifndef __MT_CODER_H
#define __MT_CODER_H
#include "Threads.h"
EXTERN_C_BEGIN
typedef struct
{
CThread thread;
CAutoResetEvent startEvent;
CAutoResetEvent finishedEvent;
int stop;
THREAD_FUNC_TYPE func;
LPVOID param;
THREAD_FUNC_RET_TYPE res;
} CLoopThread;
void LoopThread_Construct(CLoopThread *p);
void LoopThread_Close(CLoopThread *p);
WRes LoopThread_Create(CLoopThread *p);
WRes LoopThread_StopAndWait(CLoopThread *p);
WRes LoopThread_StartSubThread(CLoopThread *p);
WRes LoopThread_WaitSubThread(CLoopThread *p);
#ifndef _7ZIP_ST
#define NUM_MT_CODER_THREADS_MAX 32
#else
#define NUM_MT_CODER_THREADS_MAX 1
#endif
typedef struct
{
UInt64 totalInSize;
UInt64 totalOutSize;
ICompressProgress *progress;
SRes res;
CCriticalSection cs;
UInt64 inSizes[NUM_MT_CODER_THREADS_MAX];
UInt64 outSizes[NUM_MT_CODER_THREADS_MAX];
} CMtProgress;
SRes MtProgress_Set(CMtProgress *p, unsigned index, UInt64 inSize, UInt64 outSize);
struct _CMtCoder;
typedef struct
{
struct _CMtCoder *mtCoder;
Byte *outBuf;
size_t outBufSize;
Byte *inBuf;
size_t inBufSize;
unsigned index;
CLoopThread thread;
Bool stopReading;
Bool stopWriting;
CAutoResetEvent canRead;
CAutoResetEvent canWrite;
} CMtThread;
typedef struct
{
SRes (*Code)(void *p, unsigned index, Byte *dest, size_t *destSize,
const Byte *src, size_t srcSize, int finished);
} IMtCoderCallback;
typedef struct _CMtCoder
{
size_t blockSize;
size_t destBlockSize;
unsigned numThreads;
ISeqInStream *inStream;
ISeqOutStream *outStream;
ICompressProgress *progress;
ISzAlloc *alloc;
IMtCoderCallback *mtCallback;
CCriticalSection cs;
SRes res;
CMtProgress mtProgress;
CMtThread threads[NUM_MT_CODER_THREADS_MAX];
} CMtCoder;
void MtCoder_Construct(CMtCoder* p);
void MtCoder_Destruct(CMtCoder* p);
SRes MtCoder_Code(CMtCoder *p);
EXTERN_C_END
#endif

85
C/Ppmd.h Normal file
View File

@ -0,0 +1,85 @@
/* Ppmd.h -- PPMD codec common code
2016-05-16 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#include "CpuArch.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob) - PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
#pragma pack(push, 1)
/* Most compilers works OK here even without #pragma pack(push, 1), but some GCC compilers need it. */
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct
{
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ <<= 1; (p)->Count = (Byte)(3 << (p)->Shift++); }
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
} CPpmd_State;
#pragma pack(pop)
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ unsigned z; for (z = 0; z < 256 / sizeof(p[0]); z += 8) { \
p[z+7] = p[z+6] = p[z+5] = p[z+4] = p[z+3] = p[z+2] = p[z+1] = p[z+0] = ~(size_t)0; }}
EXTERN_C_END
#endif

710
C/Ppmd7.c Normal file
View File

@ -0,0 +1,710 @@
/* Ppmd7.c -- PPMdH codec
2016-05-21 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Ppmd7.h"
const Byte PPMD7_kExpEscape[16] = { 25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
static const UInt16 kInitBinEsc[] = { 0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051};
#define MAX_FREQ 124
#define UNIT_SIZE 12
#define U2B(nu) ((UInt32)(nu) * UNIT_SIZE)
#define U2I(nu) (p->Units2Indx[(nu) - 1])
#define I2U(indx) (p->Indx2Units[indx])
#ifdef PPMD_32BIT
#define REF(ptr) (ptr)
#else
#define REF(ptr) ((UInt32)((Byte *)(ptr) - (p)->Base))
#endif
#define STATS_REF(ptr) ((CPpmd_State_Ref)REF(ptr))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define STATS(ctx) Ppmd7_GetStats(p, ctx)
#define ONE_STATE(ctx) Ppmd7Context_OneState(ctx)
#define SUFFIX(ctx) CTX((ctx)->Suffix)
typedef CPpmd7_Context * CTX_PTR;
struct CPpmd7_Node_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Node_ *
#else
UInt32
#endif
CPpmd7_Node_Ref;
typedef struct CPpmd7_Node_
{
UInt16 Stamp; /* must be at offset 0 as CPpmd7_Context::NumStats. Stamp=0 means free */
UInt16 NU;
CPpmd7_Node_Ref Next; /* must be at offset >= 4 */
CPpmd7_Node_Ref Prev;
} CPpmd7_Node;
#ifdef PPMD_32BIT
#define NODE(ptr) (ptr)
#else
#define NODE(offs) ((CPpmd7_Node *)(p->Base + (offs)))
#endif
void Ppmd7_Construct(CPpmd7 *p)
{
unsigned i, k, m;
p->Base = 0;
for (i = 0, k = 0; i < PPMD_NUM_INDEXES; i++)
{
unsigned step = (i >= 12 ? 4 : (i >> 2) + 1);
do { p->Units2Indx[k++] = (Byte)i; } while (--step);
p->Indx2Units[i] = (Byte)k;
}
p->NS2BSIndx[0] = (0 << 1);
p->NS2BSIndx[1] = (1 << 1);
memset(p->NS2BSIndx + 2, (2 << 1), 9);
memset(p->NS2BSIndx + 11, (3 << 1), 256 - 11);
for (i = 0; i < 3; i++)
p->NS2Indx[i] = (Byte)i;
for (m = i, k = 1; i < 256; i++)
{
p->NS2Indx[i] = (Byte)m;
if (--k == 0)
k = (++m) - 2;
}
memset(p->HB2Flag, 0, 0x40);
memset(p->HB2Flag + 0x40, 8, 0x100 - 0x40);
}
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->Base);
p->Size = 0;
p->Base = 0;
}
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc)
{
if (p->Base == 0 || p->Size != size)
{
Ppmd7_Free(p, alloc);
p->AlignOffset =
#ifdef PPMD_32BIT
(4 - size) & 3;
#else
4 - (size & 3);
#endif
if ((p->Base = (Byte *)alloc->Alloc(alloc, p->AlignOffset + size
#ifndef PPMD_32BIT
+ UNIT_SIZE
#endif
)) == 0)
return False;
p->Size = size;
}
return True;
}
static void InsertNode(CPpmd7 *p, void *node, unsigned indx)
{
*((CPpmd_Void_Ref *)node) = p->FreeList[indx];
p->FreeList[indx] = REF(node);
}
static void *RemoveNode(CPpmd7 *p, unsigned indx)
{
CPpmd_Void_Ref *node = (CPpmd_Void_Ref *)Ppmd7_GetPtr(p, p->FreeList[indx]);
p->FreeList[indx] = *node;
return node;
}
static void SplitBlock(CPpmd7 *p, void *ptr, unsigned oldIndx, unsigned newIndx)
{
unsigned i, nu = I2U(oldIndx) - I2U(newIndx);
ptr = (Byte *)ptr + U2B(I2U(newIndx));
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, ((Byte *)ptr) + U2B(k), nu - k - 1);
}
InsertNode(p, ptr, i);
}
static void GlueFreeBlocks(CPpmd7 *p)
{
#ifdef PPMD_32BIT
CPpmd7_Node headItem;
CPpmd7_Node_Ref head = &headItem;
#else
CPpmd7_Node_Ref head = p->AlignOffset + p->Size;
#endif
CPpmd7_Node_Ref n = head;
unsigned i;
p->GlueCount = 255;
/* create doubly-linked list of free blocks */
for (i = 0; i < PPMD_NUM_INDEXES; i++)
{
UInt16 nu = I2U(i);
CPpmd7_Node_Ref next = (CPpmd7_Node_Ref)p->FreeList[i];
p->FreeList[i] = 0;
while (next != 0)
{
CPpmd7_Node *node = NODE(next);
node->Next = n;
n = NODE(n)->Prev = next;
next = *(const CPpmd7_Node_Ref *)node;
node->Stamp = 0;
node->NU = (UInt16)nu;
}
}
NODE(head)->Stamp = 1;
NODE(head)->Next = n;
NODE(n)->Prev = head;
if (p->LoUnit != p->HiUnit)
((CPpmd7_Node *)p->LoUnit)->Stamp = 1;
/* Glue free blocks */
while (n != head)
{
CPpmd7_Node *node = NODE(n);
UInt32 nu = (UInt32)node->NU;
for (;;)
{
CPpmd7_Node *node2 = NODE(n) + nu;
nu += node2->NU;
if (node2->Stamp != 0 || nu >= 0x10000)
break;
NODE(node2->Prev)->Next = node2->Next;
NODE(node2->Next)->Prev = node2->Prev;
node->NU = (UInt16)nu;
}
n = node->Next;
}
/* Fill lists of free blocks */
for (n = NODE(head)->Next; n != head;)
{
CPpmd7_Node *node = NODE(n);
unsigned nu;
CPpmd7_Node_Ref next = node->Next;
for (nu = node->NU; nu > 128; nu -= 128, node += 128)
InsertNode(p, node, PPMD_NUM_INDEXES - 1);
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, node + k, nu - k - 1);
}
InsertNode(p, node, i);
n = next;
}
}
static void *AllocUnitsRare(CPpmd7 *p, unsigned indx)
{
unsigned i;
void *retVal;
if (p->GlueCount == 0)
{
GlueFreeBlocks(p);
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
}
i = indx;
do
{
if (++i == PPMD_NUM_INDEXES)
{
UInt32 numBytes = U2B(I2U(indx));
p->GlueCount--;
return ((UInt32)(p->UnitsStart - p->Text) > numBytes) ? (p->UnitsStart -= numBytes) : (NULL);
}
}
while (p->FreeList[i] == 0);
retVal = RemoveNode(p, i);
SplitBlock(p, retVal, i, indx);
return retVal;
}
static void *AllocUnits(CPpmd7 *p, unsigned indx)
{
UInt32 numBytes;
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
numBytes = U2B(I2U(indx));
if (numBytes <= (UInt32)(p->HiUnit - p->LoUnit))
{
void *retVal = p->LoUnit;
p->LoUnit += numBytes;
return retVal;
}
return AllocUnitsRare(p, indx);
}
#define MyMem12Cpy(dest, src, num) \
{ UInt32 *d = (UInt32 *)dest; const UInt32 *s = (const UInt32 *)src; UInt32 n = num; \
do { d[0] = s[0]; d[1] = s[1]; d[2] = s[2]; s += 3; d += 3; } while (--n); }
static void *ShrinkUnits(CPpmd7 *p, void *oldPtr, unsigned oldNU, unsigned newNU)
{
unsigned i0 = U2I(oldNU);
unsigned i1 = U2I(newNU);
if (i0 == i1)
return oldPtr;
if (p->FreeList[i1] != 0)
{
void *ptr = RemoveNode(p, i1);
MyMem12Cpy(ptr, oldPtr, newNU);
InsertNode(p, oldPtr, i0);
return ptr;
}
SplitBlock(p, oldPtr, i0, i1);
return oldPtr;
}
#define SUCCESSOR(p) ((CPpmd_Void_Ref)((p)->SuccessorLow | ((UInt32)(p)->SuccessorHigh << 16)))
static void SetSuccessor(CPpmd_State *p, CPpmd_Void_Ref v)
{
(p)->SuccessorLow = (UInt16)((UInt32)(v) & 0xFFFF);
(p)->SuccessorHigh = (UInt16)(((UInt32)(v) >> 16) & 0xFFFF);
}
static void RestartModel(CPpmd7 *p)
{
unsigned i, k, m;
memset(p->FreeList, 0, sizeof(p->FreeList));
p->Text = p->Base + p->AlignOffset;
p->HiUnit = p->Text + p->Size;
p->LoUnit = p->UnitsStart = p->HiUnit - p->Size / 8 / UNIT_SIZE * 7 * UNIT_SIZE;
p->GlueCount = 0;
p->OrderFall = p->MaxOrder;
p->RunLength = p->InitRL = -(Int32)((p->MaxOrder < 12) ? p->MaxOrder : 12) - 1;
p->PrevSuccess = 0;
p->MinContext = p->MaxContext = (CTX_PTR)(p->HiUnit -= UNIT_SIZE); /* AllocContext(p); */
p->MinContext->Suffix = 0;
p->MinContext->NumStats = 256;
p->MinContext->SummFreq = 256 + 1;
p->FoundState = (CPpmd_State *)p->LoUnit; /* AllocUnits(p, PPMD_NUM_INDEXES - 1); */
p->LoUnit += U2B(256 / 2);
p->MinContext->Stats = REF(p->FoundState);
for (i = 0; i < 256; i++)
{
CPpmd_State *s = &p->FoundState[i];
s->Symbol = (Byte)i;
s->Freq = 1;
SetSuccessor(s, 0);
}
for (i = 0; i < 128; i++)
for (k = 0; k < 8; k++)
{
UInt16 *dest = p->BinSumm[i] + k;
UInt16 val = (UInt16)(PPMD_BIN_SCALE - kInitBinEsc[k] / (i + 2));
for (m = 0; m < 64; m += 8)
dest[m] = val;
}
for (i = 0; i < 25; i++)
for (k = 0; k < 16; k++)
{
CPpmd_See *s = &p->See[i][k];
s->Summ = (UInt16)((5 * i + 10) << (s->Shift = PPMD_PERIOD_BITS - 4));
s->Count = 4;
}
}
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder)
{
p->MaxOrder = maxOrder;
RestartModel(p);
p->DummySee.Shift = PPMD_PERIOD_BITS;
p->DummySee.Summ = 0; /* unused */
p->DummySee.Count = 64; /* unused */
}
static CTX_PTR CreateSuccessors(CPpmd7 *p, Bool skip)
{
CPpmd_State upState;
CTX_PTR c = p->MinContext;
CPpmd_Byte_Ref upBranch = (CPpmd_Byte_Ref)SUCCESSOR(p->FoundState);
CPpmd_State *ps[PPMD7_MAX_ORDER];
unsigned numPs = 0;
if (!skip)
ps[numPs++] = p->FoundState;
while (c->Suffix)
{
CPpmd_Void_Ref successor;
CPpmd_State *s;
c = SUFFIX(c);
if (c->NumStats != 1)
{
for (s = STATS(c); s->Symbol != p->FoundState->Symbol; s++);
}
else
s = ONE_STATE(c);
successor = SUCCESSOR(s);
if (successor != upBranch)
{
c = CTX(successor);
if (numPs == 0)
return c;
break;
}
ps[numPs++] = s;
}
upState.Symbol = *(const Byte *)Ppmd7_GetPtr(p, upBranch);
SetSuccessor(&upState, upBranch + 1);
if (c->NumStats == 1)
upState.Freq = ONE_STATE(c)->Freq;
else
{
UInt32 cf, s0;
CPpmd_State *s;
for (s = STATS(c); s->Symbol != upState.Symbol; s++);
cf = s->Freq - 1;
s0 = c->SummFreq - c->NumStats - cf;
upState.Freq = (Byte)(1 + ((2 * cf <= s0) ? (5 * cf > s0) : ((2 * cf + 3 * s0 - 1) / (2 * s0))));
}
do
{
/* Create Child */
CTX_PTR c1; /* = AllocContext(p); */
if (p->HiUnit != p->LoUnit)
c1 = (CTX_PTR)(p->HiUnit -= UNIT_SIZE);
else if (p->FreeList[0] != 0)
c1 = (CTX_PTR)RemoveNode(p, 0);
else
{
c1 = (CTX_PTR)AllocUnitsRare(p, 0);
if (!c1)
return NULL;
}
c1->NumStats = 1;
*ONE_STATE(c1) = upState;
c1->Suffix = REF(c);
SetSuccessor(ps[--numPs], REF(c1));
c = c1;
}
while (numPs != 0);
return c;
}
static void SwapStates(CPpmd_State *t1, CPpmd_State *t2)
{
CPpmd_State tmp = *t1;
*t1 = *t2;
*t2 = tmp;
}
static void UpdateModel(CPpmd7 *p)
{
CPpmd_Void_Ref successor, fSuccessor = SUCCESSOR(p->FoundState);
CTX_PTR c;
unsigned s0, ns;
if (p->FoundState->Freq < MAX_FREQ / 4 && p->MinContext->Suffix != 0)
{
c = SUFFIX(p->MinContext);
if (c->NumStats == 1)
{
CPpmd_State *s = ONE_STATE(c);
if (s->Freq < 32)
s->Freq++;
}
else
{
CPpmd_State *s = STATS(c);
if (s->Symbol != p->FoundState->Symbol)
{
do { s++; } while (s->Symbol != p->FoundState->Symbol);
if (s[0].Freq >= s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
s--;
}
}
if (s->Freq < MAX_FREQ - 9)
{
s->Freq += 2;
c->SummFreq += 2;
}
}
}
if (p->OrderFall == 0)
{
p->MinContext = p->MaxContext = CreateSuccessors(p, True);
if (p->MinContext == 0)
{
RestartModel(p);
return;
}
SetSuccessor(p->FoundState, REF(p->MinContext));
return;
}
*p->Text++ = p->FoundState->Symbol;
successor = REF(p->Text);
if (p->Text >= p->UnitsStart)
{
RestartModel(p);
return;
}
if (fSuccessor)
{
if (fSuccessor <= successor)
{
CTX_PTR cs = CreateSuccessors(p, False);
if (cs == NULL)
{
RestartModel(p);
return;
}
fSuccessor = REF(cs);
}
if (--p->OrderFall == 0)
{
successor = fSuccessor;
p->Text -= (p->MaxContext != p->MinContext);
}
}
else
{
SetSuccessor(p->FoundState, successor);
fSuccessor = REF(p->MinContext);
}
s0 = p->MinContext->SummFreq - (ns = p->MinContext->NumStats) - (p->FoundState->Freq - 1);
for (c = p->MaxContext; c != p->MinContext; c = SUFFIX(c))
{
unsigned ns1;
UInt32 cf, sf;
if ((ns1 = c->NumStats) != 1)
{
if ((ns1 & 1) == 0)
{
/* Expand for one UNIT */
unsigned oldNU = ns1 >> 1;
unsigned i = U2I(oldNU);
if (i != U2I(oldNU + 1))
{
void *ptr = AllocUnits(p, i + 1);
void *oldPtr;
if (!ptr)
{
RestartModel(p);
return;
}
oldPtr = STATS(c);
MyMem12Cpy(ptr, oldPtr, oldNU);
InsertNode(p, oldPtr, i);
c->Stats = STATS_REF(ptr);
}
}
c->SummFreq = (UInt16)(c->SummFreq + (2 * ns1 < ns) + 2 * ((4 * ns1 <= ns) & (c->SummFreq <= 8 * ns1)));
}
else
{
CPpmd_State *s = (CPpmd_State*)AllocUnits(p, 0);
if (!s)
{
RestartModel(p);
return;
}
*s = *ONE_STATE(c);
c->Stats = REF(s);
if (s->Freq < MAX_FREQ / 4 - 1)
s->Freq <<= 1;
else
s->Freq = MAX_FREQ - 4;
c->SummFreq = (UInt16)(s->Freq + p->InitEsc + (ns > 3));
}
cf = 2 * (UInt32)p->FoundState->Freq * (c->SummFreq + 6);
sf = (UInt32)s0 + c->SummFreq;
if (cf < 6 * sf)
{
cf = 1 + (cf > sf) + (cf >= 4 * sf);
c->SummFreq += 3;
}
else
{
cf = 4 + (cf >= 9 * sf) + (cf >= 12 * sf) + (cf >= 15 * sf);
c->SummFreq = (UInt16)(c->SummFreq + cf);
}
{
CPpmd_State *s = STATS(c) + ns1;
SetSuccessor(s, successor);
s->Symbol = p->FoundState->Symbol;
s->Freq = (Byte)cf;
c->NumStats = (UInt16)(ns1 + 1);
}
}
p->MaxContext = p->MinContext = CTX(fSuccessor);
}
static void Rescale(CPpmd7 *p)
{
unsigned i, adder, sumFreq, escFreq;
CPpmd_State *stats = STATS(p->MinContext);
CPpmd_State *s = p->FoundState;
{
CPpmd_State tmp = *s;
for (; s != stats; s--)
s[0] = s[-1];
*s = tmp;
}
escFreq = p->MinContext->SummFreq - s->Freq;
s->Freq += 4;
adder = (p->OrderFall != 0);
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq = s->Freq;
i = p->MinContext->NumStats - 1;
do
{
escFreq -= (++s)->Freq;
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq += s->Freq;
if (s[0].Freq > s[-1].Freq)
{
CPpmd_State *s1 = s;
CPpmd_State tmp = *s1;
do
s1[0] = s1[-1];
while (--s1 != stats && tmp.Freq > s1[-1].Freq);
*s1 = tmp;
}
}
while (--i);
if (s->Freq == 0)
{
unsigned numStats = p->MinContext->NumStats;
unsigned n0, n1;
do { i++; } while ((--s)->Freq == 0);
escFreq += i;
p->MinContext->NumStats = (UInt16)(p->MinContext->NumStats - i);
if (p->MinContext->NumStats == 1)
{
CPpmd_State tmp = *stats;
do
{
tmp.Freq = (Byte)(tmp.Freq - (tmp.Freq >> 1));
escFreq >>= 1;
}
while (escFreq > 1);
InsertNode(p, stats, U2I(((numStats + 1) >> 1)));
*(p->FoundState = ONE_STATE(p->MinContext)) = tmp;
return;
}
n0 = (numStats + 1) >> 1;
n1 = (p->MinContext->NumStats + 1) >> 1;
if (n0 != n1)
p->MinContext->Stats = STATS_REF(ShrinkUnits(p, stats, n0, n1));
}
p->MinContext->SummFreq = (UInt16)(sumFreq + escFreq - (escFreq >> 1));
p->FoundState = STATS(p->MinContext);
}
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *escFreq)
{
CPpmd_See *see;
unsigned nonMasked = p->MinContext->NumStats - numMasked;
if (p->MinContext->NumStats != 256)
{
see = p->See[(unsigned)p->NS2Indx[nonMasked - 1]] +
(nonMasked < (unsigned)SUFFIX(p->MinContext)->NumStats - p->MinContext->NumStats) +
2 * (unsigned)(p->MinContext->SummFreq < 11 * p->MinContext->NumStats) +
4 * (unsigned)(numMasked > nonMasked) +
p->HiBitsFlag;
{
unsigned r = (see->Summ >> see->Shift);
see->Summ = (UInt16)(see->Summ - r);
*escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
*escFreq = 1;
}
return see;
}
static void NextContext(CPpmd7 *p)
{
CTX_PTR c = CTX(SUCCESSOR(p->FoundState));
if (p->OrderFall == 0 && (Byte *)c > p->Text)
p->MinContext = p->MaxContext = c;
else
UpdateModel(p);
}
void Ppmd7_Update1(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
s->Freq += 4;
p->MinContext->SummFreq += 4;
if (s[0].Freq > s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
p->FoundState = --s;
if (s->Freq > MAX_FREQ)
Rescale(p);
}
NextContext(p);
}
void Ppmd7_Update1_0(CPpmd7 *p)
{
p->PrevSuccess = (2 * p->FoundState->Freq > p->MinContext->SummFreq);
p->RunLength += p->PrevSuccess;
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
NextContext(p);
}
void Ppmd7_UpdateBin(CPpmd7 *p)
{
p->FoundState->Freq = (Byte)(p->FoundState->Freq + (p->FoundState->Freq < 128 ? 1: 0));
p->PrevSuccess = 1;
p->RunLength++;
NextContext(p);
}
void Ppmd7_Update2(CPpmd7 *p)
{
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
p->RunLength = p->InitRL;
UpdateModel(p);
}

140
C/Ppmd7.h Normal file
View File

@ -0,0 +1,140 @@
/* Ppmd7.h -- PPMdH compression codec
2016-05-21 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
typedef struct
{
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[(unsigned)Ppmd7Context_OneState(p->MinContext)->Freq - 1][p->PrevSuccess + \
p->NS2BSIndx[Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[(unsigned)Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
typedef struct
{
UInt32 (*GetThreshold)(void *p, UInt32 total);
void (*Decode)(void *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(void *p, UInt32 size0);
} IPpmd7_RangeDec;
typedef struct
{
IPpmd7_RangeDec p;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc);
/* ---------- Encode ---------- */
typedef struct
{
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
EXTERN_C_END
#endif

189
C/Ppmd7Dec.c Normal file
View File

@ -0,0 +1,189 @@
/* Ppmd7Dec.c -- PPMdH Decoder
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (p->Stream->Read((void *)p->Stream) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 Range_GetThreshold(void *pp, UInt32 total)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
return (p->Code) / (p->Range /= total);
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(void *pp, UInt32 start, UInt32 size)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(void *pp, UInt32 size0)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound)
{
symbol = 0;
p->Range = newBound;
}
else
{
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->p.GetThreshold = Range_GetThreshold;
p->p.Decode = Range_Decode;
p->p.DecodeBit = Range_DecodeBit;
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
{
Byte symbol;
rc->Decode(rc, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
do
{
if ((hiCnt += (++s)->Freq) > count)
{
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1(p);
return symbol;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0)
{
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
}
}

187
C/Ppmd7Enc.c Normal file
View File

@ -0,0 +1,187 @@
/* Ppmd7Enc.c -- PPMdH Encoder
2015-09-28 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p)
{
p->Low = 0;
p->Range = 0xFFFFFFFF;
p->Cache = 0;
p->CacheSize = 1;
}
static void RangeEnc_ShiftLow(CPpmd7z_RangeEnc *p)
{
if ((UInt32)p->Low < (UInt32)0xFF000000 || (unsigned)(p->Low >> 32) != 0)
{
Byte temp = p->Cache;
do
{
p->Stream->Write(p->Stream, (Byte)(temp + (Byte)(p->Low >> 32)));
temp = 0xFF;
}
while (--p->CacheSize != 0);
p->Cache = (Byte)((UInt32)p->Low >> 24);
}
p->CacheSize++;
p->Low = (UInt32)p->Low << 8;
}
static void RangeEnc_Encode(CPpmd7z_RangeEnc *p, UInt32 start, UInt32 size, UInt32 total)
{
p->Low += start * (p->Range /= total);
p->Range *= size;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void RangeEnc_EncodeBit_0(CPpmd7z_RangeEnc *p, UInt32 size0)
{
p->Range = (p->Range >> 14) * size0;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void RangeEnc_EncodeBit_1(CPpmd7z_RangeEnc *p, UInt32 size0)
{
UInt32 newBound = (p->Range >> 14) * size0;
p->Low += newBound;
p->Range -= newBound;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p)
{
unsigned i;
for (i = 0; i < 5; i++)
RangeEnc_ShiftLow(p);
}
#define MASK(sym) ((signed char *)charMask)[sym]
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
if (s->Symbol == symbol)
{
RangeEnc_Encode(rc, 0, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd7_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = p->MinContext->NumStats - 1;
do
{
if ((++s)->Symbol == symbol)
{
RangeEnc_Encode(rc, sum, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd7_Update1(p);
return;
}
sum += s->Freq;
}
while (--i);
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
RangeEnc_Encode(rc, sum, p->MinContext->SummFreq - sum, p->MinContext->SummFreq);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
if (s->Symbol == symbol)
{
RangeEnc_EncodeBit_0(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
p->FoundState = s;
Ppmd7_UpdateBin(p);
return;
}
else
{
RangeEnc_EncodeBit_1(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
}
for (;;)
{
UInt32 escFreq;
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum;
unsigned i, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return; /* EndMarker (symbol = -1) */
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
see = Ppmd7_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd7_GetStats(p, p->MinContext);
sum = 0;
i = p->MinContext->NumStats;
do
{
int cur = s->Symbol;
if (cur == symbol)
{
UInt32 low = sum;
CPpmd_State *s1 = s;
do
{
sum += (s->Freq & (int)(MASK(s->Symbol)));
s++;
}
while (--i);
RangeEnc_Encode(rc, low, s1->Freq, sum + escFreq);
Ppmd_See_Update(see);
p->FoundState = s1;
Ppmd7_Update2(p);
return;
}
sum += (s->Freq & (int)(MASK(cur)));
MASK(cur) = 0;
s++;
}
while (--i);
RangeEnc_Encode(rc, sum, escFreq, sum + escFreq);
see->Summ = (UInt16)(see->Summ + sum + escFreq);
}
}

1123
C/Ppmd8.c Normal file

File diff suppressed because it is too large Load Diff

137
C/Ppmd8.h Normal file
View File

@ -0,0 +1,137 @@
/* Ppmd8.h -- PPMdI codec
2011-01-27 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#ifndef __PPMD8_H
#define __PPMD8_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD8_MIN_ORDER 2
#define PPMD8_MAX_ORDER 16
struct CPpmd8_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd8_Context_ *
#else
UInt32
#endif
CPpmd8_Context_Ref;
#pragma pack(push, 1)
typedef struct CPpmd8_Context_
{
Byte NumStats;
Byte Flags;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd8_Context_Ref Suffix;
} CPpmd8_Context;
#pragma pack(pop)
#define Ppmd8Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
/* The BUG in Shkarin's code for FREEZE mode was fixed, but that fixed
code is not compatible with original code for some files compressed
in FREEZE mode. So we disable FREEZE mode support. */
enum
{
PPMD8_RESTORE_METHOD_RESTART,
PPMD8_RESTORE_METHOD_CUT_OFF
#ifdef PPMD8_FREEZE_SUPPORT
, PPMD8_RESTORE_METHOD_FREEZE
#endif
};
typedef struct
{
CPpmd8_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
unsigned RestoreMethod;
/* Range Coder */
UInt32 Range;
UInt32 Code;
UInt32 Low;
union
{
IByteIn *In;
IByteOut *Out;
} Stream;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
UInt32 Stamps[PPMD_NUM_INDEXES];
Byte NS2BSIndx[256], NS2Indx[260];
CPpmd_See DummySee, See[24][32];
UInt16 BinSumm[25][64];
} CPpmd8;
void Ppmd8_Construct(CPpmd8 *p);
Bool Ppmd8_Alloc(CPpmd8 *p, UInt32 size, ISzAlloc *alloc);
void Ppmd8_Free(CPpmd8 *p, ISzAlloc *alloc);
void Ppmd8_Init(CPpmd8 *p, unsigned maxOrder, unsigned restoreMethod);
#define Ppmd8_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD8_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd8_GetPtr(p, ptr) (ptr)
#define Ppmd8_GetContext(p, ptr) (ptr)
#define Ppmd8_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd8_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd8_GetContext(p, offs) ((CPpmd8_Context *)Ppmd8_GetPtr((p), (offs)))
#define Ppmd8_GetStats(p, ctx) ((CPpmd_State *)Ppmd8_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd8_Update1(CPpmd8 *p);
void Ppmd8_Update1_0(CPpmd8 *p);
void Ppmd8_Update2(CPpmd8 *p);
void Ppmd8_UpdateBin(CPpmd8 *p);
#define Ppmd8_GetBinSumm(p) \
&p->BinSumm[p->NS2Indx[Ppmd8Context_OneState(p->MinContext)->Freq - 1]][ \
p->NS2BSIndx[Ppmd8_GetContext(p, p->MinContext->Suffix)->NumStats] + \
p->PrevSuccess + p->MinContext->Flags + ((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd8_MakeEscFreq(CPpmd8 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
Bool Ppmd8_RangeDec_Init(CPpmd8 *p);
#define Ppmd8_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd8_DecodeSymbol(CPpmd8 *p); /* returns: -1 as EndMarker, -2 as DataError */
/* ---------- Encode ---------- */
#define Ppmd8_RangeEnc_Init(p) { (p)->Low = 0; (p)->Range = 0xFFFFFFFF; }
void Ppmd8_RangeEnc_FlushData(CPpmd8 *p);
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol); /* symbol = -1 means EndMarker */
EXTERN_C_END
#endif

157
C/Ppmd8Dec.c Normal file
View File

@ -0,0 +1,157 @@
/* Ppmd8Dec.c -- PPMdI Decoder
2010-04-16 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd8.h"
#define kTop (1 << 24)
#define kBot (1 << 15)
Bool Ppmd8_RangeDec_Init(CPpmd8 *p)
{
unsigned i;
p->Low = 0;
p->Range = 0xFFFFFFFF;
p->Code = 0;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | p->Stream.In->Read(p->Stream.In);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 RangeDec_GetThreshold(CPpmd8 *p, UInt32 total)
{
return p->Code / (p->Range /= total);
}
static void RangeDec_Decode(CPpmd8 *p, UInt32 start, UInt32 size)
{
start *= p->Range;
p->Low += start;
p->Code -= start;
p->Range *= size;
while ((p->Low ^ (p->Low + p->Range)) < kTop ||
(p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1)))
{
p->Code = (p->Code << 8) | p->Stream.In->Read(p->Stream.In);
p->Range <<= 8;
p->Low <<= 8;
}
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd8_DecodeSymbol(CPpmd8 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = RangeDec_GetThreshold(p, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
{
Byte symbol;
RangeDec_Decode(p, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd8_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats;
do
{
if ((hiCnt += (++s)->Freq) > count)
{
Byte symbol;
RangeDec_Decode(p, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd8_Update1(p);
return symbol;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
RangeDec_Decode(p, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats;
do { MASK((--s)->Symbol) = 0; } while (--i);
}
else
{
UInt16 *prob = Ppmd8_GetBinSumm(p);
if (((p->Code / (p->Range >>= 14)) < *prob))
{
Byte symbol;
RangeDec_Decode(p, 0, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd8Context_OneState(p->MinContext))->Symbol;
Ppmd8_UpdateBin(p);
return symbol;
}
RangeDec_Decode(p, *prob, (1 << 14) - *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD8_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd8Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd8_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd8_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
see = Ppmd8_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = RangeDec_GetThreshold(p, freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
RangeDec_Decode(p, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd8_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
RangeDec_Decode(p, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
}
}

163
C/Ppmd8Enc.c Normal file
View File

@ -0,0 +1,163 @@
/* Ppmd8Enc.c -- PPMdI Encoder
2010-04-16 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd8.h"
#define kTop (1 << 24)
#define kBot (1 << 15)
void Ppmd8_RangeEnc_FlushData(CPpmd8 *p)
{
unsigned i;
for (i = 0; i < 4; i++, p->Low <<= 8 )
p->Stream.Out->Write(p->Stream.Out, (Byte)(p->Low >> 24));
}
static void RangeEnc_Normalize(CPpmd8 *p)
{
while ((p->Low ^ (p->Low + p->Range)) < kTop ||
(p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1)))
{
p->Stream.Out->Write(p->Stream.Out, (Byte)(p->Low >> 24));
p->Range <<= 8;
p->Low <<= 8;
}
}
static void RangeEnc_Encode(CPpmd8 *p, UInt32 start, UInt32 size, UInt32 total)
{
p->Low += start * (p->Range /= total);
p->Range *= size;
RangeEnc_Normalize(p);
}
static void RangeEnc_EncodeBit_0(CPpmd8 *p, UInt32 size0)
{
p->Range >>= 14;
p->Range *= size0;
RangeEnc_Normalize(p);
}
static void RangeEnc_EncodeBit_1(CPpmd8 *p, UInt32 size0)
{
p->Low += size0 * (p->Range >>= 14);
p->Range *= ((1 << 14) - size0);
RangeEnc_Normalize(p);
}
#define MASK(sym) ((signed char *)charMask)[sym]
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
if (s->Symbol == symbol)
{
RangeEnc_Encode(p, 0, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd8_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = p->MinContext->NumStats;
do
{
if ((++s)->Symbol == symbol)
{
RangeEnc_Encode(p, sum, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd8_Update1(p);
return;
}
sum += s->Freq;
}
while (--i);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats;
do { MASK((--s)->Symbol) = 0; } while (--i);
RangeEnc_Encode(p, sum, p->MinContext->SummFreq - sum, p->MinContext->SummFreq);
}
else
{
UInt16 *prob = Ppmd8_GetBinSumm(p);
CPpmd_State *s = Ppmd8Context_OneState(p->MinContext);
if (s->Symbol == symbol)
{
RangeEnc_EncodeBit_0(p, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
p->FoundState = s;
Ppmd8_UpdateBin(p);
return;
}
else
{
RangeEnc_EncodeBit_1(p, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD8_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
}
for (;;)
{
UInt32 escFreq;
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum;
unsigned i, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return; /* EndMarker (symbol = -1) */
p->MinContext = Ppmd8_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
see = Ppmd8_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd8_GetStats(p, p->MinContext);
sum = 0;
i = p->MinContext->NumStats + 1;
do
{
int cur = s->Symbol;
if (cur == symbol)
{
UInt32 low = sum;
CPpmd_State *s1 = s;
do
{
sum += (s->Freq & (int)(MASK(s->Symbol)));
s++;
}
while (--i);
RangeEnc_Encode(p, low, s1->Freq, sum + escFreq);
Ppmd_See_Update(see);
p->FoundState = s1;
Ppmd8_Update2(p);
return;
}
sum += (s->Freq & (int)(MASK(cur)));
MASK(cur) = 0;
s++;
}
while (--i);
RangeEnc_Encode(p, sum, escFreq, sum + escFreq);
see->Summ = (UInt16)(see->Summ + sum + escFreq);
}
}

10
C/Precomp.h Normal file
View File

@ -0,0 +1,10 @@
/* Precomp.h -- StdAfx
2013-11-12 : Igor Pavlov : Public domain */
#ifndef __7Z_PRECOMP_H
#define __7Z_PRECOMP_H
#include "Compiler.h"
/* #include "7zTypes.h" */
#endif

30
C/RotateDefs.h Normal file
View File

@ -0,0 +1,30 @@
/* RotateDefs.h -- Rotate functions
2015-03-25 : Igor Pavlov : Public domain */
#ifndef __ROTATE_DEFS_H
#define __ROTATE_DEFS_H
#ifdef _MSC_VER
#include <stdlib.h>
/* don't use _rotl with MINGW. It can insert slow call to function. */
/* #if (_MSC_VER >= 1200) */
#pragma intrinsic(_rotl)
#pragma intrinsic(_rotr)
/* #endif */
#define rotlFixed(x, n) _rotl((x), (n))
#define rotrFixed(x, n) _rotr((x), (n))
#else
/* new compilers can translate these macros to fast commands. */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#endif
#endif

340
C/Sha1.c Normal file
View File

@ -0,0 +1,340 @@
/* Sha1.c -- SHA-1 Hash
2016-05-20 : Igor Pavlov : Public domain
This code is based on public domain code of Steve Reid from Wei Dai's Crypto++ library. */
#include "Precomp.h"
#include <string.h>
#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha1.h"
// define it for speed optimization
// #define _SHA1_UNROLL
#ifdef _SHA1_UNROLL
#define kNumW 16
#define WW(i) W[(i)&15]
#else
#define kNumW 80
#define WW(i) W[i]
#endif
#define w0(i) (W[i] = data[i])
#define w1(i) (WW(i) = rotlFixed(WW((i)-3) ^ WW((i)-8) ^ WW((i)-14) ^ WW((i)-16), 1))
#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)
#define RK(a,b,c,d,e, fx, w, k) e += fx(b,c,d) + w + k + rotlFixed(a,5); b = rotlFixed(b,30);
#define R0(a,b,c,d,e, i) RK(a,b,c,d,e, f1, w0(i), 0x5A827999)
#define R1(a,b,c,d,e, i) RK(a,b,c,d,e, f1, w1(i), 0x5A827999)
#define R2(a,b,c,d,e, i) RK(a,b,c,d,e, f2, w1(i), 0x6ED9EBA1)
#define R3(a,b,c,d,e, i) RK(a,b,c,d,e, f3, w1(i), 0x8F1BBCDC)
#define R4(a,b,c,d,e, i) RK(a,b,c,d,e, f4, w1(i), 0xCA62C1D6)
#define RX_1_4(rx1, rx4, i) \
rx1(a,b,c,d,e, i); \
rx4(e,a,b,c,d, i+1); \
rx4(d,e,a,b,c, i+2); \
rx4(c,d,e,a,b, i+3); \
rx4(b,c,d,e,a, i+4); \
#define RX_5(rx, i) RX_1_4(rx, rx, i);
#ifdef _SHA1_UNROLL
#define RX_15 \
RX_5(R0, 0); \
RX_5(R0, 5); \
RX_5(R0, 10);
#define RX_20(rx, i) \
RX_5(rx, i); \
RX_5(rx, i + 5); \
RX_5(rx, i + 10); \
RX_5(rx, i + 15);
#else
#define RX_15 { unsigned i; for (i = 0; i < 15; i += 5) { RX_5(R0, i); } }
#define RX_20(rx, ii) { unsigned i; i = ii; for (; i < ii + 20; i += 5) { RX_5(rx, i); } }
#endif
void Sha1_Init(CSha1 *p)
{
p->state[0] = 0x67452301;
p->state[1] = 0xEFCDAB89;
p->state[2] = 0x98BADCFE;
p->state[3] = 0x10325476;
p->state[4] = 0xC3D2E1F0;
p->count = 0;
}
void Sha1_GetBlockDigest(CSha1 *p, const UInt32 *data, UInt32 *destDigest)
{
UInt32 a, b, c, d, e;
UInt32 W[kNumW];
a = p->state[0];
b = p->state[1];
c = p->state[2];
d = p->state[3];
e = p->state[4];
RX_15
RX_1_4(R0, R1, 15);
RX_20(R2, 20);
RX_20(R3, 40);
RX_20(R4, 60);
destDigest[0] = p->state[0] + a;
destDigest[1] = p->state[1] + b;
destDigest[2] = p->state[2] + c;
destDigest[3] = p->state[3] + d;
destDigest[4] = p->state[4] + e;
}
void Sha1_UpdateBlock_Rar(CSha1 *p, UInt32 *data, int returnRes)
{
UInt32 a, b, c, d, e;
UInt32 W[kNumW];
a = p->state[0];
b = p->state[1];
c = p->state[2];
d = p->state[3];
e = p->state[4];
RX_15
RX_1_4(R0, R1, 15);
RX_20(R2, 20);
RX_20(R3, 40);
RX_20(R4, 60);
p->state[0] += a;
p->state[1] += b;
p->state[2] += c;
p->state[3] += d;
p->state[4] += e;
if (returnRes)
{
unsigned i;
for (i = 0 ; i < SHA1_NUM_BLOCK_WORDS; i++)
data[i] = W[kNumW - SHA1_NUM_BLOCK_WORDS + i];
}
}
#define Sha1_UpdateBlock(p) Sha1_GetBlockDigest(p, p->buffer, p->state)
void Sha1_Update(CSha1 *p, const Byte *data, size_t size)
{
unsigned pos, pos2;
if (size == 0)
return;
pos = (unsigned)p->count & 0x3F;
p->count += size;
pos2 = pos & 3;
pos >>= 2;
if (pos2 != 0)
{
UInt32 w;
pos2 = (3 - pos2) * 8;
w = ((UInt32)*data++) << pos2;
if (--size && pos2)
{
pos2 -= 8;
w |= ((UInt32)*data++) << pos2;
if (--size && pos2)
{
pos2 -= 8;
w |= ((UInt32)*data++) << pos2;
size--;
}
}
p->buffer[pos] |= w;
if (pos2 == 0)
pos++;
}
for (;;)
{
if (pos == SHA1_NUM_BLOCK_WORDS)
{
for (;;)
{
unsigned i;
Sha1_UpdateBlock(p);
if (size < SHA1_BLOCK_SIZE)
break;
size -= SHA1_BLOCK_SIZE;
for (i = 0; i < SHA1_NUM_BLOCK_WORDS; i += 2)
{
p->buffer[i ] = GetBe32(data);
p->buffer[i + 1] = GetBe32(data + 4);
data += 8;
}
}
pos = 0;
}
if (size < 4)
break;
p->buffer[pos] = GetBe32(data);
data += 4;
size -= 4;
pos++;
}
if (size != 0)
{
UInt32 w = ((UInt32)data[0]) << 24;
if (size > 1)
{
w |= ((UInt32)data[1]) << 16;
if (size > 2)
w |= ((UInt32)data[2]) << 8;
}
p->buffer[pos] = w;
}
}
void Sha1_Update_Rar(CSha1 *p, Byte *data, size_t size /* , int rar350Mode */)
{
int returnRes = False;
unsigned pos = (unsigned)p->count & 0x3F;
p->count += size;
while (size--)
{
unsigned pos2 = (pos & 3);
UInt32 v = ((UInt32)*data++) << (8 * (3 - pos2));
UInt32 *ref = &(p->buffer[pos >> 2]);
pos++;
if (pos2 == 0)
{
*ref = v;
continue;
}
*ref |= v;
if (pos == SHA1_BLOCK_SIZE)
{
pos = 0;
Sha1_UpdateBlock_Rar(p, p->buffer, returnRes);
if (returnRes)
{
unsigned i;
for (i = 0; i < SHA1_NUM_BLOCK_WORDS; i++)
{
UInt32 d = p->buffer[i];
Byte *prev = data + i * 4 - SHA1_BLOCK_SIZE;
SetUi32(prev, d);
}
}
// returnRes = rar350Mode;
returnRes = True;
}
}
}
void Sha1_Final(CSha1 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned pos2 = (pos & 3);
UInt64 numBits;
UInt32 w;
unsigned i;
pos >>= 2;
w = 0;
if (pos2 != 0)
w = p->buffer[pos];
p->buffer[pos++] = w | (((UInt32)0x80000000) >> (8 * pos2));
while (pos != (SHA1_NUM_BLOCK_WORDS - 2))
{
pos &= 0xF;
if (pos == 0)
Sha1_UpdateBlock(p);
p->buffer[pos++] = 0;
}
numBits = (p->count << 3);
p->buffer[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
p->buffer[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
Sha1_UpdateBlock(p);
for (i = 0; i < SHA1_NUM_DIGEST_WORDS; i++)
{
UInt32 v = p->state[i];
SetBe32(digest, v);
digest += 4;
}
Sha1_Init(p);
}
void Sha1_32_PrepareBlock(const CSha1 *p, UInt32 *block, unsigned size)
{
const UInt64 numBits = (p->count + size) << 5;
block[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
block[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
block[size++] = 0x80000000;
while (size != (SHA1_NUM_BLOCK_WORDS - 2))
block[size++] = 0;
}
void Sha1_32_Update(CSha1 *p, const UInt32 *data, size_t size)
{
unsigned pos = (unsigned)p->count & 0xF;
p->count += size;
while (size--)
{
p->buffer[pos++] = *data++;
if (pos == SHA1_NUM_BLOCK_WORDS)
{
pos = 0;
Sha1_UpdateBlock(p);
}
}
}
void Sha1_32_Final(CSha1 *p, UInt32 *digest)
{
UInt64 numBits;
unsigned pos = (unsigned)p->count & 0xF;
p->buffer[pos++] = 0x80000000;
while (pos != (SHA1_NUM_BLOCK_WORDS - 2))
{
pos &= 0xF;
if (pos == 0)
Sha1_UpdateBlock(p);
p->buffer[pos++] = 0;
}
numBits = (p->count << 5);
p->buffer[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
p->buffer[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
Sha1_GetBlockDigest(p, p->buffer, digest);
Sha1_Init(p);
}

38
C/Sha1.h Normal file
View File

@ -0,0 +1,38 @@
/* Sha1.h -- SHA-1 Hash
2016-05-20 : Igor Pavlov : Public domain */
#ifndef __7Z_SHA1_H
#define __7Z_SHA1_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA1_NUM_BLOCK_WORDS 16
#define SHA1_NUM_DIGEST_WORDS 5
#define SHA1_BLOCK_SIZE (SHA1_NUM_BLOCK_WORDS * 4)
#define SHA1_DIGEST_SIZE (SHA1_NUM_DIGEST_WORDS * 4)
typedef struct
{
UInt32 state[SHA1_NUM_DIGEST_WORDS];
UInt64 count;
UInt32 buffer[SHA1_NUM_BLOCK_WORDS];
} CSha1;
void Sha1_Init(CSha1 *p);
void Sha1_GetBlockDigest(CSha1 *p, const UInt32 *data, UInt32 *destDigest);
void Sha1_Update(CSha1 *p, const Byte *data, size_t size);
void Sha1_Final(CSha1 *p, Byte *digest);
void Sha1_Update_Rar(CSha1 *p, Byte *data, size_t size /* , int rar350Mode */);
void Sha1_32_PrepareBlock(const CSha1 *p, UInt32 *block, unsigned size);
void Sha1_32_Update(CSha1 *p, const UInt32 *data, size_t size);
void Sha1_32_Final(CSha1 *p, UInt32 *digest);
EXTERN_C_END
#endif

248
C/Sha256.c Normal file
View File

@ -0,0 +1,248 @@
/* Crypto/Sha256.c -- SHA-256 Hash
2015-11-14 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "Precomp.h"
#include <string.h>
#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha256.h"
/* define it for speed optimization */
#ifndef _SFX
#define _SHA256_UNROLL
#define _SHA256_UNROLL2
#endif
/* #define _SHA256_UNROLL2 */
void Sha256_Init(CSha256 *p)
{
p->state[0] = 0x6a09e667;
p->state[1] = 0xbb67ae85;
p->state[2] = 0x3c6ef372;
p->state[3] = 0xa54ff53a;
p->state[4] = 0x510e527f;
p->state[5] = 0x9b05688c;
p->state[6] = 0x1f83d9ab;
p->state[7] = 0x5be0cd19;
p->count = 0;
}
#define S0(x) (rotrFixed(x, 2) ^ rotrFixed(x,13) ^ rotrFixed(x, 22))
#define S1(x) (rotrFixed(x, 6) ^ rotrFixed(x,11) ^ rotrFixed(x, 25))
#define s0(x) (rotrFixed(x, 7) ^ rotrFixed(x,18) ^ (x >> 3))
#define s1(x) (rotrFixed(x,17) ^ rotrFixed(x,19) ^ (x >> 10))
#define blk0(i) (W[i])
#define blk2(i) (W[i] += s1(W[((i)-2)&15]) + W[((i)-7)&15] + s0(W[((i)-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#ifdef _SHA256_UNROLL2
#define R(a,b,c,d,e,f,g,h, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(j)] + (j ? blk2(i) : blk0(i)); \
d += h; \
h += S0(a) + Maj(a, b, c)
#define RX_8(i) \
R(a,b,c,d,e,f,g,h, i); \
R(h,a,b,c,d,e,f,g, i+1); \
R(g,h,a,b,c,d,e,f, i+2); \
R(f,g,h,a,b,c,d,e, i+3); \
R(e,f,g,h,a,b,c,d, i+4); \
R(d,e,f,g,h,a,b,c, i+5); \
R(c,d,e,f,g,h,a,b, i+6); \
R(b,c,d,e,f,g,h,a, i+7)
#define RX_16 RX_8(0); RX_8(8);
#else
#define a(i) T[(0-(i))&7]
#define b(i) T[(1-(i))&7]
#define c(i) T[(2-(i))&7]
#define d(i) T[(3-(i))&7]
#define e(i) T[(4-(i))&7]
#define f(i) T[(5-(i))&7]
#define g(i) T[(6-(i))&7]
#define h(i) T[(7-(i))&7]
#define R(i) \
h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[(i)+(j)] + (j ? blk2(i) : blk0(i)); \
d(i) += h(i); \
h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) \
#ifdef _SHA256_UNROLL
#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
#define RX_16 RX_8(0); RX_8(8);
#else
#define RX_16 unsigned i; for (i = 0; i < 16; i++) { R(i); }
#endif
#endif
static const UInt32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static void Sha256_WriteByteBlock(CSha256 *p)
{
UInt32 W[16];
unsigned j;
UInt32 *state;
#ifdef _SHA256_UNROLL2
UInt32 a,b,c,d,e,f,g,h;
#else
UInt32 T[8];
#endif
for (j = 0; j < 16; j += 4)
{
const Byte *ccc = p->buffer + j * 4;
W[j ] = GetBe32(ccc);
W[j + 1] = GetBe32(ccc + 4);
W[j + 2] = GetBe32(ccc + 8);
W[j + 3] = GetBe32(ccc + 12);
}
state = p->state;
#ifdef _SHA256_UNROLL2
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
#else
for (j = 0; j < 8; j++)
T[j] = state[j];
#endif
for (j = 0; j < 64; j += 16)
{
RX_16
}
#ifdef _SHA256_UNROLL2
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
#else
for (j = 0; j < 8; j++)
state[j] += T[j];
#endif
/* Wipe variables */
/* memset(W, 0, sizeof(W)); */
/* memset(T, 0, sizeof(T)); */
}
#undef S0
#undef S1
#undef s0
#undef s1
void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
{
if (size == 0)
return;
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned num;
p->count += size;
num = 64 - pos;
if (num > size)
{
memcpy(p->buffer + pos, data, size);
return;
}
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
}
for (;;)
{
Sha256_WriteByteBlock(p);
if (size < 64)
break;
size -= 64;
memcpy(p->buffer, data, 64);
data += 64;
}
if (size != 0)
memcpy(p->buffer, data, size);
}
void Sha256_Final(CSha256 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned i;
p->buffer[pos++] = 0x80;
while (pos != (64 - 8))
{
pos &= 0x3F;
if (pos == 0)
Sha256_WriteByteBlock(p);
p->buffer[pos++] = 0;
}
{
UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32));
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits));
}
Sha256_WriteByteBlock(p);
for (i = 0; i < 8; i += 2)
{
UInt32 v0 = p->state[i];
UInt32 v1 = p->state[i + 1];
SetBe32(digest , v0);
SetBe32(digest + 4, v1);
digest += 8;
}
Sha256_Init(p);
}

26
C/Sha256.h Normal file
View File

@ -0,0 +1,26 @@
/* Sha256.h -- SHA-256 Hash
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __CRYPTO_SHA256_H
#define __CRYPTO_SHA256_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA256_DIGEST_SIZE 32
typedef struct
{
UInt32 state[8];
UInt64 count;
Byte buffer[64];
} CSha256;
void Sha256_Init(CSha256 *p);
void Sha256_Update(CSha256 *p, const Byte *data, size_t size);
void Sha256_Final(CSha256 *p, Byte *digest);
EXTERN_C_END
#endif

141
C/Sort.c Normal file
View File

@ -0,0 +1,141 @@
/* Sort.c -- Sort functions
2014-04-05 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Sort.h"
#define HeapSortDown(p, k, size, temp) \
{ for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && p[s + 1] > p[s]) s++; \
if (temp >= p[s]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSort(UInt32 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt32 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt32 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
void HeapSort64(UInt64 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt64 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt64 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt64 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt64 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
/*
#define HeapSortRefDown(p, vals, n, size, temp) \
{ size_t k = n; UInt32 val = vals[temp]; for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && vals[p[s + 1]] > vals[p[s]]) s++; \
if (val >= vals[p[s]]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
HeapSortRefDown(p, vals, i, size, temp);
}
while (--i != 0);
}
do
{
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortRefDown(p, vals, 1, size, temp);
}
while (size > 1);
}
*/

18
C/Sort.h Normal file
View File

@ -0,0 +1,18 @@
/* Sort.h -- Sort functions
2014-04-05 : Igor Pavlov : Public domain */
#ifndef __7Z_SORT_H
#define __7Z_SORT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void HeapSort(UInt32 *p, size_t size);
void HeapSort64(UInt64 *p, size_t size);
/* void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size); */
EXTERN_C_END
#endif

582
C/Threads.c Normal file
View File

@ -0,0 +1,582 @@
/* Threads.c */
#include "Threads.h"
#ifdef ENV_BEOS
#include <kernel/OS.h>
#else
#include <pthread.h>
#include <stdlib.h>
#endif
#include <errno.h>
#if defined(__linux__)
#define PTHREAD_MUTEX_ERRORCHECK PTHREAD_MUTEX_ERRORCHECK_NP
#endif
#ifdef ENV_BEOS
/* TODO : optimize the code and verify the returned values */
WRes Thread_Create(CThread *thread, THREAD_FUNC_RET_TYPE (THREAD_FUNC_CALL_TYPE *startAddress)(void *), LPVOID parameter)
{
thread->_tid = spawn_thread((int32 (*)(void *))startAddress, "CThread", B_LOW_PRIORITY, parameter);
if (thread->_tid >= B_OK) {
resume_thread(thread->_tid);
} else {
thread->_tid = B_BAD_THREAD_ID;
}
thread->_created = 1;
return 0; // SZ_OK;
}
WRes Thread_Wait(CThread *thread)
{
int ret;
if (thread->_created == 0)
return EINVAL;
if (thread->_tid >= B_OK)
{
status_t exit_value;
wait_for_thread(thread->_tid, &exit_value);
thread->_tid = B_BAD_THREAD_ID;
} else {
return EINVAL;
}
thread->_created = 0;
return 0;
}
WRes Thread_Close(CThread *thread)
{
if (!thread->_created) return SZ_OK;
thread->_tid = B_BAD_THREAD_ID;
thread->_created = 0;
return SZ_OK;
}
WRes Event_Create(CEvent *p, BOOL manualReset, int initialSignaled)
{
p->_index_waiting = 0;
p->_manual_reset = manualReset;
p->_state = (initialSignaled ? TRUE : FALSE);
p->_created = 1;
p->_sem = create_sem(1,"event");
return 0;
}
WRes Event_Set(CEvent *p) {
int index;
acquire_sem(p->_sem);
p->_state = TRUE;
for(index = 0 ; index < p->_index_waiting ; index++)
{
send_data(p->_waiting[index], '7zCN', NULL, 0);
}
p->_index_waiting = 0;
release_sem(p->_sem);
return 0;
}
WRes Event_Reset(CEvent *p) {
acquire_sem(p->_sem);
p->_state = FALSE;
release_sem(p->_sem);
return 0;
}
WRes Event_Wait(CEvent *p) {
acquire_sem(p->_sem);
while (p->_state == FALSE)
{
thread_id sender;
p->_waiting[p->_index_waiting++] = find_thread(NULL);
release_sem(p->_sem);
/* int msg = */ receive_data(&sender, NULL, 0);
acquire_sem(p->_sem);
}
if (p->_manual_reset == FALSE)
{
p->_state = FALSE;
}
release_sem(p->_sem);
return 0;
}
WRes Event_Close(CEvent *p) {
if (p->_created)
{
p->_created = 0;
delete_sem(p->_sem);
}
return 0;
}
WRes Semaphore_Create(CSemaphore *p, UInt32 initiallyCount, UInt32 maxCount)
{
p->_index_waiting = 0;
p->_count = initiallyCount;
p->_maxCount = maxCount;
p->_created = 1;
p->_sem = create_sem(1,"sem");
return 0;
}
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 releaseCount)
{
UInt32 newCount;
int index;
if (releaseCount < 1) return EINVAL;
acquire_sem(p->_sem);
newCount = p->_count + releaseCount;
if (newCount > p->_maxCount)
{
release_sem(p->_sem);
return EINVAL;
}
p->_count = newCount;
for(index = 0 ; index < p->_index_waiting ; index++)
{
send_data(p->_waiting[index], '7zCN', NULL, 0);
}
p->_index_waiting = 0;
release_sem(p->_sem);
return 0;
}
WRes Semaphore_Wait(CSemaphore *p) {
acquire_sem(p->_sem);
while (p->_count < 1)
{
thread_id sender;
p->_waiting[p->_index_waiting++] = find_thread(NULL);
release_sem(p->_sem);
/* int msg = */ receive_data(&sender, NULL, 0);
acquire_sem(p->_sem);
}
p->_count--;
release_sem(p->_sem);
return 0;
}
WRes Semaphore_Close(CSemaphore *p) {
if (p->_created)
{
p->_created = 0;
delete_sem(p->_sem);
}
return 0;
}
WRes CriticalSection_Init(CCriticalSection * lpCriticalSection)
{
lpCriticalSection->_sem = create_sem(1,"cc");
return 0;
}
#else /* !ENV_BEOS */
WRes Thread_Create(CThread *thread, THREAD_FUNC_RET_TYPE (THREAD_FUNC_CALL_TYPE *startAddress)(void *), LPVOID parameter)
{
pthread_attr_t attr;
int ret;
thread->_created = 0;
ret = pthread_attr_init(&attr);
if (ret) return ret;
ret = pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
if (ret) return ret;
ret = pthread_create(&thread->_tid, &attr, (void * (*)(void *))startAddress, parameter);
/* ret2 = */ pthread_attr_destroy(&attr);
if (ret) return ret;
thread->_created = 1;
return 0; // SZ_OK;
}
WRes Thread_Wait(CThread *thread)
{
void *thread_return;
int ret;
if (thread->_created == 0)
return EINVAL;
ret = pthread_join(thread->_tid,&thread_return);
thread->_created = 0;
return ret;
}
WRes Thread_Close(CThread *thread)
{
if (!thread->_created) return SZ_OK;
pthread_detach(thread->_tid);
thread->_tid = 0;
thread->_created = 0;
return SZ_OK;
}
#ifdef DEBUG_SYNCHRO
#include <stdio.h>
static void dump_error(int ligne,int ret,const char *text,void *param)
{
printf("\n##T%d#ERROR2 (l=%d) %s : param=%p ret = %d (%s)##\n",(int)pthread_self(),ligne,text,param,ret,strerror(ret));
// abort();
}
WRes Event_Create(CEvent *p, BOOL manualReset, int initialSignaled)
{
int ret;
pthread_mutexattr_t mutexattr;
memset(&mutexattr,0,sizeof(mutexattr));
ret = pthread_mutexattr_init(&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"Event_Create::pthread_mutexattr_init",&mutexattr);
ret = pthread_mutexattr_settype(&mutexattr,PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) dump_error(__LINE__,ret,"Event_Create::pthread_mutexattr_settype",&mutexattr);
ret = pthread_mutex_init(&p->_mutex,&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"Event_Create::pthread_mutexattr_init",&p->_mutex);
if (ret == 0)
{
ret = pthread_cond_init(&p->_cond,0);
if (ret != 0) dump_error(__LINE__,ret,"Event_Create::pthread_cond_init",&p->_cond);
p->_manual_reset = manualReset;
p->_state = (initialSignaled ? TRUE : FALSE);
p->_created = 1;
}
return ret;
}
WRes Event_Set(CEvent *p) {
int ret = pthread_mutex_lock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"ES::pthread_mutex_lock",&p->_mutex);
if (ret == 0)
{
p->_state = TRUE;
ret = pthread_cond_broadcast(&p->_cond);
if (ret != 0) dump_error(__LINE__,ret,"ES::pthread_cond_broadcast",&p->_cond);
if (ret == 0)
{
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"ES::pthread_mutex_unlock",&p->_mutex);
}
}
return ret;
}
WRes Event_Reset(CEvent *p) {
int ret = pthread_mutex_lock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"ER::pthread_mutex_lock",&p->_mutex);
if (ret == 0)
{
p->_state = FALSE;
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"ER::pthread_mutex_unlock",&p->_mutex);
}
return ret;
}
WRes Event_Wait(CEvent *p) {
int ret = pthread_mutex_lock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"EW::pthread_mutex_lock",&p->_mutex);
if (ret == 0)
{
while ((p->_state == FALSE) && (ret == 0))
{
ret = pthread_cond_wait(&p->_cond, &p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"EW::pthread_cond_wait",&p->_mutex);
}
if (ret == 0)
{
if (p->_manual_reset == FALSE)
{
p->_state = FALSE;
}
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"EW::pthread_mutex_unlock",&p->_mutex);
}
}
return ret;
}
WRes Event_Close(CEvent *p) {
if (p->_created)
{
int ret;
p->_created = 0;
ret = pthread_mutex_destroy(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"EC::pthread_mutex_destroy",&p->_mutex);
ret = pthread_cond_destroy(&p->_cond);
if (ret != 0) dump_error(__LINE__,ret,"EC::pthread_cond_destroy",&p->_cond);
}
return 0;
}
WRes Semaphore_Create(CSemaphore *p, UInt32 initiallyCount, UInt32 maxCount)
{
int ret;
pthread_mutexattr_t mutexattr;
memset(&mutexattr,0,sizeof(mutexattr));
ret = pthread_mutexattr_init(&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"SemC::pthread_mutexattr_init",&mutexattr);
ret = pthread_mutexattr_settype(&mutexattr,PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) dump_error(__LINE__,ret,"SemC::pthread_mutexattr_settype",&mutexattr);
ret = pthread_mutex_init(&p->_mutex,&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"SemC::pthread_mutexattr_init",&p->_mutex);
if (ret == 0)
{
ret = pthread_cond_init(&p->_cond,0);
if (ret != 0) dump_error(__LINE__,ret,"SemC::pthread_cond_init",&p->_mutex);
p->_count = initiallyCount;
p->_maxCount = maxCount;
p->_created = 1;
}
return ret;
}
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 releaseCount)
{
int ret;
if (releaseCount < 1) return EINVAL;
ret = pthread_mutex_lock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemR::pthread_mutex_lock",&p->_mutex);
if (ret == 0)
{
UInt32 newCount = p->_count + releaseCount;
if (newCount > p->_maxCount)
{
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemR::pthread_mutex_unlock",&p->_mutex);
return EINVAL;
}
p->_count = newCount;
ret = pthread_cond_broadcast(&p->_cond);
if (ret != 0) dump_error(__LINE__,ret,"SemR::pthread_cond_broadcast",&p->_cond);
if (ret == 0)
{
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemR::pthread_mutex_unlock",&p->_mutex);
}
}
return ret;
}
WRes Semaphore_Wait(CSemaphore *p) {
int ret = pthread_mutex_lock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemW::pthread_mutex_lock",&p->_mutex);
if (ret == 0)
{
while ((p->_count < 1) && (ret == 0))
{
ret = pthread_cond_wait(&p->_cond, &p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemW::pthread_cond_wait",&p->_mutex);
}
if (ret == 0)
{
p->_count--;
ret = pthread_mutex_unlock(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"SemW::pthread_mutex_unlock",&p->_mutex);
}
}
return ret;
}
WRes Semaphore_Close(CSemaphore *p) {
if (p->_created)
{
int ret;
p->_created = 0;
ret = pthread_mutex_destroy(&p->_mutex);
if (ret != 0) dump_error(__LINE__,ret,"Semc::pthread_mutex_destroy",&p->_mutex);
ret = pthread_cond_destroy(&p->_cond);
if (ret != 0) dump_error(__LINE__,ret,"Semc::pthread_cond_destroy",&p->_cond);
}
return 0;
}
WRes CriticalSection_Init(CCriticalSection * lpCriticalSection)
{
if (lpCriticalSection)
{
int ret;
pthread_mutexattr_t mutexattr;
memset(&mutexattr,0,sizeof(mutexattr));
ret = pthread_mutexattr_init(&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"CS I::pthread_mutexattr_init",&mutexattr);
ret = pthread_mutexattr_settype(&mutexattr,PTHREAD_MUTEX_ERRORCHECK);
if (ret != 0) dump_error(__LINE__,ret,"CS I::pthread_mutexattr_settype",&mutexattr);
ret = pthread_mutex_init(&lpCriticalSection->_mutex,&mutexattr);
if (ret != 0) dump_error(__LINE__,ret,"CS I::pthread_mutexattr_init",&lpCriticalSection->_mutex);
return ret;
}
return EINTR;
}
void CriticalSection_Enter(CCriticalSection * lpCriticalSection)
{
if (lpCriticalSection)
{
int ret = pthread_mutex_lock(&(lpCriticalSection->_mutex));
if (ret != 0) dump_error(__LINE__,ret,"CS::pthread_mutex_lock",&(lpCriticalSection->_mutex));
}
}
void CriticalSection_Leave(CCriticalSection * lpCriticalSection)
{
if (lpCriticalSection)
{
int ret = pthread_mutex_unlock(&(lpCriticalSection->_mutex));
if (ret != 0) dump_error(__LINE__,ret,"CS::pthread_mutex_unlock",&(lpCriticalSection->_mutex));
}
}
void CriticalSection_Delete(CCriticalSection * lpCriticalSection)
{
if (lpCriticalSection)
{
int ret = pthread_mutex_destroy(&(lpCriticalSection->_mutex));
if (ret != 0) dump_error(__LINE__,ret,"CS::pthread_mutex_destroy",&(lpCriticalSection->_mutex));
}
}
#else
WRes Event_Create(CEvent *p, BOOL manualReset, int initialSignaled)
{
pthread_mutex_init(&p->_mutex,0);
pthread_cond_init(&p->_cond,0);
p->_manual_reset = manualReset;
p->_state = (initialSignaled ? TRUE : FALSE);
p->_created = 1;
return 0;
}
WRes Event_Set(CEvent *p) {
pthread_mutex_lock(&p->_mutex);
p->_state = TRUE;
pthread_cond_broadcast(&p->_cond);
pthread_mutex_unlock(&p->_mutex);
return 0;
}
WRes Event_Reset(CEvent *p) {
pthread_mutex_lock(&p->_mutex);
p->_state = FALSE;
pthread_mutex_unlock(&p->_mutex);
return 0;
}
WRes Event_Wait(CEvent *p) {
pthread_mutex_lock(&p->_mutex);
while (p->_state == FALSE)
{
pthread_cond_wait(&p->_cond, &p->_mutex);
}
if (p->_manual_reset == FALSE)
{
p->_state = FALSE;
}
pthread_mutex_unlock(&p->_mutex);
return 0;
}
WRes Event_Close(CEvent *p) {
if (p->_created)
{
p->_created = 0;
pthread_mutex_destroy(&p->_mutex);
pthread_cond_destroy(&p->_cond);
}
return 0;
}
WRes Semaphore_Create(CSemaphore *p, UInt32 initiallyCount, UInt32 maxCount)
{
pthread_mutex_init(&p->_mutex,0);
pthread_cond_init(&p->_cond,0);
p->_count = initiallyCount;
p->_maxCount = maxCount;
p->_created = 1;
return 0;
}
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 releaseCount)
{
UInt32 newCount;
if (releaseCount < 1) return EINVAL;
pthread_mutex_lock(&p->_mutex);
newCount = p->_count + releaseCount;
if (newCount > p->_maxCount)
{
pthread_mutex_unlock(&p->_mutex);
return EINVAL;
}
p->_count = newCount;
pthread_cond_broadcast(&p->_cond);
pthread_mutex_unlock(&p->_mutex);
return 0;
}
WRes Semaphore_Wait(CSemaphore *p) {
pthread_mutex_lock(&p->_mutex);
while (p->_count < 1)
{
pthread_cond_wait(&p->_cond, &p->_mutex);
}
p->_count--;
pthread_mutex_unlock(&p->_mutex);
return 0;
}
WRes Semaphore_Close(CSemaphore *p) {
if (p->_created)
{
p->_created = 0;
pthread_mutex_destroy(&p->_mutex);
pthread_cond_destroy(&p->_cond);
}
return 0;
}
WRes CriticalSection_Init(CCriticalSection * lpCriticalSection)
{
return pthread_mutex_init(&(lpCriticalSection->_mutex),0);
}
#endif /* DEBUG_SYNCHRO */
#endif /* ENV_BEOS */
WRes ManualResetEvent_Create(CManualResetEvent *p, int initialSignaled)
{ return Event_Create(p, TRUE, initialSignaled); }
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p)
{ return ManualResetEvent_Create(p, 0); }
WRes AutoResetEvent_Create(CAutoResetEvent *p, int initialSignaled)
{ return Event_Create(p, FALSE, initialSignaled); }
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p)
{ return AutoResetEvent_Create(p, 0); }

123
C/Threads.h Normal file
View File

@ -0,0 +1,123 @@
/* Threads.h -- multithreading library
2008-11-22 : Igor Pavlov : Public domain */
#ifndef __7Z_THRESDS_H
#define __7Z_THRESDS_H
#include "7zTypes.h"
#include "windows.h"
#ifdef ENV_BEOS
#include <kernel/OS.h>
#define MAX_THREAD 256
#else
#include <pthread.h>
#endif
/* #define DEBUG_SYNCHRO 1 */
typedef struct _CThread
{
#ifdef ENV_BEOS
thread_id _tid;
#else
pthread_t _tid;
#endif
int _created;
} CThread;
#define Thread_Construct(thread) (thread)->_created = 0
#define Thread_WasCreated(thread) ((thread)->_created != 0)
typedef unsigned THREAD_FUNC_RET_TYPE;
#define THREAD_FUNC_CALL_TYPE MY_STD_CALL
#define THREAD_FUNC_DECL THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE
typedef THREAD_FUNC_RET_TYPE (THREAD_FUNC_CALL_TYPE * THREAD_FUNC_TYPE)(void *);
WRes Thread_Create(CThread *thread, THREAD_FUNC_TYPE startAddress, LPVOID parameter);
WRes Thread_Wait(CThread *thread);
WRes Thread_Close(CThread *thread);
typedef struct _CEvent
{
int _created;
int _manual_reset;
int _state;
#ifdef ENV_BEOS
thread_id _waiting[MAX_THREAD];
int _index_waiting;
sem_id _sem;
#else
pthread_mutex_t _mutex;
pthread_cond_t _cond;
#endif
} CEvent;
typedef CEvent CAutoResetEvent;
typedef CEvent CManualResetEvent;
#define Event_Construct(event) (event)->_created = 0
#define Event_IsCreated(event) ((event)->_created)
WRes ManualResetEvent_Create(CManualResetEvent *event, int initialSignaled);
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *event);
WRes AutoResetEvent_Create(CAutoResetEvent *event, int initialSignaled);
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *event);
WRes Event_Set(CEvent *event);
WRes Event_Reset(CEvent *event);
WRes Event_Wait(CEvent *event);
WRes Event_Close(CEvent *event);
typedef struct _CSemaphore
{
int _created;
UInt32 _count;
UInt32 _maxCount;
#ifdef ENV_BEOS
thread_id _waiting[MAX_THREAD];
int _index_waiting;
sem_id _sem;
#else
pthread_mutex_t _mutex;
pthread_cond_t _cond;
#endif
} CSemaphore;
#define Semaphore_Construct(p) (p)->_created = 0
WRes Semaphore_Create(CSemaphore *p, UInt32 initiallyCount, UInt32 maxCount);
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num);
#define Semaphore_Release1(p) Semaphore_ReleaseN(p, 1)
WRes Semaphore_Wait(CSemaphore *p);
WRes Semaphore_Close(CSemaphore *p);
typedef struct {
#ifdef ENV_BEOS
sem_id _sem;
#else
pthread_mutex_t _mutex;
#endif
} CCriticalSection;
WRes CriticalSection_Init(CCriticalSection *p);
#ifdef ENV_BEOS
#define CriticalSection_Delete(p) delete_sem((p)->_sem)
#define CriticalSection_Enter(p) acquire_sem((p)->_sem)
#define CriticalSection_Leave(p) release_sem((p)->_sem)
#else
#ifdef DEBUG_SYNCHRO
void CriticalSection_Delete(CCriticalSection *);
void CriticalSection_Enter(CCriticalSection *);
void CriticalSection_Leave(CCriticalSection *);
#else
#define CriticalSection_Delete(p) pthread_mutex_destroy(&((p)->_mutex))
#define CriticalSection_Enter(p) pthread_mutex_lock(&((p)->_mutex))
#define CriticalSection_Leave(p) pthread_mutex_unlock(&((p)->_mutex))
#endif
#endif
#endif

90
C/Xz.c Normal file
View File

@ -0,0 +1,90 @@
/* Xz.c - Xz
2015-05-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#include "Xz.h"
#include "XzCrc64.h"
const Byte XZ_SIG[XZ_SIG_SIZE] = { 0xFD, '7', 'z', 'X', 'Z', 0 };
const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE] = { 'Y', 'Z' };
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v)
{
unsigned i = 0;
do
{
buf[i++] = (Byte)((v & 0x7F) | 0x80);
v >>= 7;
}
while (v != 0);
buf[i - 1] &= 0x7F;
return i;
}
void Xz_Construct(CXzStream *p)
{
p->numBlocks = p->numBlocksAllocated = 0;
p->blocks = 0;
p->flags = 0;
}
void Xz_Free(CXzStream *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->blocks);
p->numBlocks = p->numBlocksAllocated = 0;
p->blocks = 0;
}
unsigned XzFlags_GetCheckSize(CXzStreamFlags f)
{
unsigned t = XzFlags_GetCheckType(f);
return (t == 0) ? 0 : (4 << ((t - 1) / 3));
}
void XzCheck_Init(CXzCheck *p, unsigned mode)
{
p->mode = mode;
switch (mode)
{
case XZ_CHECK_CRC32: p->crc = CRC_INIT_VAL; break;
case XZ_CHECK_CRC64: p->crc64 = CRC64_INIT_VAL; break;
case XZ_CHECK_SHA256: Sha256_Init(&p->sha); break;
}
}
void XzCheck_Update(CXzCheck *p, const void *data, size_t size)
{
switch (p->mode)
{
case XZ_CHECK_CRC32: p->crc = CrcUpdate(p->crc, data, size); break;
case XZ_CHECK_CRC64: p->crc64 = Crc64Update(p->crc64, data, size); break;
case XZ_CHECK_SHA256: Sha256_Update(&p->sha, (const Byte *)data, size); break;
}
}
int XzCheck_Final(CXzCheck *p, Byte *digest)
{
switch (p->mode)
{
case XZ_CHECK_CRC32:
SetUi32(digest, CRC_GET_DIGEST(p->crc));
break;
case XZ_CHECK_CRC64:
{
int i;
UInt64 v = CRC64_GET_DIGEST(p->crc64);
for (i = 0; i < 8; i++, v >>= 8)
digest[i] = (Byte)(v & 0xFF);
break;
}
case XZ_CHECK_SHA256:
Sha256_Final(&p->sha, digest);
break;
default:
return 0;
}
return 1;
}

275
C/Xz.h Normal file
View File

@ -0,0 +1,275 @@
/* Xz.h - Xz interface
2015-05-01 : Igor Pavlov : Public domain */
#ifndef __XZ_H
#define __XZ_H
#include "Sha256.h"
EXTERN_C_BEGIN
#define XZ_ID_Subblock 1
#define XZ_ID_Delta 3
#define XZ_ID_X86 4
#define XZ_ID_PPC 5
#define XZ_ID_IA64 6
#define XZ_ID_ARM 7
#define XZ_ID_ARMT 8
#define XZ_ID_SPARC 9
#define XZ_ID_LZMA2 0x21
unsigned Xz_ReadVarInt(const Byte *p, size_t maxSize, UInt64 *value);
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v);
/* ---------- xz block ---------- */
#define XZ_BLOCK_HEADER_SIZE_MAX 1024
#define XZ_NUM_FILTERS_MAX 4
#define XZ_BF_NUM_FILTERS_MASK 3
#define XZ_BF_PACK_SIZE (1 << 6)
#define XZ_BF_UNPACK_SIZE (1 << 7)
#define XZ_FILTER_PROPS_SIZE_MAX 20
typedef struct
{
UInt64 id;
UInt32 propsSize;
Byte props[XZ_FILTER_PROPS_SIZE_MAX];
} CXzFilter;
typedef struct
{
UInt64 packSize;
UInt64 unpackSize;
Byte flags;
CXzFilter filters[XZ_NUM_FILTERS_MAX];
} CXzBlock;
#define XzBlock_GetNumFilters(p) (((p)->flags & XZ_BF_NUM_FILTERS_MASK) + 1)
#define XzBlock_HasPackSize(p) (((p)->flags & XZ_BF_PACK_SIZE) != 0)
#define XzBlock_HasUnpackSize(p) (((p)->flags & XZ_BF_UNPACK_SIZE) != 0)
SRes XzBlock_Parse(CXzBlock *p, const Byte *header);
SRes XzBlock_ReadHeader(CXzBlock *p, ISeqInStream *inStream, Bool *isIndex, UInt32 *headerSizeRes);
/* ---------- xz stream ---------- */
#define XZ_SIG_SIZE 6
#define XZ_FOOTER_SIG_SIZE 2
extern const Byte XZ_SIG[XZ_SIG_SIZE];
extern const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE];
#define XZ_STREAM_FLAGS_SIZE 2
#define XZ_STREAM_CRC_SIZE 4
#define XZ_STREAM_HEADER_SIZE (XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE)
#define XZ_STREAM_FOOTER_SIZE (XZ_FOOTER_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE + 4)
#define XZ_CHECK_MASK 0xF
#define XZ_CHECK_NO 0
#define XZ_CHECK_CRC32 1
#define XZ_CHECK_CRC64 4
#define XZ_CHECK_SHA256 10
typedef struct
{
unsigned mode;
UInt32 crc;
UInt64 crc64;
CSha256 sha;
} CXzCheck;
void XzCheck_Init(CXzCheck *p, unsigned mode);
void XzCheck_Update(CXzCheck *p, const void *data, size_t size);
int XzCheck_Final(CXzCheck *p, Byte *digest);
typedef UInt16 CXzStreamFlags;
#define XzFlags_IsSupported(f) ((f) <= XZ_CHECK_MASK)
#define XzFlags_GetCheckType(f) ((f) & XZ_CHECK_MASK)
#define XzFlags_HasDataCrc32(f) (Xz_GetCheckType(f) == XZ_CHECK_CRC32)
unsigned XzFlags_GetCheckSize(CXzStreamFlags f);
SRes Xz_ParseHeader(CXzStreamFlags *p, const Byte *buf);
SRes Xz_ReadHeader(CXzStreamFlags *p, ISeqInStream *inStream);
typedef struct
{
UInt64 unpackSize;
UInt64 totalSize;
} CXzBlockSizes;
typedef struct
{
CXzStreamFlags flags;
size_t numBlocks;
size_t numBlocksAllocated;
CXzBlockSizes *blocks;
UInt64 startOffset;
} CXzStream;
void Xz_Construct(CXzStream *p);
void Xz_Free(CXzStream *p, ISzAlloc *alloc);
#define XZ_SIZE_OVERFLOW ((UInt64)(Int64)-1)
UInt64 Xz_GetUnpackSize(const CXzStream *p);
UInt64 Xz_GetPackSize(const CXzStream *p);
typedef struct
{
size_t num;
size_t numAllocated;
CXzStream *streams;
} CXzs;
void Xzs_Construct(CXzs *p);
void Xzs_Free(CXzs *p, ISzAlloc *alloc);
SRes Xzs_ReadBackward(CXzs *p, ILookInStream *inStream, Int64 *startOffset, ICompressProgress *progress, ISzAlloc *alloc);
UInt64 Xzs_GetNumBlocks(const CXzs *p);
UInt64 Xzs_GetUnpackSize(const CXzs *p);
typedef enum
{
CODER_STATUS_NOT_SPECIFIED, /* use main error code instead */
CODER_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
CODER_STATUS_NOT_FINISHED, /* stream was not finished */
CODER_STATUS_NEEDS_MORE_INPUT /* you must provide more input bytes */
} ECoderStatus;
typedef enum
{
CODER_FINISH_ANY, /* finish at any point */
CODER_FINISH_END /* block must be finished at the end */
} ECoderFinishMode;
typedef struct _IStateCoder
{
void *p;
void (*Free)(void *p, ISzAlloc *alloc);
SRes (*SetProps)(void *p, const Byte *props, size_t propSize, ISzAlloc *alloc);
void (*Init)(void *p);
SRes (*Code)(void *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode, int *wasFinished);
} IStateCoder;
#define MIXCODER_NUM_FILTERS_MAX 4
typedef struct
{
ISzAlloc *alloc;
Byte *buf;
unsigned numCoders;
int finished[MIXCODER_NUM_FILTERS_MAX - 1];
size_t pos[MIXCODER_NUM_FILTERS_MAX - 1];
size_t size[MIXCODER_NUM_FILTERS_MAX - 1];
UInt64 ids[MIXCODER_NUM_FILTERS_MAX];
IStateCoder coders[MIXCODER_NUM_FILTERS_MAX];
} CMixCoder;
void MixCoder_Construct(CMixCoder *p, ISzAlloc *alloc);
void MixCoder_Free(CMixCoder *p);
void MixCoder_Init(CMixCoder *p);
SRes MixCoder_SetFromMethod(CMixCoder *p, unsigned coderIndex, UInt64 methodId);
SRes MixCoder_Code(CMixCoder *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcWasFinished,
ECoderFinishMode finishMode, ECoderStatus *status);
typedef enum
{
XZ_STATE_STREAM_HEADER,
XZ_STATE_STREAM_INDEX,
XZ_STATE_STREAM_INDEX_CRC,
XZ_STATE_STREAM_FOOTER,
XZ_STATE_STREAM_PADDING,
XZ_STATE_BLOCK_HEADER,
XZ_STATE_BLOCK,
XZ_STATE_BLOCK_FOOTER
} EXzState;
typedef struct
{
EXzState state;
UInt32 pos;
unsigned alignPos;
unsigned indexPreSize;
CXzStreamFlags streamFlags;
UInt32 blockHeaderSize;
UInt64 packSize;
UInt64 unpackSize;
UInt64 numBlocks;
UInt64 indexSize;
UInt64 indexPos;
UInt64 padSize;
UInt64 numStartedStreams;
UInt64 numFinishedStreams;
UInt64 numTotalBlocks;
UInt32 crc;
CMixCoder decoder;
CXzBlock block;
CXzCheck check;
CSha256 sha;
Byte shaDigest[SHA256_DIGEST_SIZE];
Byte buf[XZ_BLOCK_HEADER_SIZE_MAX];
} CXzUnpacker;
void XzUnpacker_Construct(CXzUnpacker *p, ISzAlloc *alloc);
void XzUnpacker_Init(CXzUnpacker *p);
void XzUnpacker_Free(CXzUnpacker *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
CODER_FINISH_ANY - use smallest number of input bytes
CODER_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
CODER_STATUS_NOT_FINISHED,
CODER_STATUS_NEEDS_MORE_INPUT - maybe there are more xz streams,
call XzUnpacker_IsStreamWasFinished to check that current stream was finished
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_DATA - Data error
SZ_ERROR_UNSUPPORTED - Unsupported method or method properties
SZ_ERROR_CRC - CRC error
// SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
SZ_ERROR_NO_ARCHIVE - the error with xz Stream Header with one of the following reasons:
- xz Stream Signature failure
- CRC32 of xz Stream Header is failed
- The size of Stream padding is not multiple of four bytes.
It's possible to get that error, if xz stream was finished and the stream
contains some another data. In that case you can call XzUnpacker_GetExtraSize()
function to get real size of xz stream.
*/
SRes XzUnpacker_Code(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ECoderFinishMode finishMode,
ECoderStatus *status);
Bool XzUnpacker_IsStreamWasFinished(CXzUnpacker *p);
/*
Call XzUnpacker_GetExtraSize after XzUnpacker_Code function to detect real size of
xz stream in two cases:
XzUnpacker_Code() returns:
res == SZ_OK && status == CODER_STATUS_NEEDS_MORE_INPUT
res == SZ_ERROR_NO_ARCHIVE
*/
UInt64 XzUnpacker_GetExtraSize(CXzUnpacker *p);
EXTERN_C_END
#endif

86
C/XzCrc64.c Normal file
View File

@ -0,0 +1,86 @@
/* XzCrc64.c -- CRC64 calculation
2015-03-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "XzCrc64.h"
#include "CpuArch.h"
#define kCrc64Poly UINT64_CONST(0xC96C5795D7870F42)
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 4
#else
#define CRC_NUM_TABLES 5
#define CRC_UINT64_SWAP(v) \
((v >> 56) \
| ((v >> 40) & ((UInt64)0xFF << 8)) \
| ((v >> 24) & ((UInt64)0xFF << 16)) \
| ((v >> 8) & ((UInt64)0xFF << 24)) \
| ((v << 8) & ((UInt64)0xFF << 32)) \
| ((v << 24) & ((UInt64)0xFF << 40)) \
| ((v << 40) & ((UInt64)0xFF << 48)) \
| ((v << 56)))
UInt64 MY_FAST_CALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
#ifndef MY_CPU_BE
UInt64 MY_FAST_CALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
typedef UInt64 (MY_FAST_CALL *CRC_FUNC)(UInt64 v, const void *data, size_t size, const UInt64 *table);
static CRC_FUNC g_Crc64Update;
UInt64 g_Crc64Table[256 * CRC_NUM_TABLES];
UInt64 MY_FAST_CALL Crc64Update(UInt64 v, const void *data, size_t size)
{
return g_Crc64Update(v, data, size, g_Crc64Table);
}
UInt64 MY_FAST_CALL Crc64Calc(const void *data, size_t size)
{
return g_Crc64Update(CRC64_INIT_VAL, data, size, g_Crc64Table) ^ CRC64_INIT_VAL;
}
void MY_FAST_CALL Crc64GenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt64 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrc64Poly & ~((r & 1) - 1));
g_Crc64Table[i] = r;
}
for (; i < 256 * CRC_NUM_TABLES; i++)
{
UInt64 r = g_Crc64Table[i - 256];
g_Crc64Table[i] = g_Crc64Table[r & 0xFF] ^ (r >> 8);
}
#ifdef MY_CPU_LE
g_Crc64Update = XzCrc64UpdateT4;
#else
{
#ifndef MY_CPU_BE
UInt32 k = 1;
if (*(const Byte *)&k == 1)
g_Crc64Update = XzCrc64UpdateT4;
else
#endif
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt64 x = g_Crc64Table[i - 256];
g_Crc64Table[i] = CRC_UINT64_SWAP(x);
}
g_Crc64Update = XzCrc64UpdateT1_BeT4;
}
}
#endif
}

26
C/XzCrc64.h Normal file
View File

@ -0,0 +1,26 @@
/* XzCrc64.h -- CRC64 calculation
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __XZ_CRC64_H
#define __XZ_CRC64_H
#include <stddef.h>
#include "7zTypes.h"
EXTERN_C_BEGIN
extern UInt64 g_Crc64Table[];
void MY_FAST_CALL Crc64GenerateTable(void);
#define CRC64_INIT_VAL UINT64_CONST(0xFFFFFFFFFFFFFFFF)
#define CRC64_GET_DIGEST(crc) ((crc) ^ CRC64_INIT_VAL)
#define CRC64_UPDATE_BYTE(crc, b) (g_Crc64Table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 MY_FAST_CALL Crc64Update(UInt64 crc, const void *data, size_t size);
UInt64 MY_FAST_CALL Crc64Calc(const void *data, size_t size);
EXTERN_C_END
#endif

69
C/XzCrc64Opt.c Normal file
View File

@ -0,0 +1,69 @@
/* XzCrc64Opt.c -- CRC64 calculation
2015-03-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 MY_FAST_CALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
UInt32 d = (UInt32)v ^ *(const UInt32 *)p;
v = (v >> 32)
^ table[0x300 + ((d ) & 0xFF)]
^ table[0x200 + ((d >> 8) & 0xFF)]
^ table[0x100 + ((d >> 16) & 0xFF)]
^ table[0x000 + ((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT64_SWAP(v) \
((v >> 56) \
| ((v >> 40) & ((UInt64)0xFF << 8)) \
| ((v >> 24) & ((UInt64)0xFF << 16)) \
| ((v >> 8) & ((UInt64)0xFF << 24)) \
| ((v << 8) & ((UInt64)0xFF << 32)) \
| ((v << 24) & ((UInt64)0xFF << 40)) \
| ((v << 40) & ((UInt64)0xFF << 48)) \
| ((v << 56)))
#define CRC_UPDATE_BYTE_2_BE(crc, b) (table[(Byte)((crc) >> 56) ^ (b)] ^ ((crc) << 8))
UInt64 MY_FAST_CALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT64_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
UInt32 d = (UInt32)(v >> 32) ^ *(const UInt32 *)p;
v = (v << 32)
^ table[0x000 + ((d ) & 0xFF)]
^ table[0x100 + ((d >> 8) & 0xFF)]
^ table[0x200 + ((d >> 16) & 0xFF)]
^ table[0x300 + ((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT64_SWAP(v);
}
#endif

913
C/XzDec.c Normal file
View File

@ -0,0 +1,913 @@
/* XzDec.c -- Xz Decode
2015-11-09 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #define XZ_DUMP */
#ifdef XZ_DUMP
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#include "7zCrc.h"
#include "Alloc.h"
#include "Bra.h"
#include "CpuArch.h"
#include "Delta.h"
#include "Lzma2Dec.h"
#ifdef USE_SUBBLOCK
#include "Bcj3Dec.c"
#include "SbDec.c"
#endif
#include "Xz.h"
#define XZ_CHECK_SIZE_MAX 64
#define CODER_BUF_SIZE (1 << 17)
unsigned Xz_ReadVarInt(const Byte *p, size_t maxSize, UInt64 *value)
{
unsigned i, limit;
*value = 0;
limit = (maxSize > 9) ? 9 : (unsigned)maxSize;
for (i = 0; i < limit;)
{
Byte b = p[i];
*value |= (UInt64)(b & 0x7F) << (7 * i++);
if ((b & 0x80) == 0)
return (b == 0 && i != 1) ? 0 : i;
}
return 0;
}
/* ---------- BraState ---------- */
#define BRA_BUF_SIZE (1 << 14)
typedef struct
{
size_t bufPos;
size_t bufConv;
size_t bufTotal;
UInt32 methodId;
int encodeMode;
UInt32 delta;
UInt32 ip;
UInt32 x86State;
Byte deltaState[DELTA_STATE_SIZE];
Byte buf[BRA_BUF_SIZE];
} CBraState;
static void BraState_Free(void *pp, ISzAlloc *alloc)
{
alloc->Free(alloc, pp);
}
static SRes BraState_SetProps(void *pp, const Byte *props, size_t propSize, ISzAlloc *alloc)
{
CBraState *p = ((CBraState *)pp);
UNUSED_VAR(alloc);
p->ip = 0;
if (p->methodId == XZ_ID_Delta)
{
if (propSize != 1)
return SZ_ERROR_UNSUPPORTED;
p->delta = (unsigned)props[0] + 1;
}
else
{
if (propSize == 4)
{
UInt32 v = GetUi32(props);
switch (p->methodId)
{
case XZ_ID_PPC:
case XZ_ID_ARM:
case XZ_ID_SPARC:
if ((v & 3) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
case XZ_ID_ARMT:
if ((v & 1) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
case XZ_ID_IA64:
if ((v & 0xF) != 0)
return SZ_ERROR_UNSUPPORTED;
break;
}
p->ip = v;
}
else if (propSize != 0)
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
static void BraState_Init(void *pp)
{
CBraState *p = ((CBraState *)pp);
p->bufPos = p->bufConv = p->bufTotal = 0;
x86_Convert_Init(p->x86State);
if (p->methodId == XZ_ID_Delta)
Delta_Init(p->deltaState);
}
#define CASE_BRA_CONV(isa) case XZ_ID_ ## isa: p->bufConv = isa ## _Convert(p->buf, p->bufTotal, p->ip, p->encodeMode); break;
static SRes BraState_Code(void *pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode, int *wasFinished)
{
CBraState *p = ((CBraState *)pp);
SizeT destLenOrig = *destLen;
SizeT srcLenOrig = *srcLen;
UNUSED_VAR(finishMode);
*destLen = 0;
*srcLen = 0;
*wasFinished = 0;
while (destLenOrig > 0)
{
if (p->bufPos != p->bufConv)
{
size_t curSize = p->bufConv - p->bufPos;
if (curSize > destLenOrig)
curSize = destLenOrig;
memcpy(dest, p->buf + p->bufPos, curSize);
p->bufPos += curSize;
*destLen += curSize;
dest += curSize;
destLenOrig -= curSize;
continue;
}
p->bufTotal -= p->bufPos;
memmove(p->buf, p->buf + p->bufPos, p->bufTotal);
p->bufPos = 0;
p->bufConv = 0;
{
size_t curSize = BRA_BUF_SIZE - p->bufTotal;
if (curSize > srcLenOrig)
curSize = srcLenOrig;
memcpy(p->buf + p->bufTotal, src, curSize);
*srcLen += curSize;
src += curSize;
srcLenOrig -= curSize;
p->bufTotal += curSize;
}
if (p->bufTotal == 0)
break;
switch (p->methodId)
{
case XZ_ID_Delta:
if (p->encodeMode)
Delta_Encode(p->deltaState, p->delta, p->buf, p->bufTotal);
else
Delta_Decode(p->deltaState, p->delta, p->buf, p->bufTotal);
p->bufConv = p->bufTotal;
break;
case XZ_ID_X86:
p->bufConv = x86_Convert(p->buf, p->bufTotal, p->ip, &p->x86State, p->encodeMode);
break;
CASE_BRA_CONV(PPC)
CASE_BRA_CONV(IA64)
CASE_BRA_CONV(ARM)
CASE_BRA_CONV(ARMT)
CASE_BRA_CONV(SPARC)
default:
return SZ_ERROR_UNSUPPORTED;
}
p->ip += (UInt32)p->bufConv;
if (p->bufConv == 0)
{
if (!srcWasFinished)
break;
p->bufConv = p->bufTotal;
}
}
if (p->bufTotal == p->bufPos && srcLenOrig == 0 && srcWasFinished)
*wasFinished = 1;
return SZ_OK;
}
SRes BraState_SetFromMethod(IStateCoder *p, UInt64 id, int encodeMode, ISzAlloc *alloc)
{
CBraState *decoder;
if (id != XZ_ID_Delta &&
id != XZ_ID_X86 &&
id != XZ_ID_PPC &&
id != XZ_ID_IA64 &&
id != XZ_ID_ARM &&
id != XZ_ID_ARMT &&
id != XZ_ID_SPARC)
return SZ_ERROR_UNSUPPORTED;
p->p = 0;
decoder = (CBraState *)alloc->Alloc(alloc, sizeof(CBraState));
if (decoder == 0)
return SZ_ERROR_MEM;
decoder->methodId = (UInt32)id;
decoder->encodeMode = encodeMode;
p->p = decoder;
p->Free = BraState_Free;
p->SetProps = BraState_SetProps;
p->Init = BraState_Init;
p->Code = BraState_Code;
return SZ_OK;
}
/* ---------- SbState ---------- */
#ifdef USE_SUBBLOCK
static void SbState_Free(void *pp, ISzAlloc *alloc)
{
CSbDec *p = (CSbDec *)pp;
SbDec_Free(p);
alloc->Free(alloc, pp);
}
static SRes SbState_SetProps(void *pp, const Byte *props, size_t propSize, ISzAlloc *alloc)
{
UNUSED_VAR(pp);
UNUSED_VAR(props);
UNUSED_VAR(alloc);
return (propSize == 0) ? SZ_OK : SZ_ERROR_UNSUPPORTED;
}
static void SbState_Init(void *pp)
{
SbDec_Init((CSbDec *)pp);
}
static SRes SbState_Code(void *pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode, int *wasFinished)
{
CSbDec *p = (CSbDec *)pp;
SRes res;
UNUSED_VAR(srcWasFinished);
p->dest = dest;
p->destLen = *destLen;
p->src = src;
p->srcLen = *srcLen;
p->finish = finishMode; /* change it */
res = SbDec_Decode((CSbDec *)pp);
*destLen -= p->destLen;
*srcLen -= p->srcLen;
*wasFinished = (*destLen == 0 && *srcLen == 0); /* change it */
return res;
}
SRes SbState_SetFromMethod(IStateCoder *p, ISzAlloc *alloc)
{
CSbDec *decoder;
p->p = 0;
decoder = alloc->Alloc(alloc, sizeof(CSbDec));
if (decoder == 0)
return SZ_ERROR_MEM;
p->p = decoder;
p->Free = SbState_Free;
p->SetProps = SbState_SetProps;
p->Init = SbState_Init;
p->Code = SbState_Code;
SbDec_Construct(decoder);
SbDec_SetAlloc(decoder, alloc);
return SZ_OK;
}
#endif
/* ---------- Lzma2State ---------- */
static void Lzma2State_Free(void *pp, ISzAlloc *alloc)
{
Lzma2Dec_Free((CLzma2Dec *)pp, alloc);
alloc->Free(alloc, pp);
}
static SRes Lzma2State_SetProps(void *pp, const Byte *props, size_t propSize, ISzAlloc *alloc)
{
if (propSize != 1)
return SZ_ERROR_UNSUPPORTED;
return Lzma2Dec_Allocate((CLzma2Dec *)pp, props[0], alloc);
}
static void Lzma2State_Init(void *pp)
{
Lzma2Dec_Init((CLzma2Dec *)pp);
}
static SRes Lzma2State_Code(void *pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode, int *wasFinished)
{
ELzmaStatus status;
/* ELzmaFinishMode fm = (finishMode == LZMA_FINISH_ANY) ? LZMA_FINISH_ANY : LZMA_FINISH_END; */
SRes res = Lzma2Dec_DecodeToBuf((CLzma2Dec *)pp, dest, destLen, src, srcLen, (ELzmaFinishMode)finishMode, &status);
UNUSED_VAR(srcWasFinished);
*wasFinished = (status == LZMA_STATUS_FINISHED_WITH_MARK);
return res;
}
static SRes Lzma2State_SetFromMethod(IStateCoder *p, ISzAlloc *alloc)
{
CLzma2Dec *decoder = (CLzma2Dec *)alloc->Alloc(alloc, sizeof(CLzma2Dec));
p->p = decoder;
if (decoder == 0)
return SZ_ERROR_MEM;
p->Free = Lzma2State_Free;
p->SetProps = Lzma2State_SetProps;
p->Init = Lzma2State_Init;
p->Code = Lzma2State_Code;
Lzma2Dec_Construct(decoder);
return SZ_OK;
}
void MixCoder_Construct(CMixCoder *p, ISzAlloc *alloc)
{
unsigned i;
p->alloc = alloc;
p->buf = NULL;
p->numCoders = 0;
for (i = 0; i < MIXCODER_NUM_FILTERS_MAX; i++)
p->coders[i].p = NULL;
}
void MixCoder_Free(CMixCoder *p)
{
unsigned i;
for (i = 0; i < p->numCoders; i++)
{
IStateCoder *sc = &p->coders[i];
if (p->alloc && sc->p)
sc->Free(sc->p, p->alloc);
}
p->numCoders = 0;
if (p->buf)
{
p->alloc->Free(p->alloc, p->buf);
p->buf = NULL; /* 9.31: the BUG was fixed */
}
}
void MixCoder_Init(CMixCoder *p)
{
unsigned i;
for (i = 0; i < MIXCODER_NUM_FILTERS_MAX - 1; i++)
{
p->size[i] = 0;
p->pos[i] = 0;
p->finished[i] = 0;
}
for (i = 0; i < p->numCoders; i++)
{
IStateCoder *coder = &p->coders[i];
coder->Init(coder->p);
}
}
SRes MixCoder_SetFromMethod(CMixCoder *p, unsigned coderIndex, UInt64 methodId)
{
IStateCoder *sc = &p->coders[coderIndex];
p->ids[coderIndex] = methodId;
switch (methodId)
{
case XZ_ID_LZMA2: return Lzma2State_SetFromMethod(sc, p->alloc);
#ifdef USE_SUBBLOCK
case XZ_ID_Subblock: return SbState_SetFromMethod(sc, p->alloc);
#endif
}
if (coderIndex == 0)
return SZ_ERROR_UNSUPPORTED;
return BraState_SetFromMethod(sc, methodId, 0, p->alloc);
}
SRes MixCoder_Code(CMixCoder *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcWasFinished,
ECoderFinishMode finishMode, ECoderStatus *status)
{
SizeT destLenOrig = *destLen;
SizeT srcLenOrig = *srcLen;
Bool allFinished = True;
*destLen = 0;
*srcLen = 0;
*status = CODER_STATUS_NOT_FINISHED;
if (!p->buf)
{
p->buf = (Byte *)p->alloc->Alloc(p->alloc, CODER_BUF_SIZE * (MIXCODER_NUM_FILTERS_MAX - 1));
if (!p->buf)
return SZ_ERROR_MEM;
}
if (p->numCoders != 1)
finishMode = CODER_FINISH_ANY;
for (;;)
{
Bool processed = False;
unsigned i;
/*
if (p->numCoders == 1 && *destLen == destLenOrig && finishMode == LZMA_FINISH_ANY)
break;
*/
for (i = 0; i < p->numCoders; i++)
{
SRes res;
IStateCoder *coder = &p->coders[i];
Byte *destCur;
SizeT destLenCur, srcLenCur;
const Byte *srcCur;
int srcFinishedCur;
int encodingWasFinished;
if (i == 0)
{
srcCur = src;
srcLenCur = srcLenOrig - *srcLen;
srcFinishedCur = srcWasFinished;
}
else
{
srcCur = p->buf + (CODER_BUF_SIZE * (i - 1)) + p->pos[i - 1];
srcLenCur = p->size[i - 1] - p->pos[i - 1];
srcFinishedCur = p->finished[i - 1];
}
if (i == p->numCoders - 1)
{
destCur = dest;
destLenCur = destLenOrig - *destLen;
}
else
{
if (p->pos[i] != p->size[i])
continue;
destCur = p->buf + (CODER_BUF_SIZE * i);
destLenCur = CODER_BUF_SIZE;
}
res = coder->Code(coder->p, destCur, &destLenCur, srcCur, &srcLenCur, srcFinishedCur, finishMode, &encodingWasFinished);
if (!encodingWasFinished)
allFinished = False;
if (i == 0)
{
*srcLen += srcLenCur;
src += srcLenCur;
}
else
{
p->pos[i - 1] += srcLenCur;
}
if (i == p->numCoders - 1)
{
*destLen += destLenCur;
dest += destLenCur;
}
else
{
p->size[i] = destLenCur;
p->pos[i] = 0;
p->finished[i] = encodingWasFinished;
}
if (res != SZ_OK)
return res;
if (destLenCur != 0 || srcLenCur != 0)
processed = True;
}
if (!processed)
break;
}
if (allFinished)
*status = CODER_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
SRes Xz_ParseHeader(CXzStreamFlags *p, const Byte *buf)
{
*p = (CXzStreamFlags)GetBe16(buf + XZ_SIG_SIZE);
if (CrcCalc(buf + XZ_SIG_SIZE, XZ_STREAM_FLAGS_SIZE) !=
GetUi32(buf + XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE))
return SZ_ERROR_NO_ARCHIVE;
return XzFlags_IsSupported(*p) ? SZ_OK : SZ_ERROR_UNSUPPORTED;
}
static Bool Xz_CheckFooter(CXzStreamFlags flags, UInt64 indexSize, const Byte *buf)
{
return
indexSize == (((UInt64)GetUi32(buf + 4) + 1) << 2) &&
(GetUi32(buf) == CrcCalc(buf + 4, 6) &&
flags == GetBe16(buf + 8) &&
memcmp(buf + 10, XZ_FOOTER_SIG, XZ_FOOTER_SIG_SIZE) == 0);
}
#define READ_VARINT_AND_CHECK(buf, pos, size, res) \
{ unsigned s = Xz_ReadVarInt(buf + pos, size - pos, res); \
if (s == 0) return SZ_ERROR_ARCHIVE; pos += s; }
SRes XzBlock_Parse(CXzBlock *p, const Byte *header)
{
unsigned pos;
unsigned numFilters, i;
unsigned headerSize = (unsigned)header[0] << 2;
if (CrcCalc(header, headerSize) != GetUi32(header + headerSize))
return SZ_ERROR_ARCHIVE;
pos = 1;
if (pos == headerSize)
return SZ_ERROR_ARCHIVE;
p->flags = header[pos++];
if (XzBlock_HasPackSize(p))
{
READ_VARINT_AND_CHECK(header, pos, headerSize, &p->packSize);
if (p->packSize == 0 || p->packSize + headerSize >= (UInt64)1 << 63)
return SZ_ERROR_ARCHIVE;
}
if (XzBlock_HasUnpackSize(p))
READ_VARINT_AND_CHECK(header, pos, headerSize, &p->unpackSize);
numFilters = XzBlock_GetNumFilters(p);
for (i = 0; i < numFilters; i++)
{
CXzFilter *filter = p->filters + i;
UInt64 size;
READ_VARINT_AND_CHECK(header, pos, headerSize, &filter->id);
READ_VARINT_AND_CHECK(header, pos, headerSize, &size);
if (size > headerSize - pos || size > XZ_FILTER_PROPS_SIZE_MAX)
return SZ_ERROR_ARCHIVE;
filter->propsSize = (UInt32)size;
memcpy(filter->props, header + pos, (size_t)size);
pos += (unsigned)size;
#ifdef XZ_DUMP
printf("\nf[%u] = %2X: ", i, (unsigned)filter->id);
{
unsigned i;
for (i = 0; i < size; i++)
printf(" %2X", filter->props[i]);
}
#endif
}
while (pos < headerSize)
if (header[pos++] != 0)
return SZ_ERROR_ARCHIVE;
return SZ_OK;
}
SRes XzDec_Init(CMixCoder *p, const CXzBlock *block)
{
unsigned i;
Bool needReInit = True;
unsigned numFilters = XzBlock_GetNumFilters(block);
if (numFilters == p->numCoders)
{
for (i = 0; i < numFilters; i++)
if (p->ids[i] != block->filters[numFilters - 1 - i].id)
break;
needReInit = (i != numFilters);
}
if (needReInit)
{
MixCoder_Free(p);
p->numCoders = numFilters;
for (i = 0; i < numFilters; i++)
{
const CXzFilter *f = &block->filters[numFilters - 1 - i];
RINOK(MixCoder_SetFromMethod(p, i, f->id));
}
}
for (i = 0; i < numFilters; i++)
{
const CXzFilter *f = &block->filters[numFilters - 1 - i];
IStateCoder *sc = &p->coders[i];
RINOK(sc->SetProps(sc->p, f->props, f->propsSize, p->alloc));
}
MixCoder_Init(p);
return SZ_OK;
}
void XzUnpacker_Init(CXzUnpacker *p)
{
p->state = XZ_STATE_STREAM_HEADER;
p->pos = 0;
p->numStartedStreams = 0;
p->numFinishedStreams = 0;
p->numTotalBlocks = 0;
p->padSize = 0;
}
void XzUnpacker_Construct(CXzUnpacker *p, ISzAlloc *alloc)
{
MixCoder_Construct(&p->decoder, alloc);
XzUnpacker_Init(p);
}
void XzUnpacker_Free(CXzUnpacker *p)
{
MixCoder_Free(&p->decoder);
}
SRes XzUnpacker_Code(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ECoderFinishMode finishMode, ECoderStatus *status)
{
SizeT destLenOrig = *destLen;
SizeT srcLenOrig = *srcLen;
*destLen = 0;
*srcLen = 0;
*status = CODER_STATUS_NOT_SPECIFIED;
for (;;)
{
SizeT srcRem = srcLenOrig - *srcLen;
if (p->state == XZ_STATE_BLOCK)
{
SizeT destLen2 = destLenOrig - *destLen;
SizeT srcLen2 = srcLenOrig - *srcLen;
SRes res;
if (srcLen2 == 0 && destLen2 == 0)
{
*status = CODER_STATUS_NOT_FINISHED;
return SZ_OK;
}
res = MixCoder_Code(&p->decoder, dest, &destLen2, src, &srcLen2, False, finishMode, status);
XzCheck_Update(&p->check, dest, destLen2);
(*srcLen) += srcLen2;
src += srcLen2;
p->packSize += srcLen2;
(*destLen) += destLen2;
dest += destLen2;
p->unpackSize += destLen2;
RINOK(res);
if (*status == CODER_STATUS_FINISHED_WITH_MARK)
{
Byte temp[32];
unsigned num = Xz_WriteVarInt(temp, p->packSize + p->blockHeaderSize + XzFlags_GetCheckSize(p->streamFlags));
num += Xz_WriteVarInt(temp + num, p->unpackSize);
Sha256_Update(&p->sha, temp, num);
p->indexSize += num;
p->numBlocks++;
p->state = XZ_STATE_BLOCK_FOOTER;
p->pos = 0;
p->alignPos = 0;
}
else if (srcLen2 == 0 && destLen2 == 0)
return SZ_OK;
continue;
}
if (srcRem == 0)
{
*status = CODER_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
switch (p->state)
{
case XZ_STATE_STREAM_HEADER:
{
if (p->pos < XZ_STREAM_HEADER_SIZE)
{
if (p->pos < XZ_SIG_SIZE && *src != XZ_SIG[p->pos])
return SZ_ERROR_NO_ARCHIVE;
p->buf[p->pos++] = *src++;
(*srcLen)++;
}
else
{
RINOK(Xz_ParseHeader(&p->streamFlags, p->buf));
p->numStartedStreams++;
p->state = XZ_STATE_BLOCK_HEADER;
Sha256_Init(&p->sha);
p->indexSize = 0;
p->numBlocks = 0;
p->pos = 0;
}
break;
}
case XZ_STATE_BLOCK_HEADER:
{
if (p->pos == 0)
{
p->buf[p->pos++] = *src++;
(*srcLen)++;
if (p->buf[0] == 0)
{
p->indexPreSize = 1 + Xz_WriteVarInt(p->buf + 1, p->numBlocks);
p->indexPos = p->indexPreSize;
p->indexSize += p->indexPreSize;
Sha256_Final(&p->sha, p->shaDigest);
Sha256_Init(&p->sha);
p->crc = CrcUpdate(CRC_INIT_VAL, p->buf, p->indexPreSize);
p->state = XZ_STATE_STREAM_INDEX;
}
p->blockHeaderSize = ((UInt32)p->buf[0] << 2) + 4;
}
else if (p->pos != p->blockHeaderSize)
{
UInt32 cur = p->blockHeaderSize - p->pos;
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
}
else
{
RINOK(XzBlock_Parse(&p->block, p->buf));
p->numTotalBlocks++;
p->state = XZ_STATE_BLOCK;
p->packSize = 0;
p->unpackSize = 0;
XzCheck_Init(&p->check, XzFlags_GetCheckType(p->streamFlags));
RINOK(XzDec_Init(&p->decoder, &p->block));
}
break;
}
case XZ_STATE_BLOCK_FOOTER:
{
if (((p->packSize + p->alignPos) & 3) != 0)
{
(*srcLen)++;
p->alignPos++;
if (*src++ != 0)
return SZ_ERROR_CRC;
}
else
{
UInt32 checkSize = XzFlags_GetCheckSize(p->streamFlags);
UInt32 cur = checkSize - p->pos;
if (cur != 0)
{
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
}
else
{
Byte digest[XZ_CHECK_SIZE_MAX];
p->state = XZ_STATE_BLOCK_HEADER;
p->pos = 0;
if (XzCheck_Final(&p->check, digest) && memcmp(digest, p->buf, checkSize) != 0)
return SZ_ERROR_CRC;
}
}
break;
}
case XZ_STATE_STREAM_INDEX:
{
if (p->pos < p->indexPreSize)
{
(*srcLen)++;
if (*src++ != p->buf[p->pos++])
return SZ_ERROR_CRC;
}
else
{
if (p->indexPos < p->indexSize)
{
UInt64 cur = p->indexSize - p->indexPos;
if (srcRem > cur)
srcRem = (SizeT)cur;
p->crc = CrcUpdate(p->crc, src, srcRem);
Sha256_Update(&p->sha, src, srcRem);
(*srcLen) += srcRem;
src += srcRem;
p->indexPos += srcRem;
}
else if ((p->indexPos & 3) != 0)
{
Byte b = *src++;
p->crc = CRC_UPDATE_BYTE(p->crc, b);
(*srcLen)++;
p->indexPos++;
p->indexSize++;
if (b != 0)
return SZ_ERROR_CRC;
}
else
{
Byte digest[SHA256_DIGEST_SIZE];
p->state = XZ_STATE_STREAM_INDEX_CRC;
p->indexSize += 4;
p->pos = 0;
Sha256_Final(&p->sha, digest);
if (memcmp(digest, p->shaDigest, SHA256_DIGEST_SIZE) != 0)
return SZ_ERROR_CRC;
}
}
break;
}
case XZ_STATE_STREAM_INDEX_CRC:
{
if (p->pos < 4)
{
(*srcLen)++;
p->buf[p->pos++] = *src++;
}
else
{
p->state = XZ_STATE_STREAM_FOOTER;
p->pos = 0;
if (CRC_GET_DIGEST(p->crc) != GetUi32(p->buf))
return SZ_ERROR_CRC;
}
break;
}
case XZ_STATE_STREAM_FOOTER:
{
UInt32 cur = XZ_STREAM_FOOTER_SIZE - p->pos;
if (cur > srcRem)
cur = (UInt32)srcRem;
memcpy(p->buf + p->pos, src, cur);
p->pos += cur;
(*srcLen) += cur;
src += cur;
if (p->pos == XZ_STREAM_FOOTER_SIZE)
{
p->state = XZ_STATE_STREAM_PADDING;
p->numFinishedStreams++;
p->padSize = 0;
if (!Xz_CheckFooter(p->streamFlags, p->indexSize, p->buf))
return SZ_ERROR_CRC;
}
break;
}
case XZ_STATE_STREAM_PADDING:
{
if (*src != 0)
{
if (((UInt32)p->padSize & 3) != 0)
return SZ_ERROR_NO_ARCHIVE;
p->pos = 0;
p->state = XZ_STATE_STREAM_HEADER;
}
else
{
(*srcLen)++;
src++;
p->padSize++;
}
break;
}
case XZ_STATE_BLOCK: break; /* to disable GCC warning */
}
}
/*
if (p->state == XZ_STATE_FINISHED)
*status = CODER_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
*/
}
Bool XzUnpacker_IsStreamWasFinished(CXzUnpacker *p)
{
return (p->state == XZ_STATE_STREAM_PADDING) && (((UInt32)p->padSize & 3) == 0);
}
UInt64 XzUnpacker_GetExtraSize(CXzUnpacker *p)
{
UInt64 num = 0;
if (p->state == XZ_STATE_STREAM_PADDING)
num += p->padSize;
else if (p->state == XZ_STATE_STREAM_HEADER)
num += p->padSize + p->pos;
return num;
}

538
C/XzEnc.c Normal file
View File

@ -0,0 +1,538 @@
/* XzEnc.c -- Xz Encode
2015-09-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <stdlib.h>
#include <string.h>
#include "7zCrc.h"
#include "Alloc.h"
#include "Bra.h"
#include "CpuArch.h"
#ifdef USE_SUBBLOCK
#include "Bcj3Enc.c"
#include "SbFind.c"
#include "SbEnc.c"
#endif
#include "XzEnc.h"
#define XzBlock_ClearFlags(p) (p)->flags = 0;
#define XzBlock_SetNumFilters(p, n) (p)->flags |= ((n) - 1);
#define XzBlock_SetHasPackSize(p) (p)->flags |= XZ_BF_PACK_SIZE;
#define XzBlock_SetHasUnpackSize(p) (p)->flags |= XZ_BF_UNPACK_SIZE;
static SRes WriteBytes(ISeqOutStream *s, const void *buf, UInt32 size)
{
return (s->Write(s, buf, size) == size) ? SZ_OK : SZ_ERROR_WRITE;
}
static SRes WriteBytesAndCrc(ISeqOutStream *s, const void *buf, UInt32 size, UInt32 *crc)
{
*crc = CrcUpdate(*crc, buf, size);
return WriteBytes(s, buf, size);
}
static SRes Xz_WriteHeader(CXzStreamFlags f, ISeqOutStream *s)
{
UInt32 crc;
Byte header[XZ_STREAM_HEADER_SIZE];
memcpy(header, XZ_SIG, XZ_SIG_SIZE);
header[XZ_SIG_SIZE] = (Byte)(f >> 8);
header[XZ_SIG_SIZE + 1] = (Byte)(f & 0xFF);
crc = CrcCalc(header + XZ_SIG_SIZE, XZ_STREAM_FLAGS_SIZE);
SetUi32(header + XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE, crc);
return WriteBytes(s, header, XZ_STREAM_HEADER_SIZE);
}
static SRes XzBlock_WriteHeader(const CXzBlock *p, ISeqOutStream *s)
{
Byte header[XZ_BLOCK_HEADER_SIZE_MAX];
unsigned pos = 1;
unsigned numFilters, i;
header[pos++] = p->flags;
if (XzBlock_HasPackSize(p)) pos += Xz_WriteVarInt(header + pos, p->packSize);
if (XzBlock_HasUnpackSize(p)) pos += Xz_WriteVarInt(header + pos, p->unpackSize);
numFilters = XzBlock_GetNumFilters(p);
for (i = 0; i < numFilters; i++)
{
const CXzFilter *f = &p->filters[i];
pos += Xz_WriteVarInt(header + pos, f->id);
pos += Xz_WriteVarInt(header + pos, f->propsSize);
memcpy(header + pos, f->props, f->propsSize);
pos += f->propsSize;
}
while ((pos & 3) != 0)
header[pos++] = 0;
header[0] = (Byte)(pos >> 2);
SetUi32(header + pos, CrcCalc(header, pos));
return WriteBytes(s, header, pos + 4);
}
static SRes Xz_WriteFooter(CXzStream *p, ISeqOutStream *s)
{
Byte buf[32];
UInt64 globalPos;
{
UInt32 crc = CRC_INIT_VAL;
unsigned pos = 1 + Xz_WriteVarInt(buf + 1, p->numBlocks);
size_t i;
globalPos = pos;
buf[0] = 0;
RINOK(WriteBytesAndCrc(s, buf, pos, &crc));
for (i = 0; i < p->numBlocks; i++)
{
const CXzBlockSizes *block = &p->blocks[i];
pos = Xz_WriteVarInt(buf, block->totalSize);
pos += Xz_WriteVarInt(buf + pos, block->unpackSize);
globalPos += pos;
RINOK(WriteBytesAndCrc(s, buf, pos, &crc));
}
pos = ((unsigned)globalPos & 3);
if (pos != 0)
{
buf[0] = buf[1] = buf[2] = 0;
RINOK(WriteBytesAndCrc(s, buf, 4 - pos, &crc));
globalPos += 4 - pos;
}
{
SetUi32(buf, CRC_GET_DIGEST(crc));
RINOK(WriteBytes(s, buf, 4));
globalPos += 4;
}
}
{
UInt32 indexSize = (UInt32)((globalPos >> 2) - 1);
SetUi32(buf + 4, indexSize);
buf[8] = (Byte)(p->flags >> 8);
buf[9] = (Byte)(p->flags & 0xFF);
SetUi32(buf, CrcCalc(buf + 4, 6));
memcpy(buf + 10, XZ_FOOTER_SIG, XZ_FOOTER_SIG_SIZE);
return WriteBytes(s, buf, 12);
}
}
static SRes Xz_AddIndexRecord(CXzStream *p, UInt64 unpackSize, UInt64 totalSize, ISzAlloc *alloc)
{
if (!p->blocks || p->numBlocksAllocated == p->numBlocks)
{
size_t num = p->numBlocks * 2 + 1;
size_t newSize = sizeof(CXzBlockSizes) * num;
CXzBlockSizes *blocks;
if (newSize / sizeof(CXzBlockSizes) != num)
return SZ_ERROR_MEM;
blocks = (CXzBlockSizes *)alloc->Alloc(alloc, newSize);
if (!blocks)
return SZ_ERROR_MEM;
if (p->numBlocks != 0)
{
memcpy(blocks, p->blocks, p->numBlocks * sizeof(CXzBlockSizes));
alloc->Free(alloc, p->blocks);
}
p->blocks = blocks;
p->numBlocksAllocated = num;
}
{
CXzBlockSizes *block = &p->blocks[p->numBlocks++];
block->unpackSize = unpackSize;
block->totalSize = totalSize;
}
return SZ_OK;
}
/* ---------- CSeqCheckInStream ---------- */
typedef struct
{
ISeqInStream p;
ISeqInStream *realStream;
UInt64 processed;
CXzCheck check;
} CSeqCheckInStream;
static void SeqCheckInStream_Init(CSeqCheckInStream *p, unsigned mode)
{
p->processed = 0;
XzCheck_Init(&p->check, mode);
}
static void SeqCheckInStream_GetDigest(CSeqCheckInStream *p, Byte *digest)
{
XzCheck_Final(&p->check, digest);
}
static SRes SeqCheckInStream_Read(void *pp, void *data, size_t *size)
{
CSeqCheckInStream *p = (CSeqCheckInStream *)pp;
SRes res = p->realStream->Read(p->realStream, data, size);
XzCheck_Update(&p->check, data, *size);
p->processed += *size;
return res;
}
/* ---------- CSeqSizeOutStream ---------- */
typedef struct
{
ISeqOutStream p;
ISeqOutStream *realStream;
UInt64 processed;
} CSeqSizeOutStream;
static size_t MyWrite(void *pp, const void *data, size_t size)
{
CSeqSizeOutStream *p = (CSeqSizeOutStream *)pp;
size = p->realStream->Write(p->realStream, data, size);
p->processed += size;
return size;
}
/* ---------- CSeqInFilter ---------- */
#define FILTER_BUF_SIZE (1 << 20)
typedef struct
{
ISeqInStream p;
ISeqInStream *realStream;
IStateCoder StateCoder;
Byte *buf;
size_t curPos;
size_t endPos;
int srcWasFinished;
} CSeqInFilter;
static SRes SeqInFilter_Read(void *pp, void *data, size_t *size)
{
CSeqInFilter *p = (CSeqInFilter *)pp;
size_t sizeOriginal = *size;
if (sizeOriginal == 0)
return SZ_OK;
*size = 0;
for (;;)
{
if (!p->srcWasFinished && p->curPos == p->endPos)
{
p->curPos = 0;
p->endPos = FILTER_BUF_SIZE;
RINOK(p->realStream->Read(p->realStream, p->buf, &p->endPos));
if (p->endPos == 0)
p->srcWasFinished = 1;
}
{
SizeT srcLen = p->endPos - p->curPos;
int wasFinished;
SRes res;
*size = sizeOriginal;
res = p->StateCoder.Code(p->StateCoder.p, data, size, p->buf + p->curPos, &srcLen,
p->srcWasFinished, CODER_FINISH_ANY, &wasFinished);
p->curPos += srcLen;
if (*size != 0 || srcLen == 0 || res != 0)
return res;
}
}
}
static void SeqInFilter_Construct(CSeqInFilter *p)
{
p->buf = NULL;
p->p.Read = SeqInFilter_Read;
}
static void SeqInFilter_Free(CSeqInFilter *p)
{
if (p->buf)
{
g_Alloc.Free(&g_Alloc, p->buf);
p->buf = NULL;
}
}
SRes BraState_SetFromMethod(IStateCoder *p, UInt64 id, int encodeMode, ISzAlloc *alloc);
static SRes SeqInFilter_Init(CSeqInFilter *p, const CXzFilter *props)
{
if (!p->buf)
{
p->buf = g_Alloc.Alloc(&g_Alloc, FILTER_BUF_SIZE);
if (!p->buf)
return SZ_ERROR_MEM;
}
p->curPos = p->endPos = 0;
p->srcWasFinished = 0;
RINOK(BraState_SetFromMethod(&p->StateCoder, props->id, 1, &g_Alloc));
RINOK(p->StateCoder.SetProps(p->StateCoder.p, props->props, props->propsSize, &g_Alloc));
p->StateCoder.Init(p->StateCoder.p);
return SZ_OK;
}
/* ---------- CSbEncInStream ---------- */
#ifdef USE_SUBBLOCK
typedef struct
{
ISeqInStream p;
ISeqInStream *inStream;
CSbEnc enc;
} CSbEncInStream;
static SRes SbEncInStream_Read(void *pp, void *data, size_t *size)
{
CSbEncInStream *p = (CSbEncInStream *)pp;
size_t sizeOriginal = *size;
if (sizeOriginal == 0)
return S_OK;
for (;;)
{
if (p->enc.needRead && !p->enc.readWasFinished)
{
size_t processed = p->enc.needReadSizeMax;
RINOK(p->inStream->Read(p->inStream, p->enc.buf + p->enc.readPos, &processed));
p->enc.readPos += processed;
if (processed == 0)
{
p->enc.readWasFinished = True;
p->enc.isFinalFinished = True;
}
p->enc.needRead = False;
}
*size = sizeOriginal;
RINOK(SbEnc_Read(&p->enc, data, size));
if (*size != 0 || !p->enc.needRead)
return S_OK;
}
}
void SbEncInStream_Construct(CSbEncInStream *p, ISzAlloc *alloc)
{
SbEnc_Construct(&p->enc, alloc);
p->p.Read = SbEncInStream_Read;
}
SRes SbEncInStream_Init(CSbEncInStream *p)
{
return SbEnc_Init(&p->enc);
}
void SbEncInStream_Free(CSbEncInStream *p)
{
SbEnc_Free(&p->enc);
}
#endif
typedef struct
{
CLzma2EncHandle lzma2;
#ifdef USE_SUBBLOCK
CSbEncInStream sb;
#endif
CSeqInFilter filter;
ISzAlloc *alloc;
ISzAlloc *bigAlloc;
} CLzma2WithFilters;
static void Lzma2WithFilters_Construct(CLzma2WithFilters *p, ISzAlloc *alloc, ISzAlloc *bigAlloc)
{
p->alloc = alloc;
p->bigAlloc = bigAlloc;
p->lzma2 = NULL;
#ifdef USE_SUBBLOCK
SbEncInStream_Construct(&p->sb, alloc);
#endif
SeqInFilter_Construct(&p->filter);
}
static SRes Lzma2WithFilters_Create(CLzma2WithFilters *p)
{
p->lzma2 = Lzma2Enc_Create(p->alloc, p->bigAlloc);
if (!p->lzma2)
return SZ_ERROR_MEM;
return SZ_OK;
}
static void Lzma2WithFilters_Free(CLzma2WithFilters *p)
{
SeqInFilter_Free(&p->filter);
#ifdef USE_SUBBLOCK
SbEncInStream_Free(&p->sb);
#endif
if (p->lzma2)
{
Lzma2Enc_Destroy(p->lzma2);
p->lzma2 = NULL;
}
}
void XzProps_Init(CXzProps *p)
{
p->lzma2Props = NULL;
p->filterProps = NULL;
p->checkId = XZ_CHECK_CRC32;
}
void XzFilterProps_Init(CXzFilterProps *p)
{
p->id = 0;
p->delta = 0;
p->ip = 0;
p->ipDefined = False;
}
static SRes Xz_Compress(CXzStream *xz, CLzma2WithFilters *lzmaf,
ISeqOutStream *outStream, ISeqInStream *inStream,
const CXzProps *props, ICompressProgress *progress)
{
xz->flags = (Byte)props->checkId;
RINOK(Lzma2Enc_SetProps(lzmaf->lzma2, props->lzma2Props));
RINOK(Xz_WriteHeader(xz->flags, outStream));
{
CSeqCheckInStream checkInStream;
CSeqSizeOutStream seqSizeOutStream;
CXzBlock block;
unsigned filterIndex = 0;
CXzFilter *filter = NULL;
const CXzFilterProps *fp = props->filterProps;
XzBlock_ClearFlags(&block);
XzBlock_SetNumFilters(&block, 1 + (fp ? 1 : 0));
if (fp)
{
filter = &block.filters[filterIndex++];
filter->id = fp->id;
filter->propsSize = 0;
if (fp->id == XZ_ID_Delta)
{
filter->props[0] = (Byte)(fp->delta - 1);
filter->propsSize = 1;
}
else if (fp->ipDefined)
{
SetUi32(filter->props, fp->ip);
filter->propsSize = 4;
}
}
{
CXzFilter *f = &block.filters[filterIndex++];
f->id = XZ_ID_LZMA2;
f->propsSize = 1;
f->props[0] = Lzma2Enc_WriteProperties(lzmaf->lzma2);
}
seqSizeOutStream.p.Write = MyWrite;
seqSizeOutStream.realStream = outStream;
seqSizeOutStream.processed = 0;
RINOK(XzBlock_WriteHeader(&block, &seqSizeOutStream.p));
checkInStream.p.Read = SeqCheckInStream_Read;
checkInStream.realStream = inStream;
SeqCheckInStream_Init(&checkInStream, XzFlags_GetCheckType(xz->flags));
if (fp)
{
#ifdef USE_SUBBLOCK
if (fp->id == XZ_ID_Subblock)
{
lzmaf->sb.inStream = &checkInStream.p;
RINOK(SbEncInStream_Init(&lzmaf->sb));
}
else
#endif
{
lzmaf->filter.realStream = &checkInStream.p;
RINOK(SeqInFilter_Init(&lzmaf->filter, filter));
}
}
{
UInt64 packPos = seqSizeOutStream.processed;
SRes res = Lzma2Enc_Encode(lzmaf->lzma2, &seqSizeOutStream.p,
fp ?
#ifdef USE_SUBBLOCK
(fp->id == XZ_ID_Subblock) ? &lzmaf->sb.p:
#endif
&lzmaf->filter.p:
&checkInStream.p,
progress);
RINOK(res);
block.unpackSize = checkInStream.processed;
block.packSize = seqSizeOutStream.processed - packPos;
}
{
unsigned padSize = 0;
Byte buf[128];
while ((((unsigned)block.packSize + padSize) & 3) != 0)
buf[padSize++] = 0;
SeqCheckInStream_GetDigest(&checkInStream, buf + padSize);
RINOK(WriteBytes(&seqSizeOutStream.p, buf, padSize + XzFlags_GetCheckSize(xz->flags)));
RINOK(Xz_AddIndexRecord(xz, block.unpackSize, seqSizeOutStream.processed - padSize, &g_Alloc));
}
}
return Xz_WriteFooter(xz, outStream);
}
SRes Xz_Encode(ISeqOutStream *outStream, ISeqInStream *inStream,
const CXzProps *props, ICompressProgress *progress)
{
SRes res;
CXzStream xz;
CLzma2WithFilters lzmaf;
Xz_Construct(&xz);
Lzma2WithFilters_Construct(&lzmaf, &g_Alloc, &g_BigAlloc);
res = Lzma2WithFilters_Create(&lzmaf);
if (res == SZ_OK)
res = Xz_Compress(&xz, &lzmaf, outStream, inStream, props, progress);
Lzma2WithFilters_Free(&lzmaf);
Xz_Free(&xz, &g_Alloc);
return res;
}
SRes Xz_EncodeEmpty(ISeqOutStream *outStream)
{
SRes res;
CXzStream xz;
Xz_Construct(&xz);
res = Xz_WriteHeader(xz.flags, outStream);
if (res == SZ_OK)
res = Xz_WriteFooter(&xz, outStream);
Xz_Free(&xz, &g_Alloc);
return res;
}

39
C/XzEnc.h Normal file
View File

@ -0,0 +1,39 @@
/* XzEnc.h -- Xz Encode
2011-02-07 : Igor Pavlov : Public domain */
#ifndef __XZ_ENC_H
#define __XZ_ENC_H
#include "Lzma2Enc.h"
#include "Xz.h"
EXTERN_C_BEGIN
typedef struct
{
UInt32 id;
UInt32 delta;
UInt32 ip;
int ipDefined;
} CXzFilterProps;
void XzFilterProps_Init(CXzFilterProps *p);
typedef struct
{
const CLzma2EncProps *lzma2Props;
const CXzFilterProps *filterProps;
unsigned checkId;
} CXzProps;
void XzProps_Init(CXzProps *p);
SRes Xz_Encode(ISeqOutStream *outStream, ISeqInStream *inStream,
const CXzProps *props, ICompressProgress *progress);
SRes Xz_EncodeEmpty(ISeqOutStream *outStream);
EXTERN_C_END
#endif

313
C/XzIn.c Normal file
View File

@ -0,0 +1,313 @@
/* XzIn.c - Xz input
2015-11-08 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zCrc.h"
#include "CpuArch.h"
#include "Xz.h"
SRes Xz_ReadHeader(CXzStreamFlags *p, ISeqInStream *inStream)
{
Byte sig[XZ_STREAM_HEADER_SIZE];
RINOK(SeqInStream_Read2(inStream, sig, XZ_STREAM_HEADER_SIZE, SZ_ERROR_NO_ARCHIVE));
if (memcmp(sig, XZ_SIG, XZ_SIG_SIZE) != 0)
return SZ_ERROR_NO_ARCHIVE;
return Xz_ParseHeader(p, sig);
}
#define READ_VARINT_AND_CHECK(buf, pos, size, res) \
{ unsigned s = Xz_ReadVarInt(buf + pos, size - pos, res); \
if (s == 0) return SZ_ERROR_ARCHIVE; pos += s; }
SRes XzBlock_ReadHeader(CXzBlock *p, ISeqInStream *inStream, Bool *isIndex, UInt32 *headerSizeRes)
{
Byte header[XZ_BLOCK_HEADER_SIZE_MAX];
unsigned headerSize;
*headerSizeRes = 0;
RINOK(SeqInStream_ReadByte(inStream, &header[0]));
headerSize = ((unsigned)header[0] << 2) + 4;
if (headerSize == 0)
{
*headerSizeRes = 1;
*isIndex = True;
return SZ_OK;
}
*isIndex = False;
*headerSizeRes = headerSize;
RINOK(SeqInStream_Read(inStream, header + 1, headerSize - 1));
return XzBlock_Parse(p, header);
}
#define ADD_SIZE_CHECH(size, val) \
{ UInt64 newSize = size + (val); if (newSize < size) return XZ_SIZE_OVERFLOW; size = newSize; }
UInt64 Xz_GetUnpackSize(const CXzStream *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->numBlocks; i++)
ADD_SIZE_CHECH(size, p->blocks[i].unpackSize);
return size;
}
UInt64 Xz_GetPackSize(const CXzStream *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->numBlocks; i++)
ADD_SIZE_CHECH(size, (p->blocks[i].totalSize + 3) & ~(UInt64)3);
return size;
}
/*
SRes XzBlock_ReadFooter(CXzBlock *p, CXzStreamFlags f, ISeqInStream *inStream)
{
return SeqInStream_Read(inStream, p->check, XzFlags_GetCheckSize(f));
}
*/
static SRes Xz_ReadIndex2(CXzStream *p, const Byte *buf, size_t size, ISzAlloc *alloc)
{
size_t numBlocks, pos = 1;
UInt32 crc;
if (size < 5 || buf[0] != 0)
return SZ_ERROR_ARCHIVE;
size -= 4;
crc = CrcCalc(buf, size);
if (crc != GetUi32(buf + size))
return SZ_ERROR_ARCHIVE;
{
UInt64 numBlocks64;
READ_VARINT_AND_CHECK(buf, pos, size, &numBlocks64);
numBlocks = (size_t)numBlocks64;
if (numBlocks != numBlocks64 || numBlocks * 2 > size)
return SZ_ERROR_ARCHIVE;
}
Xz_Free(p, alloc);
if (numBlocks != 0)
{
size_t i;
p->numBlocks = numBlocks;
p->numBlocksAllocated = numBlocks;
p->blocks = alloc->Alloc(alloc, sizeof(CXzBlockSizes) * numBlocks);
if (p->blocks == 0)
return SZ_ERROR_MEM;
for (i = 0; i < numBlocks; i++)
{
CXzBlockSizes *block = &p->blocks[i];
READ_VARINT_AND_CHECK(buf, pos, size, &block->totalSize);
READ_VARINT_AND_CHECK(buf, pos, size, &block->unpackSize);
if (block->totalSize == 0)
return SZ_ERROR_ARCHIVE;
}
}
while ((pos & 3) != 0)
if (buf[pos++] != 0)
return SZ_ERROR_ARCHIVE;
return (pos == size) ? SZ_OK : SZ_ERROR_ARCHIVE;
}
static SRes Xz_ReadIndex(CXzStream *p, ILookInStream *stream, UInt64 indexSize, ISzAlloc *alloc)
{
SRes res;
size_t size;
Byte *buf;
if (indexSize > ((UInt32)1 << 31))
return SZ_ERROR_UNSUPPORTED;
size = (size_t)indexSize;
if (size != indexSize)
return SZ_ERROR_UNSUPPORTED;
buf = alloc->Alloc(alloc, size);
if (buf == 0)
return SZ_ERROR_MEM;
res = LookInStream_Read2(stream, buf, size, SZ_ERROR_UNSUPPORTED);
if (res == SZ_OK)
res = Xz_ReadIndex2(p, buf, size, alloc);
alloc->Free(alloc, buf);
return res;
}
static SRes LookInStream_SeekRead_ForArc(ILookInStream *stream, UInt64 offset, void *buf, size_t size)
{
RINOK(LookInStream_SeekTo(stream, offset));
return LookInStream_Read(stream, buf, size);
/* return LookInStream_Read2(stream, buf, size, SZ_ERROR_NO_ARCHIVE); */
}
static SRes Xz_ReadBackward(CXzStream *p, ILookInStream *stream, Int64 *startOffset, ISzAlloc *alloc)
{
UInt64 indexSize;
Byte buf[XZ_STREAM_FOOTER_SIZE];
UInt64 pos = *startOffset;
if ((pos & 3) != 0 || pos < XZ_STREAM_FOOTER_SIZE)
return SZ_ERROR_NO_ARCHIVE;
pos -= XZ_STREAM_FOOTER_SIZE;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, buf, XZ_STREAM_FOOTER_SIZE));
if (memcmp(buf + 10, XZ_FOOTER_SIG, XZ_FOOTER_SIG_SIZE) != 0)
{
UInt32 total = 0;
pos += XZ_STREAM_FOOTER_SIZE;
for (;;)
{
size_t i;
#define TEMP_BUF_SIZE (1 << 10)
Byte temp[TEMP_BUF_SIZE];
i = (pos > TEMP_BUF_SIZE) ? TEMP_BUF_SIZE : (size_t)pos;
pos -= i;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, temp, i));
total += (UInt32)i;
for (; i != 0; i--)
if (temp[i - 1] != 0)
break;
if (i != 0)
{
if ((i & 3) != 0)
return SZ_ERROR_NO_ARCHIVE;
pos += i;
break;
}
if (pos < XZ_STREAM_FOOTER_SIZE || total > (1 << 16))
return SZ_ERROR_NO_ARCHIVE;
}
if (pos < XZ_STREAM_FOOTER_SIZE)
return SZ_ERROR_NO_ARCHIVE;
pos -= XZ_STREAM_FOOTER_SIZE;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, buf, XZ_STREAM_FOOTER_SIZE));
if (memcmp(buf + 10, XZ_FOOTER_SIG, XZ_FOOTER_SIG_SIZE) != 0)
return SZ_ERROR_NO_ARCHIVE;
}
p->flags = (CXzStreamFlags)GetBe16(buf + 8);
if (!XzFlags_IsSupported(p->flags))
return SZ_ERROR_UNSUPPORTED;
if (GetUi32(buf) != CrcCalc(buf + 4, 6))
return SZ_ERROR_ARCHIVE;
indexSize = ((UInt64)GetUi32(buf + 4) + 1) << 2;
if (pos < indexSize)
return SZ_ERROR_ARCHIVE;
pos -= indexSize;
RINOK(LookInStream_SeekTo(stream, pos));
RINOK(Xz_ReadIndex(p, stream, indexSize, alloc));
{
UInt64 totalSize = Xz_GetPackSize(p);
if (totalSize == XZ_SIZE_OVERFLOW
|| totalSize >= ((UInt64)1 << 63)
|| pos < totalSize + XZ_STREAM_HEADER_SIZE)
return SZ_ERROR_ARCHIVE;
pos -= (totalSize + XZ_STREAM_HEADER_SIZE);
RINOK(LookInStream_SeekTo(stream, pos));
*startOffset = pos;
}
{
CXzStreamFlags headerFlags;
CSecToRead secToRead;
SecToRead_CreateVTable(&secToRead);
secToRead.realStream = stream;
RINOK(Xz_ReadHeader(&headerFlags, &secToRead.s));
return (p->flags == headerFlags) ? SZ_OK : SZ_ERROR_ARCHIVE;
}
}
/* ---------- Xz Streams ---------- */
void Xzs_Construct(CXzs *p)
{
p->num = p->numAllocated = 0;
p->streams = 0;
}
void Xzs_Free(CXzs *p, ISzAlloc *alloc)
{
size_t i;
for (i = 0; i < p->num; i++)
Xz_Free(&p->streams[i], alloc);
alloc->Free(alloc, p->streams);
p->num = p->numAllocated = 0;
p->streams = 0;
}
UInt64 Xzs_GetNumBlocks(const CXzs *p)
{
UInt64 num = 0;
size_t i;
for (i = 0; i < p->num; i++)
num += p->streams[i].numBlocks;
return num;
}
UInt64 Xzs_GetUnpackSize(const CXzs *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->num; i++)
ADD_SIZE_CHECH(size, Xz_GetUnpackSize(&p->streams[i]));
return size;
}
/*
UInt64 Xzs_GetPackSize(const CXzs *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->num; i++)
ADD_SIZE_CHECH(size, Xz_GetTotalSize(&p->streams[i]));
return size;
}
*/
SRes Xzs_ReadBackward(CXzs *p, ILookInStream *stream, Int64 *startOffset, ICompressProgress *progress, ISzAlloc *alloc)
{
Int64 endOffset = 0;
RINOK(stream->Seek(stream, &endOffset, SZ_SEEK_END));
*startOffset = endOffset;
for (;;)
{
CXzStream st;
SRes res;
Xz_Construct(&st);
res = Xz_ReadBackward(&st, stream, startOffset, alloc);
st.startOffset = *startOffset;
RINOK(res);
if (p->num == p->numAllocated)
{
size_t newNum = p->num + p->num / 4 + 1;
Byte *data = (Byte *)alloc->Alloc(alloc, newNum * sizeof(CXzStream));
if (data == 0)
return SZ_ERROR_MEM;
p->numAllocated = newNum;
if (p->num != 0)
memcpy(data, p->streams, p->num * sizeof(CXzStream));
alloc->Free(alloc, p->streams);
p->streams = (CXzStream *)data;
}
p->streams[p->num++] = st;
if (*startOffset == 0)
break;
RINOK(LookInStream_SeekTo(stream, *startOffset));
if (progress && progress->Progress(progress, endOffset - *startOffset, (UInt64)(Int64)-1) != SZ_OK)
return SZ_ERROR_PROGRESS;
}
return SZ_OK;
}

View File

@ -0,0 +1,3 @@
// CompressionMethod.cpp
#include "StdAfx.h"

View File

@ -0,0 +1,74 @@
// 7zCompressionMode.h
#ifndef __7Z_COMPRESSION_MODE_H
#define __7Z_COMPRESSION_MODE_H
#include "../../Common/MethodId.h"
#include "../../Common/MethodProps.h"
namespace NArchive {
namespace N7z {
struct CMethodFull: public CMethodProps
{
CMethodId Id;
UInt32 NumStreams;
bool IsSimpleCoder() const { return NumStreams == 1; }
};
struct CBond2
{
UInt32 OutCoder;
UInt32 OutStream;
UInt32 InCoder;
};
struct CCompressionMethodMode
{
/*
if (Bonds.Empty()), then default bonds must be created
if (Filter_was_Inserted)
{
Methods[0] is filter method
Bonds don't contain bonds for filter (these bonds must be created)
}
*/
CObjectVector<CMethodFull> Methods;
CRecordVector<CBond2> Bonds;
bool IsThereBond_to_Coder(unsigned coderIndex) const
{
FOR_VECTOR(i, Bonds)
if (Bonds[i].InCoder == coderIndex)
return true;
return false;
}
bool DefaultMethod_was_Inserted;
bool Filter_was_Inserted;
#ifndef _7ZIP_ST
UInt32 NumThreads;
bool MultiThreadMixer;
#endif
bool PasswordIsDefined;
UString Password;
bool IsEmpty() const { return (Methods.IsEmpty() && !PasswordIsDefined); }
CCompressionMethodMode():
DefaultMethod_was_Inserted(false),
Filter_was_Inserted(false),
PasswordIsDefined(false)
#ifndef _7ZIP_ST
, NumThreads(1)
, MultiThreadMixer(true)
#endif
{}
};
}}
#endif

View File

@ -0,0 +1,543 @@
// 7zDecode.cpp
#include "StdAfx.h"
#include "../../Common/LimitedStreams.h"
#include "../../Common/ProgressUtils.h"
#include "../../Common/StreamObjects.h"
#include "7zDecode.h"
namespace NArchive {
namespace N7z {
class CDecProgress:
public ICompressProgressInfo,
public CMyUnknownImp
{
CMyComPtr<ICompressProgressInfo> _progress;
public:
CDecProgress(ICompressProgressInfo *progress): _progress(progress) {}
MY_UNKNOWN_IMP1(ICompressProgressInfo)
STDMETHOD(SetRatioInfo)(const UInt64 *inSize, const UInt64 *outSize);
};
STDMETHODIMP CDecProgress::SetRatioInfo(const UInt64 * /* inSize */, const UInt64 *outSize)
{
return _progress->SetRatioInfo(NULL, outSize);
}
static void Convert_FolderInfo_to_BindInfo(const CFolderEx &folder, CBindInfoEx &bi)
{
bi.Clear();
bi.Bonds.ClearAndSetSize(folder.Bonds.Size());
unsigned i;
for (i = 0; i < folder.Bonds.Size(); i++)
{
NCoderMixer2::CBond &bond = bi.Bonds[i];
const N7z::CBond &folderBond = folder.Bonds[i];
bond.PackIndex = folderBond.PackIndex;
bond.UnpackIndex = folderBond.UnpackIndex;
}
bi.Coders.ClearAndSetSize(folder.Coders.Size());
bi.CoderMethodIDs.ClearAndSetSize(folder.Coders.Size());
for (i = 0; i < folder.Coders.Size(); i++)
{
const CCoderInfo &coderInfo = folder.Coders[i];
bi.Coders[i].NumStreams = coderInfo.NumStreams;
bi.CoderMethodIDs[i] = coderInfo.MethodID;
}
/*
if (!bi.SetUnpackCoder())
throw 1112;
*/
bi.UnpackCoder = folder.UnpackCoder;
bi.PackStreams.ClearAndSetSize(folder.PackStreams.Size());
for (i = 0; i < folder.PackStreams.Size(); i++)
bi.PackStreams[i] = folder.PackStreams[i];
}
static inline bool AreCodersEqual(
const NCoderMixer2::CCoderStreamsInfo &a1,
const NCoderMixer2::CCoderStreamsInfo &a2)
{
return (a1.NumStreams == a2.NumStreams);
}
static inline bool AreBondsEqual(
const NCoderMixer2::CBond &a1,
const NCoderMixer2::CBond &a2)
{
return
(a1.PackIndex == a2.PackIndex) &&
(a1.UnpackIndex == a2.UnpackIndex);
}
static bool AreBindInfoExEqual(const CBindInfoEx &a1, const CBindInfoEx &a2)
{
if (a1.Coders.Size() != a2.Coders.Size())
return false;
unsigned i;
for (i = 0; i < a1.Coders.Size(); i++)
if (!AreCodersEqual(a1.Coders[i], a2.Coders[i]))
return false;
if (a1.Bonds.Size() != a2.Bonds.Size())
return false;
for (i = 0; i < a1.Bonds.Size(); i++)
if (!AreBondsEqual(a1.Bonds[i], a2.Bonds[i]))
return false;
for (i = 0; i < a1.CoderMethodIDs.Size(); i++)
if (a1.CoderMethodIDs[i] != a2.CoderMethodIDs[i])
return false;
if (a1.PackStreams.Size() != a2.PackStreams.Size())
return false;
for (i = 0; i < a1.PackStreams.Size(); i++)
if (a1.PackStreams[i] != a2.PackStreams[i])
return false;
/*
if (a1.UnpackCoder != a2.UnpackCoder)
return false;
*/
return true;
}
CDecoder::CDecoder(bool useMixerMT):
_bindInfoPrev_Defined(false),
_useMixerMT(useMixerMT)
{}
struct CLockedInStream:
public IUnknown,
public CMyUnknownImp
{
CMyComPtr<IInStream> Stream;
UInt64 Pos;
MY_UNKNOWN_IMP
#ifdef USE_MIXER_MT
NWindows::NSynchronization::CCriticalSection CriticalSection;
#endif
};
#ifdef USE_MIXER_MT
class CLockedSequentialInStreamMT:
public ISequentialInStream,
public CMyUnknownImp
{
CLockedInStream *_glob;
UInt64 _pos;
CMyComPtr<IUnknown> _globRef;
public:
void Init(CLockedInStream *lockedInStream, UInt64 startPos)
{
_globRef = lockedInStream;
_glob = lockedInStream;
_pos = startPos;
}
MY_UNKNOWN_IMP1(ISequentialInStream)
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CLockedSequentialInStreamMT::Read(void *data, UInt32 size, UInt32 *processedSize)
{
NWindows::NSynchronization::CCriticalSectionLock lock(_glob->CriticalSection);
if (_pos != _glob->Pos)
{
RINOK(_glob->Stream->Seek(_pos, STREAM_SEEK_SET, NULL));
_glob->Pos = _pos;
}
UInt32 realProcessedSize = 0;
HRESULT res = _glob->Stream->Read(data, size, &realProcessedSize);
_pos += realProcessedSize;
_glob->Pos = _pos;
if (processedSize)
*processedSize = realProcessedSize;
return res;
}
#endif
#ifdef USE_MIXER_ST
class CLockedSequentialInStreamST:
public ISequentialInStream,
public CMyUnknownImp
{
CLockedInStream *_glob;
UInt64 _pos;
CMyComPtr<IUnknown> _globRef;
public:
void Init(CLockedInStream *lockedInStream, UInt64 startPos)
{
_globRef = lockedInStream;
_glob = lockedInStream;
_pos = startPos;
}
MY_UNKNOWN_IMP1(ISequentialInStream)
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CLockedSequentialInStreamST::Read(void *data, UInt32 size, UInt32 *processedSize)
{
if (_pos != _glob->Pos)
{
RINOK(_glob->Stream->Seek(_pos, STREAM_SEEK_SET, NULL));
_glob->Pos = _pos;
}
UInt32 realProcessedSize = 0;
HRESULT res = _glob->Stream->Read(data, size, &realProcessedSize);
_pos += realProcessedSize;
_glob->Pos = _pos;
if (processedSize)
*processedSize = realProcessedSize;
return res;
}
#endif
HRESULT CDecoder::Decode(
DECL_EXTERNAL_CODECS_LOC_VARS
IInStream *inStream,
UInt64 startPos,
const CFolders &folders, unsigned folderIndex,
const UInt64 *unpackSize
, ISequentialOutStream *outStream
, ICompressProgressInfo *compressProgress
, ISequentialInStream **
#ifdef USE_MIXER_ST
inStreamMainRes
#endif
_7Z_DECODER_CRYPRO_VARS_DECL
#if !defined(_7ZIP_ST) && !defined(_SFX)
, bool mtMode, UInt32 numThreads
#endif
)
{
const UInt64 *packPositions = &folders.PackPositions[folders.FoStartPackStreamIndex[folderIndex]];
CFolderEx folderInfo;
folders.ParseFolderEx(folderIndex, folderInfo);
if (!folderInfo.IsDecodingSupported())
return E_NOTIMPL;
CBindInfoEx bindInfo;
Convert_FolderInfo_to_BindInfo(folderInfo, bindInfo);
if (!bindInfo.CalcMapsAndCheck())
return E_NOTIMPL;
UInt64 folderUnpackSize = folders.GetFolderUnpackSize(folderIndex);
bool fullUnpack = true;
if (unpackSize)
{
if (*unpackSize > folderUnpackSize)
return E_FAIL;
fullUnpack = (*unpackSize == folderUnpackSize);
}
/*
We don't need to init isEncrypted and passwordIsDefined
We must upgrade them only
#ifndef _NO_CRYPTO
isEncrypted = false;
passwordIsDefined = false;
#endif
*/
if (!_bindInfoPrev_Defined || !AreBindInfoExEqual(bindInfo, _bindInfoPrev))
{
_mixerRef.Release();
#ifdef USE_MIXER_MT
#ifdef USE_MIXER_ST
if (_useMixerMT)
#endif
{
_mixerMT = new NCoderMixer2::CMixerMT(false);
_mixerRef = _mixerMT;
_mixer = _mixerMT;
}
#ifdef USE_MIXER_ST
else
#endif
#endif
{
#ifdef USE_MIXER_ST
_mixerST = new NCoderMixer2::CMixerST(false);
_mixerRef = _mixerST;
_mixer = _mixerST;
#endif
}
RINOK(_mixer->SetBindInfo(bindInfo));
FOR_VECTOR(i, folderInfo.Coders)
{
const CCoderInfo &coderInfo = folderInfo.Coders[i];
#ifndef _SFX
// we don't support RAR codecs here
if ((coderInfo.MethodID >> 8) == 0x403)
return E_NOTIMPL;
#endif
CCreatedCoder cod;
RINOK(CreateCoder(
EXTERNAL_CODECS_LOC_VARS
coderInfo.MethodID, false, cod));
if (coderInfo.IsSimpleCoder())
{
if (!cod.Coder)
return E_NOTIMPL;
// CMethodId m = coderInfo.MethodID;
// isFilter = (IsFilterMethod(m) || m == k_AES);
}
else
{
if (!cod.Coder2 || cod.NumStreams != coderInfo.NumStreams)
return E_NOTIMPL;
}
_mixer->AddCoder(cod);
// now there is no codec that uses another external codec
/*
#ifdef EXTERNAL_CODECS
CMyComPtr<ISetCompressCodecsInfo> setCompressCodecsInfo;
decoderUnknown.QueryInterface(IID_ISetCompressCodecsInfo, (void **)&setCompressCodecsInfo);
if (setCompressCodecsInfo)
{
// we must use g_ExternalCodecs also
RINOK(setCompressCodecsInfo->SetCompressCodecsInfo(__externalCodecs->GetCodecs));
}
#endif
*/
}
_bindInfoPrev = bindInfo;
_bindInfoPrev_Defined = true;
}
_mixer->ReInit();
UInt32 packStreamIndex = 0;
UInt32 unpackStreamIndexStart = folders.FoToCoderUnpackSizes[folderIndex];
unsigned i;
for (i = 0; i < folderInfo.Coders.Size(); i++)
{
const CCoderInfo &coderInfo = folderInfo.Coders[i];
IUnknown *decoder = _mixer->GetCoder(i).GetUnknown();
{
CMyComPtr<ICompressSetDecoderProperties2> setDecoderProperties;
decoder->QueryInterface(IID_ICompressSetDecoderProperties2, (void **)&setDecoderProperties);
if (setDecoderProperties)
{
const CByteBuffer &props = coderInfo.Props;
size_t size = props.Size();
if (size > 0xFFFFFFFF)
return E_NOTIMPL;
HRESULT res = setDecoderProperties->SetDecoderProperties2((const Byte *)props, (UInt32)size);
if (res == E_INVALIDARG)
res = E_NOTIMPL;
RINOK(res);
}
}
#if !defined(_7ZIP_ST) && !defined(_SFX)
if (mtMode)
{
CMyComPtr<ICompressSetCoderMt> setCoderMt;
decoder->QueryInterface(IID_ICompressSetCoderMt, (void **)&setCoderMt);
if (setCoderMt)
{
RINOK(setCoderMt->SetNumberOfThreads(numThreads));
}
}
#endif
#ifndef _NO_CRYPTO
{
CMyComPtr<ICryptoSetPassword> cryptoSetPassword;
decoder->QueryInterface(IID_ICryptoSetPassword, (void **)&cryptoSetPassword);
if (cryptoSetPassword)
{
isEncrypted = true;
if (!getTextPassword)
return E_NOTIMPL;
CMyComBSTR passwordBSTR;
RINOK(getTextPassword->CryptoGetTextPassword(&passwordBSTR));
passwordIsDefined = true;
password.Empty();
size_t len = 0;
if (passwordBSTR)
{
password = passwordBSTR;
len = password.Len();
}
CByteBuffer buffer(len * 2);
for (size_t k = 0; k < len; k++)
{
wchar_t c = passwordBSTR[k];
((Byte *)buffer)[k * 2] = (Byte)c;
((Byte *)buffer)[k * 2 + 1] = (Byte)(c >> 8);
}
RINOK(cryptoSetPassword->CryptoSetPassword((const Byte *)buffer, (UInt32)buffer.Size()));
}
}
#endif
{
CMyComPtr<ICompressSetFinishMode> setFinishMode;
decoder->QueryInterface(IID_ICompressSetFinishMode, (void **)&setFinishMode);
if (setFinishMode)
{
RINOK(setFinishMode->SetFinishMode(BoolToInt(fullUnpack)));
}
}
UInt32 numStreams = (UInt32)coderInfo.NumStreams;
CObjArray<UInt64> packSizes(numStreams);
CObjArray<const UInt64 *> packSizesPointers(numStreams);
for (UInt32 j = 0; j < numStreams; j++, packStreamIndex++)
{
int bond = folderInfo.FindBond_for_PackStream(packStreamIndex);
if (bond >= 0)
packSizesPointers[j] = &folders.CoderUnpackSizes[unpackStreamIndexStart + folderInfo.Bonds[(unsigned)bond].UnpackIndex];
else
{
int index = folderInfo.Find_in_PackStreams(packStreamIndex);
if (index < 0)
return E_NOTIMPL;
packSizes[j] = packPositions[(unsigned)index + 1] - packPositions[(unsigned)index];
packSizesPointers[j] = &packSizes[j];
}
}
const UInt64 *unpackSizesPointer =
(unpackSize && i == bindInfo.UnpackCoder) ?
unpackSize :
&folders.CoderUnpackSizes[unpackStreamIndexStart + i];
_mixer->SetCoderInfo(i, unpackSizesPointer, packSizesPointers);
}
if (outStream)
{
_mixer->SelectMainCoder(!fullUnpack);
}
CObjectVector< CMyComPtr<ISequentialInStream> > inStreams;
CLockedInStream *lockedInStreamSpec = new CLockedInStream;
CMyComPtr<IUnknown> lockedInStream = lockedInStreamSpec;
bool needMtLock = false;
if (folderInfo.PackStreams.Size() > 1)
{
// lockedInStream.Pos = (UInt64)(Int64)-1;
// RINOK(inStream->Seek(0, STREAM_SEEK_CUR, &lockedInStream.Pos));
RINOK(inStream->Seek(startPos + packPositions[0], STREAM_SEEK_SET, &lockedInStreamSpec->Pos));
lockedInStreamSpec->Stream = inStream;
#ifdef USE_MIXER_ST
if (_mixer->IsThere_ExternalCoder_in_PackTree(_mixer->MainCoderIndex))
#endif
needMtLock = true;
}
for (unsigned j = 0; j < folderInfo.PackStreams.Size(); j++)
{
CMyComPtr<ISequentialInStream> packStream;
UInt64 packPos = startPos + packPositions[j];
if (folderInfo.PackStreams.Size() == 1)
{
RINOK(inStream->Seek(packPos, STREAM_SEEK_SET, NULL));
packStream = inStream;
}
else
{
#ifdef USE_MIXER_MT
#ifdef USE_MIXER_ST
if (_useMixerMT || needMtLock)
#endif
{
CLockedSequentialInStreamMT *lockedStreamImpSpec = new CLockedSequentialInStreamMT;
packStream = lockedStreamImpSpec;
lockedStreamImpSpec->Init(lockedInStreamSpec, packPos);
}
#ifdef USE_MIXER_ST
else
#endif
#endif
{
#ifdef USE_MIXER_ST
CLockedSequentialInStreamST *lockedStreamImpSpec = new CLockedSequentialInStreamST;
packStream = lockedStreamImpSpec;
lockedStreamImpSpec->Init(lockedInStreamSpec, packPos);
#endif
}
}
CLimitedSequentialInStream *streamSpec = new CLimitedSequentialInStream;
inStreams.AddNew() = streamSpec;
streamSpec->SetStream(packStream);
streamSpec->Init(packPositions[j + 1] - packPositions[j]);
}
unsigned num = inStreams.Size();
CObjArray<ISequentialInStream *> inStreamPointers(num);
for (i = 0; i < num; i++)
inStreamPointers[i] = inStreams[i];
if (outStream)
{
CMyComPtr<ICompressProgressInfo> progress2;
if (compressProgress && !_mixer->Is_PackSize_Correct_for_Coder(_mixer->MainCoderIndex))
progress2 = new CDecProgress(compressProgress);
ISequentialOutStream *outStreamPointer = outStream;
return _mixer->Code(inStreamPointers, &outStreamPointer, progress2 ? (ICompressProgressInfo *)progress2 : compressProgress);
}
#ifdef USE_MIXER_ST
return _mixerST->GetMainUnpackStream(inStreamPointers, inStreamMainRes);
#else
return E_FAIL;
#endif
}
}}

View File

@ -0,0 +1,68 @@
// 7zDecode.h
#ifndef __7Z_DECODE_H
#define __7Z_DECODE_H
#include "../Common/CoderMixer2.h"
#include "7zIn.h"
namespace NArchive {
namespace N7z {
struct CBindInfoEx: public NCoderMixer2::CBindInfo
{
CRecordVector<CMethodId> CoderMethodIDs;
void Clear()
{
CBindInfo::Clear();
CoderMethodIDs.Clear();
}
};
class CDecoder
{
bool _bindInfoPrev_Defined;
CBindInfoEx _bindInfoPrev;
bool _useMixerMT;
#ifdef USE_MIXER_ST
NCoderMixer2::CMixerST *_mixerST;
#endif
#ifdef USE_MIXER_MT
NCoderMixer2::CMixerMT *_mixerMT;
#endif
NCoderMixer2::CMixer *_mixer;
CMyComPtr<IUnknown> _mixerRef;
public:
CDecoder(bool useMixerMT);
HRESULT Decode(
DECL_EXTERNAL_CODECS_LOC_VARS
IInStream *inStream,
UInt64 startPos,
const CFolders &folders, unsigned folderIndex,
const UInt64 *unpackSize // if (!unpackSize), then full folder is required
// if (unpackSize), then only *unpackSize bytes from folder are required
, ISequentialOutStream *outStream
, ICompressProgressInfo *compressProgress
, ISequentialInStream **inStreamMainRes
_7Z_DECODER_CRYPRO_VARS_DECL
#if !defined(_7ZIP_ST) && !defined(_SFX)
, bool mtMode, UInt32 numThreads
#endif
);
};
}}
#endif

View File

@ -0,0 +1,656 @@
// 7zEncode.cpp
#include "StdAfx.h"
#include "../../Common/CreateCoder.h"
#include "../../Common/FilterCoder.h"
#include "../../Common/LimitedStreams.h"
#include "../../Common/InOutTempBuffer.h"
#include "../../Common/ProgressUtils.h"
#include "../../Common/StreamObjects.h"
#include "7zEncode.h"
#include "7zSpecStream.h"
namespace NArchive {
namespace N7z {
void CEncoder::InitBindConv()
{
unsigned numIn = _bindInfo.Coders.Size();
_SrcIn_to_DestOut.ClearAndSetSize(numIn);
_DestOut_to_SrcIn.ClearAndSetSize(numIn);
unsigned numOut = _bindInfo.GetNum_Bonds_and_PackStreams();
_SrcOut_to_DestIn.ClearAndSetSize(numOut);
// _DestIn_to_SrcOut.ClearAndSetSize(numOut);
UInt32 destIn = 0;
UInt32 destOut = 0;
for (unsigned i = _bindInfo.Coders.Size(); i != 0;)
{
i--;
const NCoderMixer2::CCoderStreamsInfo &coder = _bindInfo.Coders[i];
numIn--;
numOut -= coder.NumStreams;
_SrcIn_to_DestOut[numIn] = destOut;
_DestOut_to_SrcIn[destOut] = numIn;
destOut++;
for (UInt32 j = 0; j < coder.NumStreams; j++, destIn++)
{
UInt32 index = numOut + j;
_SrcOut_to_DestIn[index] = destIn;
// _DestIn_to_SrcOut[destIn] = index;
}
}
}
void CEncoder::SetFolder(CFolder &folder)
{
folder.Bonds.SetSize(_bindInfo.Bonds.Size());
unsigned i;
for (i = 0; i < _bindInfo.Bonds.Size(); i++)
{
CBond &fb = folder.Bonds[i];
const NCoderMixer2::CBond &mixerBond = _bindInfo.Bonds[_bindInfo.Bonds.Size() - 1 - i];
fb.PackIndex = _SrcOut_to_DestIn[mixerBond.PackIndex];
fb.UnpackIndex = _SrcIn_to_DestOut[mixerBond.UnpackIndex];
}
folder.Coders.SetSize(_bindInfo.Coders.Size());
for (i = 0; i < _bindInfo.Coders.Size(); i++)
{
CCoderInfo &coderInfo = folder.Coders[i];
const NCoderMixer2::CCoderStreamsInfo &coderStreamsInfo = _bindInfo.Coders[_bindInfo.Coders.Size() - 1 - i];
coderInfo.NumStreams = coderStreamsInfo.NumStreams;
coderInfo.MethodID = _decompressionMethods[i];
// we don't free coderInfo.Props here. So coderInfo.Props can be non-empty.
}
folder.PackStreams.SetSize(_bindInfo.PackStreams.Size());
for (i = 0; i < _bindInfo.PackStreams.Size(); i++)
folder.PackStreams[i] = _SrcOut_to_DestIn[_bindInfo.PackStreams[i]];
}
static HRESULT SetCoderProps2(const CProps &props, const UInt64 *dataSizeReduce, IUnknown *coder)
{
CMyComPtr<ICompressSetCoderProperties> setCoderProperties;
coder->QueryInterface(IID_ICompressSetCoderProperties, (void **)&setCoderProperties);
if (setCoderProperties)
return props.SetCoderProps(setCoderProperties, dataSizeReduce);
return props.AreThereNonOptionalProps() ? E_INVALIDARG : S_OK;
}
void CMtEncMultiProgress::Init(ICompressProgressInfo *progress)
{
_progress = progress;
OutSize = 0;
}
STDMETHODIMP CMtEncMultiProgress::SetRatioInfo(const UInt64 *inSize, const UInt64 * /* outSize */)
{
UInt64 outSize2;
{
#ifndef _7ZIP_ST
NWindows::NSynchronization::CCriticalSectionLock lock(CriticalSection);
#endif
outSize2 = OutSize;
}
if (_progress)
return _progress->SetRatioInfo(inSize, &outSize2);
return S_OK;
}
HRESULT CEncoder::CreateMixerCoder(
DECL_EXTERNAL_CODECS_LOC_VARS
const UInt64 *inSizeForReduce)
{
#ifdef USE_MIXER_MT
#ifdef USE_MIXER_ST
if (_options.MultiThreadMixer)
#endif
{
_mixerMT = new NCoderMixer2::CMixerMT(true);
_mixerRef = _mixerMT;
_mixer = _mixerMT;
}
#ifdef USE_MIXER_ST
else
#endif
#endif
{
#ifdef USE_MIXER_ST
_mixerST = new NCoderMixer2::CMixerST(true);
_mixerRef = _mixerST;
_mixer = _mixerST;
#endif
}
RINOK(_mixer->SetBindInfo(_bindInfo));
FOR_VECTOR (m, _options.Methods)
{
const CMethodFull &methodFull = _options.Methods[m];
CCreatedCoder cod;
RINOK(CreateCoder(
EXTERNAL_CODECS_LOC_VARS
methodFull.Id, true, cod));
if (cod.NumStreams != methodFull.NumStreams)
return E_FAIL;
if (!cod.Coder && !cod.Coder2)
return E_FAIL;
CMyComPtr<IUnknown> encoderCommon = cod.Coder ? (IUnknown *)cod.Coder : (IUnknown *)cod.Coder2;
#ifndef _7ZIP_ST
{
CMyComPtr<ICompressSetCoderMt> setCoderMt;
encoderCommon.QueryInterface(IID_ICompressSetCoderMt, &setCoderMt);
if (setCoderMt)
{
RINOK(setCoderMt->SetNumberOfThreads(_options.NumThreads));
}
}
#endif
RINOK(SetCoderProps2(methodFull, inSizeForReduce, encoderCommon));
/*
CMyComPtr<ICryptoResetSalt> resetSalt;
encoderCommon.QueryInterface(IID_ICryptoResetSalt, (void **)&resetSalt);
if (resetSalt)
{
resetSalt->ResetSalt();
}
*/
// now there is no codec that uses another external codec
/*
#ifdef EXTERNAL_CODECS
CMyComPtr<ISetCompressCodecsInfo> setCompressCodecsInfo;
encoderCommon.QueryInterface(IID_ISetCompressCodecsInfo, (void **)&setCompressCodecsInfo);
if (setCompressCodecsInfo)
{
// we must use g_ExternalCodecs also
RINOK(setCompressCodecsInfo->SetCompressCodecsInfo(__externalCodecs->GetCodecs));
}
#endif
*/
CMyComPtr<ICryptoSetPassword> cryptoSetPassword;
encoderCommon.QueryInterface(IID_ICryptoSetPassword, &cryptoSetPassword);
if (cryptoSetPassword)
{
const unsigned sizeInBytes = _options.Password.Len() * 2;
CByteBuffer buffer(sizeInBytes);
for (unsigned i = 0; i < _options.Password.Len(); i++)
{
wchar_t c = _options.Password[i];
((Byte *)buffer)[i * 2] = (Byte)c;
((Byte *)buffer)[i * 2 + 1] = (Byte)(c >> 8);
}
RINOK(cryptoSetPassword->CryptoSetPassword((const Byte *)buffer, (UInt32)sizeInBytes));
}
_mixer->AddCoder(cod);
}
return S_OK;
}
class CSequentialOutTempBufferImp2:
public ISequentialOutStream,
public CMyUnknownImp
{
CInOutTempBuffer *_buf;
public:
CMtEncMultiProgress *_mtProgresSpec;
CSequentialOutTempBufferImp2(): _buf(0), _mtProgresSpec(NULL) {}
void Init(CInOutTempBuffer *buffer) { _buf = buffer; }
MY_UNKNOWN_IMP1(ISequentialOutStream)
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CSequentialOutTempBufferImp2::Write(const void *data, UInt32 size, UInt32 *processed)
{
if (!_buf->Write(data, size))
{
if (processed)
*processed = 0;
return E_FAIL;
}
if (processed)
*processed = size;
if (_mtProgresSpec)
_mtProgresSpec->AddOutSize(size);
return S_OK;
}
class CSequentialOutMtNotify:
public ISequentialOutStream,
public CMyUnknownImp
{
public:
CMyComPtr<ISequentialOutStream> _stream;
CMtEncMultiProgress *_mtProgresSpec;
CSequentialOutMtNotify(): _mtProgresSpec(NULL) {}
MY_UNKNOWN_IMP1(ISequentialOutStream)
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CSequentialOutMtNotify::Write(const void *data, UInt32 size, UInt32 *processed)
{
UInt32 realProcessed = 0;
HRESULT res = _stream->Write(data, size, &realProcessed);
if (processed)
*processed = realProcessed;
if (_mtProgresSpec)
_mtProgresSpec->AddOutSize(size);
return res;
}
HRESULT CEncoder::Encode(
DECL_EXTERNAL_CODECS_LOC_VARS
ISequentialInStream *inStream,
// const UInt64 *inStreamSize,
const UInt64 *inSizeForReduce,
CFolder &folderItem,
CRecordVector<UInt64> &coderUnpackSizes,
UInt64 &unpackSize,
ISequentialOutStream *outStream,
CRecordVector<UInt64> &packSizes,
ICompressProgressInfo *compressProgress)
{
RINOK(EncoderConstr());
if (!_mixerRef)
{
RINOK(CreateMixerCoder(EXTERNAL_CODECS_LOC_VARS inSizeForReduce));
}
_mixer->ReInit();
CMtEncMultiProgress *mtProgressSpec = NULL;
CMyComPtr<ICompressProgressInfo> mtProgress;
CSequentialOutMtNotify *mtOutStreamNotifySpec = NULL;
CMyComPtr<ISequentialOutStream> mtOutStreamNotify;
CObjectVector<CInOutTempBuffer> inOutTempBuffers;
CObjectVector<CSequentialOutTempBufferImp2 *> tempBufferSpecs;
CObjectVector<CMyComPtr<ISequentialOutStream> > tempBuffers;
unsigned numMethods = _bindInfo.Coders.Size();
unsigned i;
for (i = 1; i < _bindInfo.PackStreams.Size(); i++)
{
CInOutTempBuffer &iotb = inOutTempBuffers.AddNew();
iotb.Create();
iotb.InitWriting();
}
for (i = 1; i < _bindInfo.PackStreams.Size(); i++)
{
CSequentialOutTempBufferImp2 *tempBufferSpec = new CSequentialOutTempBufferImp2;
CMyComPtr<ISequentialOutStream> tempBuffer = tempBufferSpec;
tempBufferSpec->Init(&inOutTempBuffers[i - 1]);
tempBuffers.Add(tempBuffer);
tempBufferSpecs.Add(tempBufferSpec);
}
for (i = 0; i < numMethods; i++)
_mixer->SetCoderInfo(i, NULL, NULL);
/* inStreamSize can be used by BCJ2 to set optimal range of conversion.
But current BCJ2 encoder uses also another way to check exact size of current file.
So inStreamSize is not required. */
/*
if (inStreamSize)
_mixer->SetCoderInfo(_bindInfo.UnpackCoder, inStreamSize, NULL);
*/
CSequentialInStreamSizeCount2 *inStreamSizeCountSpec = new CSequentialInStreamSizeCount2;
CMyComPtr<ISequentialInStream> inStreamSizeCount = inStreamSizeCountSpec;
CSequentialOutStreamSizeCount *outStreamSizeCountSpec = NULL;
CMyComPtr<ISequentialOutStream> outStreamSizeCount;
inStreamSizeCountSpec->Init(inStream);
ISequentialInStream *inStreamPointer = inStreamSizeCount;
CRecordVector<ISequentialOutStream *> outStreamPointers;
SetFolder(folderItem);
for (i = 0; i < numMethods; i++)
{
IUnknown *coder = _mixer->GetCoder(i).GetUnknown();
CMyComPtr<ICryptoResetInitVector> resetInitVector;
coder->QueryInterface(IID_ICryptoResetInitVector, (void **)&resetInitVector);
if (resetInitVector)
{
resetInitVector->ResetInitVector();
}
CMyComPtr<ICompressWriteCoderProperties> writeCoderProperties;
coder->QueryInterface(IID_ICompressWriteCoderProperties, (void **)&writeCoderProperties);
CByteBuffer &props = folderItem.Coders[numMethods - 1 - i].Props;
if (writeCoderProperties)
{
CDynBufSeqOutStream *outStreamSpec = new CDynBufSeqOutStream;
CMyComPtr<ISequentialOutStream> dynOutStream(outStreamSpec);
outStreamSpec->Init();
writeCoderProperties->WriteCoderProperties(dynOutStream);
outStreamSpec->CopyToBuffer(props);
}
else
props.Free();
}
_mixer->SelectMainCoder(false);
UInt32 mainCoder = _mixer->MainCoderIndex;
bool useMtProgress = false;
if (!_mixer->Is_PackSize_Correct_for_Coder(mainCoder))
{
#ifdef _7ZIP_ST
if (!_mixer->IsThere_ExternalCoder_in_PackTree(mainCoder))
#endif
useMtProgress = true;
}
if (useMtProgress)
{
mtProgressSpec = new CMtEncMultiProgress;
mtProgress = mtProgressSpec;
mtProgressSpec->Init(compressProgress);
mtOutStreamNotifySpec = new CSequentialOutMtNotify;
mtOutStreamNotify = mtOutStreamNotifySpec;
mtOutStreamNotifySpec->_stream = outStream;
mtOutStreamNotifySpec->_mtProgresSpec = mtProgressSpec;
FOR_VECTOR(t, tempBufferSpecs)
{
tempBufferSpecs[t]->_mtProgresSpec = mtProgressSpec;
}
}
if (_bindInfo.PackStreams.Size() != 0)
{
outStreamSizeCountSpec = new CSequentialOutStreamSizeCount;
outStreamSizeCount = outStreamSizeCountSpec;
outStreamSizeCountSpec->SetStream(mtOutStreamNotify ? (ISequentialOutStream *)mtOutStreamNotify : outStream);
outStreamSizeCountSpec->Init();
outStreamPointers.Add(outStreamSizeCount);
}
for (i = 1; i < _bindInfo.PackStreams.Size(); i++)
outStreamPointers.Add(tempBuffers[i - 1]);
RINOK(_mixer->Code(
&inStreamPointer,
&outStreamPointers.Front(),
mtProgress ? (ICompressProgressInfo *)mtProgress : compressProgress));
if (_bindInfo.PackStreams.Size() != 0)
packSizes.Add(outStreamSizeCountSpec->GetSize());
for (i = 1; i < _bindInfo.PackStreams.Size(); i++)
{
CInOutTempBuffer &inOutTempBuffer = inOutTempBuffers[i - 1];
RINOK(inOutTempBuffer.WriteToStream(outStream));
packSizes.Add(inOutTempBuffer.GetDataSize());
}
unpackSize = 0;
for (i = 0; i < _bindInfo.Coders.Size(); i++)
{
int bond = _bindInfo.FindBond_for_UnpackStream(_DestOut_to_SrcIn[i]);
UInt64 streamSize;
if (bond < 0)
{
streamSize = inStreamSizeCountSpec->GetSize();
unpackSize = streamSize;
}
else
streamSize = _mixer->GetBondStreamSize(bond);
coderUnpackSizes.Add(streamSize);
}
return S_OK;
}
CEncoder::CEncoder(const CCompressionMethodMode &options):
_constructed(false)
{
if (options.IsEmpty())
throw 1;
_options = options;
#ifdef USE_MIXER_ST
_mixerST = NULL;
#endif
#ifdef USE_MIXER_MT
_mixerMT = NULL;
#endif
_mixer = NULL;
}
HRESULT CEncoder::EncoderConstr()
{
if (_constructed)
return S_OK;
if (_options.Methods.IsEmpty())
{
// it has only password method;
if (!_options.PasswordIsDefined)
throw 1;
if (!_options.Bonds.IsEmpty())
throw 1;
CMethodFull method;
method.Id = k_AES;
method.NumStreams = 1;
_options.Methods.Add(method);
NCoderMixer2::CCoderStreamsInfo coderStreamsInfo;
coderStreamsInfo.NumStreams = 1;
_bindInfo.Coders.Add(coderStreamsInfo);
_bindInfo.PackStreams.Add(0);
_bindInfo.UnpackCoder = 0;
}
else
{
UInt32 numOutStreams = 0;
unsigned i;
for (i = 0; i < _options.Methods.Size(); i++)
{
const CMethodFull &methodFull = _options.Methods[i];
NCoderMixer2::CCoderStreamsInfo cod;
cod.NumStreams = methodFull.NumStreams;
if (_options.Bonds.IsEmpty())
{
// if there are no bonds in options, we create bonds via first streams of coders
if (i != _options.Methods.Size() - 1)
{
NCoderMixer2::CBond bond;
bond.PackIndex = numOutStreams;
bond.UnpackIndex = i + 1; // it's next coder
_bindInfo.Bonds.Add(bond);
}
else if (cod.NumStreams != 0)
_bindInfo.PackStreams.Insert(0, numOutStreams);
for (UInt32 j = 1; j < cod.NumStreams; j++)
_bindInfo.PackStreams.Add(numOutStreams + j);
}
numOutStreams += cod.NumStreams;
_bindInfo.Coders.Add(cod);
}
if (!_options.Bonds.IsEmpty())
{
for (i = 0; i < _options.Bonds.Size(); i++)
{
NCoderMixer2::CBond mixerBond;
const CBond2 &bond = _options.Bonds[i];
if (bond.InCoder >= _bindInfo.Coders.Size()
|| bond.OutCoder >= _bindInfo.Coders.Size()
|| bond.OutStream >= _bindInfo.Coders[bond.OutCoder].NumStreams)
return E_INVALIDARG;
mixerBond.PackIndex = _bindInfo.GetStream_for_Coder(bond.OutCoder) + bond.OutStream;
mixerBond.UnpackIndex = bond.InCoder;
_bindInfo.Bonds.Add(mixerBond);
}
for (i = 0; i < numOutStreams; i++)
if (_bindInfo.FindBond_for_PackStream(i) == -1)
_bindInfo.PackStreams.Add(i);
}
if (!_bindInfo.SetUnpackCoder())
return E_INVALIDARG;
if (!_bindInfo.CalcMapsAndCheck())
return E_INVALIDARG;
if (_bindInfo.PackStreams.Size() != 1)
{
/* main_PackStream is pack stream of main path of coders tree.
We find main_PackStream, and place to start of list of out streams.
It allows to use more optimal memory usage for temp buffers,
if main_PackStream is largest stream. */
UInt32 ci = _bindInfo.UnpackCoder;
for (;;)
{
if (_bindInfo.Coders[ci].NumStreams == 0)
break;
UInt32 outIndex = _bindInfo.Coder_to_Stream[ci];
int bond = _bindInfo.FindBond_for_PackStream(outIndex);
if (bond >= 0)
{
ci = _bindInfo.Bonds[bond].UnpackIndex;
continue;
}
int si = _bindInfo.FindStream_in_PackStreams(outIndex);
if (si >= 0)
_bindInfo.PackStreams.MoveToFront(si);
break;
}
}
if (_options.PasswordIsDefined)
{
unsigned numCryptoStreams = _bindInfo.PackStreams.Size();
unsigned numInStreams = _bindInfo.Coders.Size();
for (i = 0; i < numCryptoStreams; i++)
{
NCoderMixer2::CBond bond;
bond.UnpackIndex = numInStreams + i;
bond.PackIndex = _bindInfo.PackStreams[i];
_bindInfo.Bonds.Add(bond);
}
_bindInfo.PackStreams.Clear();
/*
if (numCryptoStreams == 0)
numCryptoStreams = 1;
*/
for (i = 0; i < numCryptoStreams; i++)
{
CMethodFull method;
method.NumStreams = 1;
method.Id = k_AES;
_options.Methods.Add(method);
NCoderMixer2::CCoderStreamsInfo cod;
cod.NumStreams = 1;
_bindInfo.Coders.Add(cod);
_bindInfo.PackStreams.Add(numOutStreams++);
}
}
}
for (unsigned i = _options.Methods.Size(); i != 0;)
_decompressionMethods.Add(_options.Methods[--i].Id);
if (_bindInfo.Coders.Size() > 16)
return E_INVALIDARG;
if (_bindInfo.GetNum_Bonds_and_PackStreams() > 16)
return E_INVALIDARG;
if (!_bindInfo.CalcMapsAndCheck())
return E_INVALIDARG;
InitBindConv();
_constructed = true;
return S_OK;
}
CEncoder::~CEncoder() {}
}}

View File

@ -0,0 +1,92 @@
// 7zEncode.h
#ifndef __7Z_ENCODE_H
#define __7Z_ENCODE_H
#include "7zCompressionMode.h"
#include "../Common/CoderMixer2.h"
#include "7zItem.h"
namespace NArchive {
namespace N7z {
class CMtEncMultiProgress:
public ICompressProgressInfo,
public CMyUnknownImp
{
CMyComPtr<ICompressProgressInfo> _progress;
#ifndef _7ZIP_ST
NWindows::NSynchronization::CCriticalSection CriticalSection;
#endif
public:
UInt64 OutSize;
CMtEncMultiProgress(): OutSize(0) {}
void Init(ICompressProgressInfo *progress);
void AddOutSize(UInt64 addOutSize)
{
#ifndef _7ZIP_ST
NWindows::NSynchronization::CCriticalSectionLock lock(CriticalSection);
#endif
OutSize += addOutSize;
}
MY_UNKNOWN_IMP1(ICompressProgressInfo)
STDMETHOD(SetRatioInfo)(const UInt64 *inSize, const UInt64 *outSize);
};
class CEncoder
{
#ifdef USE_MIXER_ST
NCoderMixer2::CMixerST *_mixerST;
#endif
#ifdef USE_MIXER_MT
NCoderMixer2::CMixerMT *_mixerMT;
#endif
NCoderMixer2::CMixer *_mixer;
CMyComPtr<IUnknown> _mixerRef;
CCompressionMethodMode _options;
NCoderMixer2::CBindInfo _bindInfo;
CRecordVector<CMethodId> _decompressionMethods;
CRecordVector<UInt32> _SrcIn_to_DestOut;
CRecordVector<UInt32> _SrcOut_to_DestIn;
// CRecordVector<UInt32> _DestIn_to_SrcOut;
CRecordVector<UInt32> _DestOut_to_SrcIn;
void InitBindConv();
void SetFolder(CFolder &folder);
HRESULT CreateMixerCoder(DECL_EXTERNAL_CODECS_LOC_VARS
const UInt64 *inSizeForReduce);
bool _constructed;
public:
CEncoder(const CCompressionMethodMode &options);
~CEncoder();
HRESULT EncoderConstr();
HRESULT Encode(
DECL_EXTERNAL_CODECS_LOC_VARS
ISequentialInStream *inStream,
// const UInt64 *inStreamSize,
const UInt64 *inSizeForReduce,
CFolder &folderItem,
CRecordVector<UInt64> &coderUnpackSizes,
UInt64 &unpackSize,
ISequentialOutStream *outStream,
CRecordVector<UInt64> &packSizes,
ICompressProgressInfo *compressProgress);
};
}}
#endif

View File

@ -0,0 +1,408 @@
// 7zExtract.cpp
#include "StdAfx.h"
#include "../../../../C/7zCrc.h"
#include "../../../Common/ComTry.h"
#include "../../Common/ProgressUtils.h"
#include "7zDecode.h"
#include "7zHandler.h"
// EXTERN_g_ExternalCodecs
namespace NArchive {
namespace N7z {
class CFolderOutStream:
public ISequentialOutStream,
public CMyUnknownImp
{
CMyComPtr<ISequentialOutStream> _stream;
public:
bool TestMode;
bool CheckCrc;
private:
bool _fileIsOpen;
bool _calcCrc;
UInt32 _crc;
UInt64 _rem;
const UInt32 *_indexes;
unsigned _numFiles;
unsigned _fileIndex;
HRESULT OpenFile(bool isCorrupted = false);
HRESULT CloseFile_and_SetResult(Int32 res);
HRESULT CloseFile();
HRESULT ProcessEmptyFiles();
public:
MY_UNKNOWN_IMP1(ISequentialOutStream)
const CDbEx *_db;
CMyComPtr<IArchiveExtractCallback> ExtractCallback;
bool ExtraWriteWasCut;
CFolderOutStream():
TestMode(false),
CheckCrc(true)
{}
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
HRESULT Init(unsigned startIndex, const UInt32 *indexes, unsigned numFiles);
HRESULT FlushCorrupted(Int32 callbackOperationResult);
bool WasWritingFinished() const { return _numFiles == 0; }
};
HRESULT CFolderOutStream::Init(unsigned startIndex, const UInt32 *indexes, unsigned numFiles)
{
_fileIndex = startIndex;
_indexes = indexes;
_numFiles = numFiles;
_fileIsOpen = false;
ExtraWriteWasCut = false;
return ProcessEmptyFiles();
}
HRESULT CFolderOutStream::OpenFile(bool isCorrupted)
{
const CFileItem &fi = _db->Files[_fileIndex];
UInt32 nextFileIndex = (_indexes ? *_indexes : _fileIndex);
Int32 askMode = (_fileIndex == nextFileIndex) ?
(TestMode ?
NExtract::NAskMode::kTest :
NExtract::NAskMode::kExtract) :
NExtract::NAskMode::kSkip;
if (isCorrupted
&& askMode == NExtract::NAskMode::kExtract
&& !_db->IsItemAnti(_fileIndex)
&& !fi.IsDir)
askMode = NExtract::NAskMode::kTest;
CMyComPtr<ISequentialOutStream> realOutStream;
RINOK(ExtractCallback->GetStream(_fileIndex, &realOutStream, askMode));
_stream = realOutStream;
_crc = CRC_INIT_VAL;
_calcCrc = (CheckCrc && fi.CrcDefined && !fi.IsDir);
_fileIsOpen = true;
_rem = fi.Size;
if (askMode == NExtract::NAskMode::kExtract
&& !realOutStream
&& !_db->IsItemAnti(_fileIndex)
&& !fi.IsDir)
askMode = NExtract::NAskMode::kSkip;
return ExtractCallback->PrepareOperation(askMode);
}
HRESULT CFolderOutStream::CloseFile_and_SetResult(Int32 res)
{
_stream.Release();
_fileIsOpen = false;
if (!_indexes)
_numFiles--;
else if (*_indexes == _fileIndex)
{
_indexes++;
_numFiles--;
}
_fileIndex++;
return ExtractCallback->SetOperationResult(res);
}
HRESULT CFolderOutStream::CloseFile()
{
const CFileItem &fi = _db->Files[_fileIndex];
return CloseFile_and_SetResult((!_calcCrc || fi.Crc == CRC_GET_DIGEST(_crc)) ?
NExtract::NOperationResult::kOK :
NExtract::NOperationResult::kCRCError);
}
HRESULT CFolderOutStream::ProcessEmptyFiles()
{
while (_numFiles != 0 && _db->Files[_fileIndex].Size == 0)
{
RINOK(OpenFile());
RINOK(CloseFile());
}
return S_OK;
}
STDMETHODIMP CFolderOutStream::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
if (processedSize)
*processedSize = 0;
while (size != 0)
{
if (_fileIsOpen)
{
UInt32 cur = (size < _rem ? size : (UInt32)_rem);
HRESULT result = S_OK;
if (_stream)
result = _stream->Write(data, cur, &cur);
if (_calcCrc)
_crc = CrcUpdate(_crc, data, cur);
if (processedSize)
*processedSize += cur;
data = (const Byte *)data + cur;
size -= cur;
_rem -= cur;
if (_rem == 0)
{
RINOK(CloseFile());
RINOK(ProcessEmptyFiles());
}
RINOK(result);
if (cur == 0)
break;
continue;
}
RINOK(ProcessEmptyFiles());
if (_numFiles == 0)
{
// we support partial extracting
/*
if (processedSize)
*processedSize += size;
break;
*/
ExtraWriteWasCut = true;
// return S_FALSE;
return k_My_HRESULT_WritingWasCut;
}
RINOK(OpenFile());
}
return S_OK;
}
HRESULT CFolderOutStream::FlushCorrupted(Int32 callbackOperationResult)
{
while (_numFiles != 0)
{
if (_fileIsOpen)
{
RINOK(CloseFile_and_SetResult(callbackOperationResult));
}
else
{
RINOK(OpenFile(true));
}
}
return S_OK;
}
STDMETHODIMP CHandler::Extract(const UInt32 *indices, UInt32 numItems,
Int32 testModeSpec, IArchiveExtractCallback *extractCallbackSpec)
{
COM_TRY_BEGIN
CMyComPtr<IArchiveExtractCallback> extractCallback = extractCallbackSpec;
UInt64 importantTotalUnpacked = 0;
// numItems = (UInt32)(Int32)-1;
bool allFilesMode = (numItems == (UInt32)(Int32)-1);
if (allFilesMode)
numItems = _db.Files.Size();
if (numItems == 0)
return S_OK;
{
CNum prevFolder = kNumNoIndex;
UInt32 nextFile = 0;
UInt32 i;
for (i = 0; i < numItems; i++)
{
UInt32 fileIndex = allFilesMode ? i : indices[i];
CNum folderIndex = _db.FileIndexToFolderIndexMap[fileIndex];
if (folderIndex == kNumNoIndex)
continue;
if (folderIndex != prevFolder || fileIndex < nextFile)
nextFile = _db.FolderStartFileIndex[folderIndex];
for (CNum index = nextFile; index <= fileIndex; index++)
importantTotalUnpacked += _db.Files[index].Size;
nextFile = fileIndex + 1;
prevFolder = folderIndex;
}
}
RINOK(extractCallback->SetTotal(importantTotalUnpacked));
CLocalProgress *lps = new CLocalProgress;
CMyComPtr<ICompressProgressInfo> progress = lps;
lps->Init(extractCallback, false);
CDecoder decoder(
#if !defined(USE_MIXER_MT)
false
#elif !defined(USE_MIXER_ST)
true
#elif !defined(__7Z_SET_PROPERTIES)
#ifdef _7ZIP_ST
false
#else
true
#endif
#else
_useMultiThreadMixer
#endif
);
UInt64 curPacked, curUnpacked;
CMyComPtr<IArchiveExtractCallbackMessage> callbackMessage;
extractCallback.QueryInterface(IID_IArchiveExtractCallbackMessage, &callbackMessage);
CFolderOutStream *folderOutStream = new CFolderOutStream;
CMyComPtr<ISequentialOutStream> outStream(folderOutStream);
folderOutStream->_db = &_db;
folderOutStream->ExtractCallback = extractCallback;
folderOutStream->TestMode = (testModeSpec != 0);
folderOutStream->CheckCrc = (_crcSize != 0);
for (UInt32 i = 0;; lps->OutSize += curUnpacked, lps->InSize += curPacked)
{
RINOK(lps->SetCur());
if (i >= numItems)
break;
curUnpacked = 0;
curPacked = 0;
UInt32 fileIndex = allFilesMode ? i : indices[i];
CNum folderIndex = _db.FileIndexToFolderIndexMap[fileIndex];
UInt32 numSolidFiles = 1;
if (folderIndex != kNumNoIndex)
{
curPacked = _db.GetFolderFullPackSize(folderIndex);
UInt32 nextFile = fileIndex + 1;
fileIndex = _db.FolderStartFileIndex[folderIndex];
UInt32 k;
for (k = i + 1; k < numItems; k++)
{
UInt32 fileIndex2 = allFilesMode ? k : indices[k];
if (_db.FileIndexToFolderIndexMap[fileIndex2] != folderIndex
|| fileIndex2 < nextFile)
break;
nextFile = fileIndex2 + 1;
}
numSolidFiles = k - i;
for (k = fileIndex; k < nextFile; k++)
curUnpacked += _db.Files[k].Size;
}
{
HRESULT result = folderOutStream->Init(fileIndex,
allFilesMode ? NULL : indices + i,
numSolidFiles);
i += numSolidFiles;
RINOK(result);
}
// to test solid block with zero unpacked size we disable that code
if (folderOutStream->WasWritingFinished())
continue;
#ifndef _NO_CRYPTO
CMyComPtr<ICryptoGetTextPassword> getTextPassword;
if (extractCallback)
extractCallback.QueryInterface(IID_ICryptoGetTextPassword, &getTextPassword);
#endif
try
{
#ifndef _NO_CRYPTO
bool isEncrypted = false;
bool passwordIsDefined = false;
UString password;
#endif
HRESULT result = decoder.Decode(
EXTERNAL_CODECS_VARS
_inStream,
_db.ArcInfo.DataStartPosition,
_db, folderIndex,
&curUnpacked,
outStream,
progress,
NULL // *inStreamMainRes
_7Z_DECODER_CRYPRO_VARS
#if !defined(_7ZIP_ST) && !defined(_SFX)
, true, _numThreads
#endif
);
if (result == S_FALSE || result == E_NOTIMPL)
{
bool wasFinished = folderOutStream->WasWritingFinished();
int resOp = (result == S_FALSE ?
NExtract::NOperationResult::kDataError :
NExtract::NOperationResult::kUnsupportedMethod);
RINOK(folderOutStream->FlushCorrupted(resOp));
if (wasFinished)
{
// we don't show error, if it's after required files
if (/* !folderOutStream->ExtraWriteWasCut && */ callbackMessage)
{
RINOK(callbackMessage->ReportExtractResult(NEventIndexType::kBlockIndex, folderIndex, resOp));
}
}
continue;
}
if (result != S_OK)
return result;
RINOK(folderOutStream->FlushCorrupted(NExtract::NOperationResult::kDataError));
continue;
}
catch(...)
{
RINOK(folderOutStream->FlushCorrupted(NExtract::NOperationResult::kDataError));
// continue;
return E_FAIL;
}
}
return S_OK;
COM_TRY_END
}
}}

View File

@ -0,0 +1,136 @@
// 7zFolderInStream.cpp
#include "StdAfx.h"
#include "7zFolderInStream.h"
namespace NArchive {
namespace N7z {
void CFolderInStream::Init(IArchiveUpdateCallback *updateCallback,
const UInt32 *indexes, unsigned numFiles)
{
_updateCallback = updateCallback;
_indexes = indexes;
_numFiles = numFiles;
_index = 0;
Processed.ClearAndReserve(numFiles);
CRCs.ClearAndReserve(numFiles);
Sizes.ClearAndReserve(numFiles);
_pos = 0;
_crc = CRC_INIT_VAL;
_size_Defined = false;
_size = 0;
_stream.Release();
}
HRESULT CFolderInStream::OpenStream()
{
_pos = 0;
_crc = CRC_INIT_VAL;
_size_Defined = false;
_size = 0;
while (_index < _numFiles)
{
CMyComPtr<ISequentialInStream> stream;
HRESULT result = _updateCallback->GetStream(_indexes[_index], &stream);
if (result != S_OK)
{
if (result != S_FALSE)
return result;
}
_stream = stream;
if (stream)
{
CMyComPtr<IStreamGetSize> streamGetSize;
stream.QueryInterface(IID_IStreamGetSize, &streamGetSize);
if (streamGetSize)
{
if (streamGetSize->GetSize(&_size) == S_OK)
_size_Defined = true;
}
return S_OK;
}
_index++;
RINOK(_updateCallback->SetOperationResult(NArchive::NUpdate::NOperationResult::kOK));
AddFileInfo(result == S_OK);
}
return S_OK;
}
void CFolderInStream::AddFileInfo(bool isProcessed)
{
Processed.Add(isProcessed);
Sizes.Add(_pos);
CRCs.Add(CRC_GET_DIGEST(_crc));
}
STDMETHODIMP CFolderInStream::Read(void *data, UInt32 size, UInt32 *processedSize)
{
if (processedSize)
*processedSize = 0;
while (size != 0)
{
if (_stream)
{
UInt32 processed2;
RINOK(_stream->Read(data, size, &processed2));
if (processed2 != 0)
{
_crc = CrcUpdate(_crc, data, processed2);
_pos += processed2;
if (processedSize)
*processedSize = processed2;
return S_OK;
}
_stream.Release();
_index++;
AddFileInfo(true);
_pos = 0;
_crc = CRC_INIT_VAL;
_size_Defined = false;
_size = 0;
RINOK(_updateCallback->SetOperationResult(NArchive::NUpdate::NOperationResult::kOK));
}
if (_index >= _numFiles)
break;
RINOK(OpenStream());
}
return S_OK;
}
STDMETHODIMP CFolderInStream::GetSubStreamSize(UInt64 subStream, UInt64 *value)
{
*value = 0;
if (subStream > Sizes.Size())
return S_FALSE; // E_FAIL;
unsigned index = (unsigned)subStream;
if (index < Sizes.Size())
{
*value = Sizes[index];
return S_OK;
}
if (!_size_Defined)
{
*value = _pos;
return S_FALSE;
}
*value = (_pos > _size ? _pos : _size);
return S_OK;
}
}}

View File

@ -0,0 +1,61 @@
// 7zFolderInStream.h
#ifndef __7Z_FOLDER_IN_STREAM_H
#define __7Z_FOLDER_IN_STREAM_H
#include "../../../../C/7zCrc.h"
#include "../../../Common/MyCom.h"
#include "../../../Common/MyVector.h"
#include "../../ICoder.h"
#include "../IArchive.h"
namespace NArchive {
namespace N7z {
class CFolderInStream:
public ISequentialInStream,
public ICompressGetSubStreamSize,
public CMyUnknownImp
{
CMyComPtr<ISequentialInStream> _stream;
UInt64 _pos;
UInt32 _crc;
bool _size_Defined;
UInt64 _size;
const UInt32 *_indexes;
unsigned _numFiles;
unsigned _index;
CMyComPtr<IArchiveUpdateCallback> _updateCallback;
HRESULT OpenStream();
void AddFileInfo(bool isProcessed);
public:
CRecordVector<bool> Processed;
CRecordVector<UInt32> CRCs;
CRecordVector<UInt64> Sizes;
MY_UNKNOWN_IMP2(ISequentialInStream, ICompressGetSubStreamSize)
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
STDMETHOD(GetSubStreamSize)(UInt64 subStream, UInt64 *value);
void Init(IArchiveUpdateCallback *updateCallback, const UInt32 *indexes, unsigned numFiles);
bool WasFinished() const { return _index == _numFiles; }
UInt64 GetFullSize() const
{
UInt64 size = 0;
FOR_VECTOR (i, Sizes)
size += Sizes[i];
return size;
}
};
}}
#endif

View File

@ -0,0 +1,755 @@
// 7zHandler.cpp
#include "StdAfx.h"
#include "../../../../C/CpuArch.h"
#include "../../../Common/ComTry.h"
#include "../../../Common/IntToString.h"
#ifndef __7Z_SET_PROPERTIES
#include "../../../Windows/System.h"
#endif
#include "../Common/ItemNameUtils.h"
#include "7zHandler.h"
#include "7zProperties.h"
#ifdef __7Z_SET_PROPERTIES
#ifdef EXTRACT_ONLY
#include "../Common/ParseProperties.h"
#endif
#endif
using namespace NWindows;
using namespace NCOM;
namespace NArchive {
namespace N7z {
CHandler::CHandler()
{
#ifndef _NO_CRYPTO
_isEncrypted = false;
_passwordIsDefined = false;
#endif
#ifdef EXTRACT_ONLY
_crcSize = 4;
#ifdef __7Z_SET_PROPERTIES
_numThreads = NSystem::GetNumberOfProcessors();
_useMultiThreadMixer = true;
#endif
#endif
}
STDMETHODIMP CHandler::GetNumberOfItems(UInt32 *numItems)
{
*numItems = _db.Files.Size();
return S_OK;
}
#ifdef _SFX
IMP_IInArchive_ArcProps_NO_Table
STDMETHODIMP CHandler::GetNumberOfProperties(UInt32 *numProps)
{
*numProps = 0;
return S_OK;
}
STDMETHODIMP CHandler::GetPropertyInfo(UInt32 /* index */,
BSTR * /* name */, PROPID * /* propID */, VARTYPE * /* varType */)
{
return E_NOTIMPL;
}
#else
static const Byte kArcProps[] =
{
kpidHeadersSize,
kpidMethod,
kpidSolid,
kpidNumBlocks
// , kpidIsTree
};
IMP_IInArchive_ArcProps
static inline char GetHex(unsigned value)
{
return (char)((value < 10) ? ('0' + value) : ('A' + (value - 10)));
}
static unsigned ConvertMethodIdToString_Back(char *s, UInt64 id)
{
int len = 0;
do
{
s[--len] = GetHex((unsigned)id & 0xF); id >>= 4;
s[--len] = GetHex((unsigned)id & 0xF); id >>= 4;
}
while (id != 0);
return (unsigned)-len;
}
static void ConvertMethodIdToString(AString &res, UInt64 id)
{
const unsigned kLen = 32;
char s[kLen];
unsigned len = kLen - 1;
s[len] = 0;
res += s + len - ConvertMethodIdToString_Back(s + len, id);
}
static unsigned GetStringForSizeValue(char *s, UInt32 val)
{
unsigned i;
for (i = 0; i <= 31; i++)
if (((UInt32)1 << i) == val)
{
if (i < 10)
{
s[0] = (char)('0' + i);
s[1] = 0;
return 1;
}
if (i < 20) { s[0] = '1'; s[1] = (char)('0' + i - 10); }
else if (i < 30) { s[0] = '2'; s[1] = (char)('0' + i - 20); }
else { s[0] = '3'; s[1] = (char)('0' + i - 30); }
s[2] = 0;
return 2;
}
char c = 'b';
if ((val & ((1 << 20) - 1)) == 0) { val >>= 20; c = 'm'; }
else if ((val & ((1 << 10) - 1)) == 0) { val >>= 10; c = 'k'; }
::ConvertUInt32ToString(val, s);
unsigned pos = MyStringLen(s);
s[pos++] = c;
s[pos] = 0;
return pos;
}
/*
static inline void AddHexToString(UString &res, Byte value)
{
res += GetHex((Byte)(value >> 4));
res += GetHex((Byte)(value & 0xF));
}
*/
static char *AddProp32(char *s, const char *name, UInt32 v)
{
*s++ = ':';
s = MyStpCpy(s, name);
::ConvertUInt32ToString(v, s);
return s + MyStringLen(s);
}
void CHandler::AddMethodName(AString &s, UInt64 id)
{
AString name;
FindMethod(EXTERNAL_CODECS_VARS id, name);
if (name.IsEmpty())
ConvertMethodIdToString(s, id);
else
s += name;
}
#endif
STDMETHODIMP CHandler::GetArchiveProperty(PROPID propID, PROPVARIANT *value)
{
#ifndef _SFX
COM_TRY_BEGIN
#endif
NCOM::CPropVariant prop;
switch (propID)
{
#ifndef _SFX
case kpidMethod:
{
AString s;
const CParsedMethods &pm = _db.ParsedMethods;
FOR_VECTOR (i, pm.IDs)
{
UInt64 id = pm.IDs[i];
s.Add_Space_if_NotEmpty();
char temp[16];
if (id == k_LZMA2)
{
s += "LZMA2:";
if ((pm.Lzma2Prop & 1) == 0)
ConvertUInt32ToString((pm.Lzma2Prop >> 1) + 12, temp);
else
GetStringForSizeValue(temp, 3 << ((pm.Lzma2Prop >> 1) + 11));
s += temp;
}
else if (id == k_LZMA)
{
s += "LZMA:";
GetStringForSizeValue(temp, pm.LzmaDic);
s += temp;
}
else
AddMethodName(s, id);
}
prop = s;
break;
}
case kpidSolid: prop = _db.IsSolid(); break;
case kpidNumBlocks: prop = (UInt32)_db.NumFolders; break;
case kpidHeadersSize: prop = _db.HeadersSize; break;
case kpidPhySize: prop = _db.PhySize; break;
case kpidOffset: if (_db.ArcInfo.StartPosition != 0) prop = _db.ArcInfo.StartPosition; break;
/*
case kpidIsTree: if (_db.IsTree) prop = true; break;
case kpidIsAltStream: if (_db.ThereAreAltStreams) prop = true; break;
case kpidIsAux: if (_db.IsTree) prop = true; break;
*/
// case kpidError: if (_db.ThereIsHeaderError) prop = "Header error"; break;
#endif
case kpidWarningFlags:
{
UInt32 v = 0;
if (_db.StartHeaderWasRecovered) v |= kpv_ErrorFlags_HeadersError;
if (_db.UnsupportedFeatureWarning) v |= kpv_ErrorFlags_UnsupportedFeature;
if (v != 0)
prop = v;
break;
}
case kpidErrorFlags:
{
UInt32 v = 0;
if (!_db.IsArc) v |= kpv_ErrorFlags_IsNotArc;
if (_db.ThereIsHeaderError) v |= kpv_ErrorFlags_HeadersError;
if (_db.UnexpectedEnd) v |= kpv_ErrorFlags_UnexpectedEnd;
// if (_db.UnsupportedVersion) v |= kpv_ErrorFlags_Unsupported;
if (_db.UnsupportedFeatureError) v |= kpv_ErrorFlags_UnsupportedFeature;
prop = v;
break;
}
}
prop.Detach(value);
return S_OK;
#ifndef _SFX
COM_TRY_END
#endif
}
static void SetFileTimeProp_From_UInt64Def(PROPVARIANT *prop, const CUInt64DefVector &v, int index)
{
UInt64 value;
if (v.GetItem(index, value))
PropVarEm_Set_FileTime64(prop, value);
}
bool CHandler::IsFolderEncrypted(CNum folderIndex) const
{
if (folderIndex == kNumNoIndex)
return false;
size_t startPos = _db.FoCodersDataOffset[folderIndex];
const Byte *p = _db.CodersData + startPos;
size_t size = _db.FoCodersDataOffset[folderIndex + 1] - startPos;
CInByte2 inByte;
inByte.Init(p, size);
CNum numCoders = inByte.ReadNum();
for (; numCoders != 0; numCoders--)
{
Byte mainByte = inByte.ReadByte();
unsigned idSize = (mainByte & 0xF);
const Byte *longID = inByte.GetPtr();
UInt64 id64 = 0;
for (unsigned j = 0; j < idSize; j++)
id64 = ((id64 << 8) | longID[j]);
inByte.SkipDataNoCheck(idSize);
if (id64 == k_AES)
return true;
if ((mainByte & 0x20) != 0)
inByte.SkipDataNoCheck(inByte.ReadNum());
}
return false;
}
STDMETHODIMP CHandler::GetNumRawProps(UInt32 *numProps)
{
*numProps = 0;
return S_OK;
}
STDMETHODIMP CHandler::GetRawPropInfo(UInt32 /* index */, BSTR *name, PROPID *propID)
{
*name = NULL;
*propID = kpidNtSecure;
return S_OK;
}
STDMETHODIMP CHandler::GetParent(UInt32 /* index */, UInt32 *parent, UInt32 *parentType)
{
/*
const CFileItem &file = _db.Files[index];
*parentType = (file.IsAltStream ? NParentType::kAltStream : NParentType::kDir);
*parent = (UInt32)(Int32)file.Parent;
*/
*parentType = NParentType::kDir;
*parent = (UInt32)(Int32)-1;
return S_OK;
}
STDMETHODIMP CHandler::GetRawProp(UInt32 index, PROPID propID, const void **data, UInt32 *dataSize, UInt32 *propType)
{
*data = NULL;
*dataSize = 0;
*propType = 0;
if (/* _db.IsTree && propID == kpidName ||
!_db.IsTree && */ propID == kpidPath)
{
if (_db.NameOffsets && _db.NamesBuf)
{
size_t offset = _db.NameOffsets[index];
size_t size = (_db.NameOffsets[index + 1] - offset) * 2;
if (size < ((UInt32)1 << 31))
{
*data = (const void *)(_db.NamesBuf + offset * 2);
*dataSize = (UInt32)size;
*propType = NPropDataType::kUtf16z;
}
}
return S_OK;
}
/*
if (propID == kpidNtSecure)
{
if (index < (UInt32)_db.SecureIDs.Size())
{
int id = _db.SecureIDs[index];
size_t offs = _db.SecureOffsets[id];
size_t size = _db.SecureOffsets[id + 1] - offs;
if (size >= 0)
{
*data = _db.SecureBuf + offs;
*dataSize = (UInt32)size;
*propType = NPropDataType::kRaw;
}
}
}
*/
return S_OK;
}
#ifndef _SFX
HRESULT CHandler::SetMethodToProp(CNum folderIndex, PROPVARIANT *prop) const
{
PropVariant_Clear(prop);
if (folderIndex == kNumNoIndex)
return S_OK;
// for (int ttt = 0; ttt < 1; ttt++) {
const unsigned kTempSize = 256;
char temp[kTempSize];
unsigned pos = kTempSize;
temp[--pos] = 0;
size_t startPos = _db.FoCodersDataOffset[folderIndex];
const Byte *p = _db.CodersData + startPos;
size_t size = _db.FoCodersDataOffset[folderIndex + 1] - startPos;
CInByte2 inByte;
inByte.Init(p, size);
// numCoders == 0 ???
CNum numCoders = inByte.ReadNum();
bool needSpace = false;
for (; numCoders != 0; numCoders--, needSpace = true)
{
if (pos < 32) // max size of property
break;
Byte mainByte = inByte.ReadByte();
unsigned idSize = (mainByte & 0xF);
const Byte *longID = inByte.GetPtr();
UInt64 id64 = 0;
for (unsigned j = 0; j < idSize; j++)
id64 = ((id64 << 8) | longID[j]);
inByte.SkipDataNoCheck(idSize);
if ((mainByte & 0x10) != 0)
{
inByte.ReadNum(); // NumInStreams
inByte.ReadNum(); // NumOutStreams
}
CNum propsSize = 0;
const Byte *props = NULL;
if ((mainByte & 0x20) != 0)
{
propsSize = inByte.ReadNum();
props = inByte.GetPtr();
inByte.SkipDataNoCheck(propsSize);
}
const char *name = NULL;
char s[32];
s[0] = 0;
if (id64 <= (UInt32)0xFFFFFFFF)
{
UInt32 id = (UInt32)id64;
if (id == k_LZMA)
{
name = "LZMA";
if (propsSize == 5)
{
UInt32 dicSize = GetUi32((const Byte *)props + 1);
char *dest = s + GetStringForSizeValue(s, dicSize);
UInt32 d = props[0];
if (d != 0x5D)
{
UInt32 lc = d % 9;
d /= 9;
UInt32 pb = d / 5;
UInt32 lp = d % 5;
if (lc != 3) dest = AddProp32(dest, "lc", lc);
if (lp != 0) dest = AddProp32(dest, "lp", lp);
if (pb != 2) dest = AddProp32(dest, "pb", pb);
}
}
}
else if (id == k_LZMA2)
{
name = "LZMA2";
if (propsSize == 1)
{
Byte d = props[0];
if ((d & 1) == 0)
ConvertUInt32ToString((UInt32)((d >> 1) + 12), s);
else
GetStringForSizeValue(s, 3 << ((d >> 1) + 11));
}
}
else if (id == k_PPMD)
{
name = "PPMD";
if (propsSize == 5)
{
Byte order = *props;
char *dest = s;
*dest++ = 'o';
ConvertUInt32ToString(order, dest);
dest += MyStringLen(dest);
dest = MyStpCpy(dest, ":mem");
GetStringForSizeValue(dest, GetUi32(props + 1));
}
}
else if (id == k_Delta)
{
name = "Delta";
if (propsSize == 1)
ConvertUInt32ToString((UInt32)props[0] + 1, s);
}
else if (id == k_BCJ2) name = "BCJ2";
else if (id == k_BCJ) name = "BCJ";
else if (id == k_AES)
{
name = "7zAES";
if (propsSize >= 1)
{
Byte firstByte = props[0];
UInt32 numCyclesPower = firstByte & 0x3F;
ConvertUInt32ToString(numCyclesPower, s);
}
}
}
if (name)
{
unsigned nameLen = MyStringLen(name);
unsigned propsLen = MyStringLen(s);
unsigned totalLen = nameLen + propsLen;
if (propsLen != 0)
totalLen++;
if (needSpace)
totalLen++;
if (totalLen + 5 >= pos)
break;
pos -= totalLen;
MyStringCopy(temp + pos, name);
if (propsLen != 0)
{
char *dest = temp + pos + nameLen;
*dest++ = ':';
MyStringCopy(dest, s);
}
if (needSpace)
temp[pos + totalLen - 1] = ' ';
}
else
{
AString methodName;
FindMethod(EXTERNAL_CODECS_VARS id64, methodName);
if (needSpace)
temp[--pos] = ' ';
if (methodName.IsEmpty())
pos -= ConvertMethodIdToString_Back(temp + pos, id64);
else
{
unsigned len = methodName.Len();
if (len + 5 > pos)
break;
pos -= len;
for (unsigned i = 0; i < len; i++)
temp[pos + i] = methodName[i];
}
}
}
if (numCoders != 0 && pos >= 4)
{
temp[--pos] = ' ';
temp[--pos] = '.';
temp[--pos] = '.';
temp[--pos] = '.';
}
return PropVarEm_Set_Str(prop, temp + pos);
// }
}
#endif
STDMETHODIMP CHandler::GetProperty(UInt32 index, PROPID propID, PROPVARIANT *value)
{
PropVariant_Clear(value);
// COM_TRY_BEGIN
// NCOM::CPropVariant prop;
/*
const CRef2 &ref2 = _refs[index];
if (ref2.Refs.IsEmpty())
return E_FAIL;
const CRef &ref = ref2.Refs.Front();
*/
const CFileItem &item = _db.Files[index];
UInt32 index2 = index;
switch (propID)
{
case kpidIsDir: PropVarEm_Set_Bool(value, item.IsDir); break;
case kpidSize:
{
PropVarEm_Set_UInt64(value, item.Size);
// prop = ref2.Size;
break;
}
case kpidPackSize:
{
// prop = ref2.PackSize;
{
CNum folderIndex = _db.FileIndexToFolderIndexMap[index2];
if (folderIndex != kNumNoIndex)
{
if (_db.FolderStartFileIndex[folderIndex] == (CNum)index2)
PropVarEm_Set_UInt64(value, _db.GetFolderFullPackSize(folderIndex));
/*
else
PropVarEm_Set_UInt64(value, 0);
*/
}
else
PropVarEm_Set_UInt64(value, 0);
}
break;
}
// case kpidIsAux: prop = _db.IsItemAux(index2); break;
case kpidPosition: { UInt64 v; if (_db.StartPos.GetItem(index2, v)) PropVarEm_Set_UInt64(value, v); break; }
case kpidCTime: SetFileTimeProp_From_UInt64Def(value, _db.CTime, index2); break;
case kpidATime: SetFileTimeProp_From_UInt64Def(value, _db.ATime, index2); break;
case kpidMTime: SetFileTimeProp_From_UInt64Def(value, _db.MTime, index2); break;
case kpidAttrib: if (item.AttribDefined) PropVarEm_Set_UInt32(value, item.Attrib); break;
case kpidCRC: if (item.CrcDefined) PropVarEm_Set_UInt32(value, item.Crc); break;
case kpidEncrypted: PropVarEm_Set_Bool(value, IsFolderEncrypted(_db.FileIndexToFolderIndexMap[index2])); break;
case kpidIsAnti: PropVarEm_Set_Bool(value, _db.IsItemAnti(index2)); break;
/*
case kpidIsAltStream: prop = item.IsAltStream; break;
case kpidNtSecure:
{
int id = _db.SecureIDs[index];
size_t offs = _db.SecureOffsets[id];
size_t size = _db.SecureOffsets[id + 1] - offs;
if (size >= 0)
{
prop.SetBlob(_db.SecureBuf + offs, (ULONG)size);
}
break;
}
*/
case kpidPath: return _db.GetPath_Prop(index, value);
#ifndef _SFX
case kpidMethod: return SetMethodToProp(_db.FileIndexToFolderIndexMap[index2], value);
case kpidBlock:
{
CNum folderIndex = _db.FileIndexToFolderIndexMap[index2];
if (folderIndex != kNumNoIndex)
PropVarEm_Set_UInt32(value, (UInt32)folderIndex);
}
break;
/*
case kpidPackedSize0:
case kpidPackedSize1:
case kpidPackedSize2:
case kpidPackedSize3:
case kpidPackedSize4:
{
CNum folderIndex = _db.FileIndexToFolderIndexMap[index2];
if (folderIndex != kNumNoIndex)
{
if (_db.FolderStartFileIndex[folderIndex] == (CNum)index2 &&
_db.FoStartPackStreamIndex[folderIndex + 1] -
_db.FoStartPackStreamIndex[folderIndex] > (propID - kpidPackedSize0))
{
PropVarEm_Set_UInt64(value, _db.GetFolderPackStreamSize(folderIndex, propID - kpidPackedSize0));
}
}
else
PropVarEm_Set_UInt64(value, 0);
}
break;
*/
#endif
}
// prop.Detach(value);
return S_OK;
// COM_TRY_END
}
STDMETHODIMP CHandler::Open(IInStream *stream,
const UInt64 *maxCheckStartPosition,
IArchiveOpenCallback *openArchiveCallback)
{
COM_TRY_BEGIN
Close();
#ifndef _SFX
_fileInfoPopIDs.Clear();
#endif
try
{
CMyComPtr<IArchiveOpenCallback> openArchiveCallbackTemp = openArchiveCallback;
#ifndef _NO_CRYPTO
CMyComPtr<ICryptoGetTextPassword> getTextPassword;
if (openArchiveCallback)
openArchiveCallbackTemp.QueryInterface(IID_ICryptoGetTextPassword, &getTextPassword);
#endif
CInArchive archive(
#ifdef __7Z_SET_PROPERTIES
_useMultiThreadMixer
#else
true
#endif
);
_db.IsArc = false;
RINOK(archive.Open(stream, maxCheckStartPosition));
_db.IsArc = true;
HRESULT result = archive.ReadDatabase(
EXTERNAL_CODECS_VARS
_db
#ifndef _NO_CRYPTO
, getTextPassword, _isEncrypted, _passwordIsDefined, _password
#endif
);
RINOK(result);
_inStream = stream;
}
catch(...)
{
Close();
// return E_INVALIDARG;
// return S_FALSE;
// we must return out_of_memory here
return E_OUTOFMEMORY;
}
// _inStream = stream;
#ifndef _SFX
FillPopIDs();
#endif
return S_OK;
COM_TRY_END
}
STDMETHODIMP CHandler::Close()
{
COM_TRY_BEGIN
_inStream.Release();
_db.Clear();
#ifndef _NO_CRYPTO
_isEncrypted = false;
_passwordIsDefined = false;
_password.Empty();
#endif
return S_OK;
COM_TRY_END
}
#ifdef __7Z_SET_PROPERTIES
#ifdef EXTRACT_ONLY
STDMETHODIMP CHandler::SetProperties(const wchar_t * const *names, const PROPVARIANT *values, UInt32 numProps)
{
COM_TRY_BEGIN
const UInt32 numProcessors = NSystem::GetNumberOfProcessors();
_numThreads = numProcessors;
_useMultiThreadMixer = true;
for (UInt32 i = 0; i < numProps; i++)
{
UString name = names[i];
name.MakeLower_Ascii();
if (name.IsEmpty())
return E_INVALIDARG;
const PROPVARIANT &value = values[i];
UInt32 number;
unsigned index = ParseStringToUInt32(name, number);
if (index == 0)
{
if (name.IsEqualTo("mtf"))
{
RINOK(PROPVARIANT_to_bool(value, _useMultiThreadMixer));
continue;
}
if (name.IsPrefixedBy_Ascii_NoCase("mt"))
{
RINOK(ParseMtProp(name.Ptr(2), value, numProcessors, _numThreads));
continue;
}
else
return E_INVALIDARG;
}
}
return S_OK;
COM_TRY_END
}
#endif
#endif
IMPL_ISetCompressCodecsInfo
}}

View File

@ -0,0 +1,173 @@
// 7z/Handler.h
#ifndef __7Z_HANDLER_H
#define __7Z_HANDLER_H
#include "../../ICoder.h"
#include "../IArchive.h"
#include "../../Common/CreateCoder.h"
#ifndef EXTRACT_ONLY
#include "../Common/HandlerOut.h"
#endif
#include "7zCompressionMode.h"
#include "7zIn.h"
namespace NArchive {
namespace N7z {
#ifndef __7Z_SET_PROPERTIES
#ifdef EXTRACT_ONLY
#if !defined(_7ZIP_ST) && !defined(_SFX)
#define __7Z_SET_PROPERTIES
#endif
#else
#define __7Z_SET_PROPERTIES
#endif
#endif
#ifndef EXTRACT_ONLY
class COutHandler: public CMultiMethodProps
{
HRESULT SetSolidFromString(const UString &s);
HRESULT SetSolidFromPROPVARIANT(const PROPVARIANT &value);
public:
bool _removeSfxBlock;
UInt64 _numSolidFiles;
UInt64 _numSolidBytes;
bool _numSolidBytesDefined;
bool _solidExtension;
bool _useTypeSorting;
bool _compressHeaders;
bool _encryptHeadersSpecified;
bool _encryptHeaders;
// bool _useParents; 9.26
CBoolPair Write_CTime;
CBoolPair Write_ATime;
CBoolPair Write_MTime;
bool _useMultiThreadMixer;
// bool _volumeMode;
void InitSolidFiles() { _numSolidFiles = (UInt64)(Int64)(-1); }
void InitSolidSize() { _numSolidBytes = (UInt64)(Int64)(-1); }
void InitSolid()
{
InitSolidFiles();
InitSolidSize();
_solidExtension = false;
_numSolidBytesDefined = false;
}
void InitProps();
COutHandler() { InitProps(); }
HRESULT SetProperty(const wchar_t *name, const PROPVARIANT &value);
};
#endif
class CHandler:
public IInArchive,
public IArchiveGetRawProps,
#ifdef __7Z_SET_PROPERTIES
public ISetProperties,
#endif
#ifndef EXTRACT_ONLY
public IOutArchive,
#endif
PUBLIC_ISetCompressCodecsInfo
public CMyUnknownImp
#ifndef EXTRACT_ONLY
, public COutHandler
#endif
{
public:
MY_QUERYINTERFACE_BEGIN2(IInArchive)
MY_QUERYINTERFACE_ENTRY(IArchiveGetRawProps)
#ifdef __7Z_SET_PROPERTIES
MY_QUERYINTERFACE_ENTRY(ISetProperties)
#endif
#ifndef EXTRACT_ONLY
MY_QUERYINTERFACE_ENTRY(IOutArchive)
#endif
QUERY_ENTRY_ISetCompressCodecsInfo
MY_QUERYINTERFACE_END
MY_ADDREF_RELEASE
INTERFACE_IInArchive(;)
INTERFACE_IArchiveGetRawProps(;)
#ifdef __7Z_SET_PROPERTIES
STDMETHOD(SetProperties)(const wchar_t * const *names, const PROPVARIANT *values, UInt32 numProps);
#endif
#ifndef EXTRACT_ONLY
INTERFACE_IOutArchive(;)
#endif
DECL_ISetCompressCodecsInfo
CHandler();
private:
CMyComPtr<IInStream> _inStream;
NArchive::N7z::CDbEx _db;
#ifndef _NO_CRYPTO
bool _isEncrypted;
bool _passwordIsDefined;
UString _password;
#endif
#ifdef EXTRACT_ONLY
#ifdef __7Z_SET_PROPERTIES
UInt32 _numThreads;
bool _useMultiThreadMixer;
#endif
UInt32 _crcSize;
#else
CRecordVector<CBond2> _bonds;
HRESULT PropsMethod_To_FullMethod(CMethodFull &dest, const COneMethodInfo &m);
HRESULT SetHeaderMethod(CCompressionMethodMode &headerMethod);
HRESULT SetMainMethod(CCompressionMethodMode &method
#ifndef _7ZIP_ST
, UInt32 numThreads
#endif
);
#endif
bool IsFolderEncrypted(CNum folderIndex) const;
#ifndef _SFX
CRecordVector<UInt64> _fileInfoPopIDs;
void FillPopIDs();
void AddMethodName(AString &s, UInt64 id);
HRESULT SetMethodToProp(CNum folderIndex, PROPVARIANT *prop) const;
#endif
DECL_EXTERNAL_CODECS_VARS
};
}}
#endif

View File

@ -0,0 +1,913 @@
// 7zHandlerOut.cpp
#include "StdAfx.h"
#include "../../../Common/ComTry.h"
#include "../../../Common/StringToInt.h"
#include "../../../Common/Wildcard.h"
#include "../Common/ItemNameUtils.h"
#include "../Common/ParseProperties.h"
#include "7zHandler.h"
#include "7zOut.h"
#include "7zUpdate.h"
using namespace NWindows;
namespace NArchive {
namespace N7z {
static const char *k_LZMA_Name = "LZMA";
static const char *kDefaultMethodName = "LZMA2";
static const char *k_Copy_Name = "Copy";
static const char *k_MatchFinder_ForHeaders = "BT2";
static const UInt32 k_NumFastBytes_ForHeaders = 273;
static const UInt32 k_Level_ForHeaders = 5;
static const UInt32 k_Dictionary_ForHeaders =
#ifdef UNDER_CE
1 << 18;
#else
1 << 20;
#endif
STDMETHODIMP CHandler::GetFileTimeType(UInt32 *type)
{
*type = NFileTimeType::kWindows;
return S_OK;
}
HRESULT CHandler::PropsMethod_To_FullMethod(CMethodFull &dest, const COneMethodInfo &m)
{
if (!FindMethod(
EXTERNAL_CODECS_VARS
m.MethodName, dest.Id, dest.NumStreams))
return E_INVALIDARG;
(CProps &)dest = (CProps &)m;
return S_OK;
}
HRESULT CHandler::SetHeaderMethod(CCompressionMethodMode &headerMethod)
{
if (!_compressHeaders)
return S_OK;
COneMethodInfo m;
m.MethodName = k_LZMA_Name;
m.AddProp_Ascii(NCoderPropID::kMatchFinder, k_MatchFinder_ForHeaders);
m.AddProp_Level(k_Level_ForHeaders);
m.AddProp32(NCoderPropID::kNumFastBytes, k_NumFastBytes_ForHeaders);
m.AddProp32(NCoderPropID::kDictionarySize, k_Dictionary_ForHeaders);
m.AddProp_NumThreads(1);
CMethodFull &methodFull = headerMethod.Methods.AddNew();
return PropsMethod_To_FullMethod(methodFull, m);
}
HRESULT CHandler::SetMainMethod(
CCompressionMethodMode &methodMode
#ifndef _7ZIP_ST
, UInt32 numThreads
#endif
)
{
methodMode.Bonds = _bonds;
CObjectVector<COneMethodInfo> methods = _methods;
{
FOR_VECTOR (i, methods)
{
AString &methodName = methods[i].MethodName;
if (methodName.IsEmpty())
methodName = kDefaultMethodName;
}
if (methods.IsEmpty())
{
COneMethodInfo &m = methods.AddNew();
m.MethodName = (GetLevel() == 0 ? k_Copy_Name : kDefaultMethodName);
methodMode.DefaultMethod_was_Inserted = true;
}
}
if (!_filterMethod.MethodName.IsEmpty())
{
// if (methodMode.Bonds.IsEmpty())
{
FOR_VECTOR (k, methodMode.Bonds)
{
CBond2 &bond = methodMode.Bonds[k];
bond.InCoder++;
bond.OutCoder++;
}
methods.Insert(0, _filterMethod);
methodMode.Filter_was_Inserted = true;
}
}
const UInt64 kSolidBytes_Min = (1 << 24);
const UInt64 kSolidBytes_Max = ((UInt64)1 << 32) - 1;
bool needSolid = false;
FOR_VECTOR (i, methods)
{
COneMethodInfo &oneMethodInfo = methods[i];
SetGlobalLevelAndThreads(oneMethodInfo
#ifndef _7ZIP_ST
, numThreads
#endif
);
CMethodFull &methodFull = methodMode.Methods.AddNew();
RINOK(PropsMethod_To_FullMethod(methodFull, oneMethodInfo));
if (methodFull.Id != k_Copy)
needSolid = true;
if (_numSolidBytesDefined)
continue;
UInt32 dicSize;
switch (methodFull.Id)
{
case k_LZMA:
case k_LZMA2: dicSize = oneMethodInfo.Get_Lzma_DicSize(); break;
case k_PPMD: dicSize = oneMethodInfo.Get_Ppmd_MemSize(); break;
case k_Deflate: dicSize = (UInt32)1 << 15; break;
case k_BZip2: dicSize = oneMethodInfo.Get_BZip2_BlockSize(); break;
default: continue;
}
_numSolidBytes = (UInt64)dicSize << 7;
if (_numSolidBytes < kSolidBytes_Min) _numSolidBytes = kSolidBytes_Min;
if (_numSolidBytes > kSolidBytes_Max) _numSolidBytes = kSolidBytes_Max;
_numSolidBytesDefined = true;
}
if (!_numSolidBytesDefined)
if (needSolid)
_numSolidBytes = kSolidBytes_Max;
else
_numSolidBytes = 0;
_numSolidBytesDefined = true;
return S_OK;
}
static HRESULT GetTime(IArchiveUpdateCallback *updateCallback, int index, PROPID propID, UInt64 &ft, bool &ftDefined)
{
// ft = 0;
// ftDefined = false;
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(index, propID, &prop));
if (prop.vt == VT_FILETIME)
{
ft = prop.filetime.dwLowDateTime | ((UInt64)prop.filetime.dwHighDateTime << 32);
ftDefined = true;
}
else if (prop.vt != VT_EMPTY)
return E_INVALIDARG;
else
{
ft = 0;
ftDefined = false;
}
return S_OK;
}
/*
#ifdef _WIN32
static const wchar_t kDirDelimiter1 = L'\\';
#endif
static const wchar_t kDirDelimiter2 = L'/';
static inline bool IsCharDirLimiter(wchar_t c)
{
return (
#ifdef _WIN32
c == kDirDelimiter1 ||
#endif
c == kDirDelimiter2);
}
static int FillSortIndex(CObjectVector<CTreeFolder> &treeFolders, int cur, int curSortIndex)
{
CTreeFolder &tf = treeFolders[cur];
tf.SortIndex = curSortIndex++;
for (int i = 0; i < tf.SubFolders.Size(); i++)
curSortIndex = FillSortIndex(treeFolders, tf.SubFolders[i], curSortIndex);
tf.SortIndexEnd = curSortIndex;
return curSortIndex;
}
static int FindSubFolder(const CObjectVector<CTreeFolder> &treeFolders, int cur, const UString &name, int &insertPos)
{
const CIntVector &subFolders = treeFolders[cur].SubFolders;
int left = 0, right = subFolders.Size();
insertPos = -1;
for (;;)
{
if (left == right)
{
insertPos = left;
return -1;
}
int mid = (left + right) / 2;
int midFolder = subFolders[mid];
int compare = CompareFileNames(name, treeFolders[midFolder].Name);
if (compare == 0)
return midFolder;
if (compare < 0)
right = mid;
else
left = mid + 1;
}
}
static int AddFolder(CObjectVector<CTreeFolder> &treeFolders, int cur, const UString &name)
{
int insertPos;
int folderIndex = FindSubFolder(treeFolders, cur, name, insertPos);
if (folderIndex < 0)
{
folderIndex = treeFolders.Size();
CTreeFolder &newFolder = treeFolders.AddNew();
newFolder.Parent = cur;
newFolder.Name = name;
treeFolders[cur].SubFolders.Insert(insertPos, folderIndex);
}
// else if (treeFolders[folderIndex].IsAltStreamFolder != isAltStreamFolder) throw 1123234234;
return folderIndex;
}
*/
STDMETHODIMP CHandler::UpdateItems(ISequentialOutStream *outStream, UInt32 numItems,
IArchiveUpdateCallback *updateCallback)
{
COM_TRY_BEGIN
const CDbEx *db = 0;
#ifdef _7Z_VOL
if (_volumes.Size() > 1)
return E_FAIL;
const CVolume *volume = 0;
if (_volumes.Size() == 1)
{
volume = &_volumes.Front();
db = &volume->Database;
}
#else
if (_inStream != 0)
db = &_db;
#endif
/*
CMyComPtr<IArchiveGetRawProps> getRawProps;
updateCallback->QueryInterface(IID_IArchiveGetRawProps, (void **)&getRawProps);
CUniqBlocks secureBlocks;
secureBlocks.AddUniq(NULL, 0);
CObjectVector<CTreeFolder> treeFolders;
{
CTreeFolder folder;
folder.Parent = -1;
treeFolders.Add(folder);
}
*/
CObjectVector<CUpdateItem> updateItems;
bool need_CTime = (Write_CTime.Def && Write_CTime.Val);
bool need_ATime = (Write_ATime.Def && Write_ATime.Val);
bool need_MTime = (Write_MTime.Def && Write_MTime.Val || !Write_MTime.Def);
if (db && !db->Files.IsEmpty())
{
if (!Write_CTime.Def) need_CTime = !db->CTime.Defs.IsEmpty();
if (!Write_ATime.Def) need_ATime = !db->ATime.Defs.IsEmpty();
if (!Write_MTime.Def) need_MTime = !db->MTime.Defs.IsEmpty();
}
UString s;
for (UInt32 i = 0; i < numItems; i++)
{
Int32 newData, newProps;
UInt32 indexInArchive;
if (!updateCallback)
return E_FAIL;
RINOK(updateCallback->GetUpdateItemInfo(i, &newData, &newProps, &indexInArchive));
CUpdateItem ui;
ui.NewProps = IntToBool(newProps);
ui.NewData = IntToBool(newData);
ui.IndexInArchive = indexInArchive;
ui.IndexInClient = i;
ui.IsAnti = false;
ui.Size = 0;
UString name;
// bool isAltStream = false;
if (ui.IndexInArchive != -1)
{
if (db == 0 || (unsigned)ui.IndexInArchive >= db->Files.Size())
return E_INVALIDARG;
const CFileItem &fi = db->Files[ui.IndexInArchive];
if (!ui.NewProps)
{
_db.GetPath(ui.IndexInArchive, name);
}
ui.IsDir = fi.IsDir;
ui.Size = fi.Size;
// isAltStream = fi.IsAltStream;
ui.IsAnti = db->IsItemAnti(ui.IndexInArchive);
if (!ui.NewProps)
{
ui.CTimeDefined = db->CTime.GetItem(ui.IndexInArchive, ui.CTime);
ui.ATimeDefined = db->ATime.GetItem(ui.IndexInArchive, ui.ATime);
ui.MTimeDefined = db->MTime.GetItem(ui.IndexInArchive, ui.MTime);
}
}
if (ui.NewProps)
{
bool folderStatusIsDefined;
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidAttrib, &prop));
if (prop.vt == VT_EMPTY)
ui.AttribDefined = false;
else if (prop.vt != VT_UI4)
return E_INVALIDARG;
else
{
ui.Attrib = prop.ulVal;
ui.AttribDefined = true;
}
}
// we need MTime to sort files.
if (need_CTime) RINOK(GetTime(updateCallback, i, kpidCTime, ui.CTime, ui.CTimeDefined));
if (need_ATime) RINOK(GetTime(updateCallback, i, kpidATime, ui.ATime, ui.ATimeDefined));
if (need_MTime) RINOK(GetTime(updateCallback, i, kpidMTime, ui.MTime, ui.MTimeDefined));
/*
if (getRawProps)
{
const void *data;
UInt32 dataSize;
UInt32 propType;
getRawProps->GetRawProp(i, kpidNtSecure, &data, &dataSize, &propType);
if (dataSize != 0 && propType != NPropDataType::kRaw)
return E_FAIL;
ui.SecureIndex = secureBlocks.AddUniq((const Byte *)data, dataSize);
}
*/
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidPath, &prop));
if (prop.vt == VT_EMPTY)
{
}
else if (prop.vt != VT_BSTR)
return E_INVALIDARG;
else
{
name = NItemName::MakeLegalName(prop.bstrVal);
}
}
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidIsDir, &prop));
if (prop.vt == VT_EMPTY)
folderStatusIsDefined = false;
else if (prop.vt != VT_BOOL)
return E_INVALIDARG;
else
{
ui.IsDir = (prop.boolVal != VARIANT_FALSE);
folderStatusIsDefined = true;
}
}
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidIsAnti, &prop));
if (prop.vt == VT_EMPTY)
ui.IsAnti = false;
else if (prop.vt != VT_BOOL)
return E_INVALIDARG;
else
ui.IsAnti = (prop.boolVal != VARIANT_FALSE);
}
/*
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidIsAltStream, &prop));
if (prop.vt == VT_EMPTY)
isAltStream = false;
else if (prop.vt != VT_BOOL)
return E_INVALIDARG;
else
isAltStream = (prop.boolVal != VARIANT_FALSE);
}
*/
if (ui.IsAnti)
{
ui.AttribDefined = false;
ui.CTimeDefined = false;
ui.ATimeDefined = false;
ui.MTimeDefined = false;
ui.Size = 0;
}
if (!folderStatusIsDefined && ui.AttribDefined)
ui.SetDirStatusFromAttrib();
}
else
{
/*
if (_db.SecureIDs.IsEmpty())
ui.SecureIndex = secureBlocks.AddUniq(NULL, 0);
else
{
int id = _db.SecureIDs[ui.IndexInArchive];
size_t offs = _db.SecureOffsets[id];
size_t size = _db.SecureOffsets[id + 1] - offs;
ui.SecureIndex = secureBlocks.AddUniq(_db.SecureBuf + offs, size);
}
*/
}
/*
{
int folderIndex = 0;
if (_useParents)
{
int j;
s.Empty();
for (j = 0; j < name.Len(); j++)
{
wchar_t c = name[j];
if (IsCharDirLimiter(c))
{
folderIndex = AddFolder(treeFolders, folderIndex, s);
s.Empty();
continue;
}
s += c;
}
if (isAltStream)
{
int colonPos = s.Find(':');
if (colonPos < 0)
{
// isAltStream = false;
return E_INVALIDARG;
}
UString mainName = s.Left(colonPos);
int newFolderIndex = AddFolder(treeFolders, folderIndex, mainName);
if (treeFolders[newFolderIndex].UpdateItemIndex < 0)
{
for (int j = updateItems.Size() - 1; j >= 0; j--)
{
CUpdateItem &ui2 = updateItems[j];
if (ui2.ParentFolderIndex == folderIndex
&& ui2.Name == mainName)
{
ui2.TreeFolderIndex = newFolderIndex;
treeFolders[newFolderIndex].UpdateItemIndex = j;
}
}
}
folderIndex = newFolderIndex;
s.Delete(0, colonPos + 1);
}
ui.Name = s;
}
else
ui.Name = name;
ui.IsAltStream = isAltStream;
ui.ParentFolderIndex = folderIndex;
ui.TreeFolderIndex = -1;
if (ui.IsDir && !s.IsEmpty())
{
ui.TreeFolderIndex = AddFolder(treeFolders, folderIndex, s);
treeFolders[ui.TreeFolderIndex].UpdateItemIndex = updateItems.Size();
}
}
*/
ui.Name = name;
if (ui.NewData)
{
ui.Size = 0;
if (!ui.IsDir)
{
NCOM::CPropVariant prop;
RINOK(updateCallback->GetProperty(i, kpidSize, &prop));
if (prop.vt != VT_UI8)
return E_INVALIDARG;
ui.Size = (UInt64)prop.uhVal.QuadPart;
if (ui.Size != 0 && ui.IsAnti)
return E_INVALIDARG;
}
}
updateItems.Add(ui);
}
/*
FillSortIndex(treeFolders, 0, 0);
for (i = 0; i < (UInt32)updateItems.Size(); i++)
{
CUpdateItem &ui = updateItems[i];
ui.ParentSortIndex = treeFolders[ui.ParentFolderIndex].SortIndex;
ui.ParentSortIndexEnd = treeFolders[ui.ParentFolderIndex].SortIndexEnd;
}
*/
CCompressionMethodMode methodMode, headerMethod;
HRESULT res = SetMainMethod(methodMode
#ifndef _7ZIP_ST
, _numThreads
#endif
);
RINOK(res);
RINOK(SetHeaderMethod(headerMethod));
#ifndef _7ZIP_ST
methodMode.NumThreads = _numThreads;
methodMode.MultiThreadMixer = _useMultiThreadMixer;
headerMethod.NumThreads = 1;
headerMethod.MultiThreadMixer = _useMultiThreadMixer;
#endif
CMyComPtr<ICryptoGetTextPassword2> getPassword2;
updateCallback->QueryInterface(IID_ICryptoGetTextPassword2, (void **)&getPassword2);
methodMode.PasswordIsDefined = false;
methodMode.Password.Empty();
if (getPassword2)
{
CMyComBSTR password;
Int32 passwordIsDefined;
RINOK(getPassword2->CryptoGetTextPassword2(&passwordIsDefined, &password));
methodMode.PasswordIsDefined = IntToBool(passwordIsDefined);
if (methodMode.PasswordIsDefined && password)
methodMode.Password = password;
}
bool compressMainHeader = _compressHeaders; // check it
bool encryptHeaders = false;
#ifndef _NO_CRYPTO
if (!methodMode.PasswordIsDefined && _passwordIsDefined)
{
// if header is compressed, we use that password for updated archive
methodMode.PasswordIsDefined = true;
methodMode.Password = _password;
}
#endif
if (methodMode.PasswordIsDefined)
{
if (_encryptHeadersSpecified)
encryptHeaders = _encryptHeaders;
#ifndef _NO_CRYPTO
else
encryptHeaders = _passwordIsDefined;
#endif
compressMainHeader = true;
if (encryptHeaders)
{
headerMethod.PasswordIsDefined = methodMode.PasswordIsDefined;
headerMethod.Password = methodMode.Password;
}
}
if (numItems < 2)
compressMainHeader = false;
int level = GetLevel();
CUpdateOptions options;
options.Method = &methodMode;
options.HeaderMethod = (_compressHeaders || encryptHeaders) ? &headerMethod : NULL;
options.UseFilters = (level != 0 && _autoFilter && !methodMode.Filter_was_Inserted);
options.MaxFilter = (level >= 8);
options.AnalysisLevel = GetAnalysisLevel();
options.HeaderOptions.CompressMainHeader = compressMainHeader;
/*
options.HeaderOptions.WriteCTime = Write_CTime;
options.HeaderOptions.WriteATime = Write_ATime;
options.HeaderOptions.WriteMTime = Write_MTime;
*/
options.NumSolidFiles = _numSolidFiles;
options.NumSolidBytes = _numSolidBytes;
options.SolidExtension = _solidExtension;
options.UseTypeSorting = _useTypeSorting;
options.RemoveSfxBlock = _removeSfxBlock;
// options.VolumeMode = _volumeMode;
options.MultiThreadMixer = _useMultiThreadMixer;
COutArchive archive;
CArchiveDatabaseOut newDatabase;
CMyComPtr<ICryptoGetTextPassword> getPassword;
updateCallback->QueryInterface(IID_ICryptoGetTextPassword, (void **)&getPassword);
/*
if (secureBlocks.Sorted.Size() > 1)
{
secureBlocks.GetReverseMap();
for (int i = 0; i < updateItems.Size(); i++)
{
int &secureIndex = updateItems[i].SecureIndex;
secureIndex = secureBlocks.BufIndexToSortedIndex[secureIndex];
}
}
*/
res = Update(
EXTERNAL_CODECS_VARS
#ifdef _7Z_VOL
volume ? volume->Stream: 0,
volume ? db : 0,
#else
_inStream,
db,
#endif
updateItems,
// treeFolders,
// secureBlocks,
archive, newDatabase, outStream, updateCallback, options
#ifndef _NO_CRYPTO
, getPassword
#endif
);
RINOK(res);
updateItems.ClearAndFree();
return archive.WriteDatabase(EXTERNAL_CODECS_VARS
newDatabase, options.HeaderMethod, options.HeaderOptions);
COM_TRY_END
}
static HRESULT ParseBond(UString &srcString, UInt32 &coder, UInt32 &stream)
{
stream = 0;
{
unsigned index = ParseStringToUInt32(srcString, coder);
if (index == 0)
return E_INVALIDARG;
srcString.DeleteFrontal(index);
}
if (srcString[0] == 's')
{
srcString.Delete(0);
unsigned index = ParseStringToUInt32(srcString, stream);
if (index == 0)
return E_INVALIDARG;
srcString.DeleteFrontal(index);
}
return S_OK;
}
void COutHandler::InitProps()
{
CMultiMethodProps::Init();
_removeSfxBlock = false;
_compressHeaders = true;
_encryptHeadersSpecified = false;
_encryptHeaders = false;
// _useParents = false;
Write_CTime.Init();
Write_ATime.Init();
Write_MTime.Init();
_useMultiThreadMixer = true;
// _volumeMode = false;
InitSolid();
_useTypeSorting = false;
}
HRESULT COutHandler::SetSolidFromString(const UString &s)
{
UString s2 = s;
s2.MakeLower_Ascii();
for (unsigned i = 0; i < s2.Len();)
{
const wchar_t *start = ((const wchar_t *)s2) + i;
const wchar_t *end;
UInt64 v = ConvertStringToUInt64(start, &end);
if (start == end)
{
if (s2[i++] != 'e')
return E_INVALIDARG;
_solidExtension = true;
continue;
}
i += (int)(end - start);
if (i == s2.Len())
return E_INVALIDARG;
wchar_t c = s2[i++];
if (c == 'f')
{
if (v < 1)
v = 1;
_numSolidFiles = v;
}
else
{
unsigned numBits;
switch (c)
{
case 'b': numBits = 0; break;
case 'k': numBits = 10; break;
case 'm': numBits = 20; break;
case 'g': numBits = 30; break;
case 't': numBits = 40; break;
default: return E_INVALIDARG;
}
_numSolidBytes = (v << numBits);
_numSolidBytesDefined = true;
}
}
return S_OK;
}
HRESULT COutHandler::SetSolidFromPROPVARIANT(const PROPVARIANT &value)
{
bool isSolid;
switch (value.vt)
{
case VT_EMPTY: isSolid = true; break;
case VT_BOOL: isSolid = (value.boolVal != VARIANT_FALSE); break;
case VT_BSTR:
if (StringToBool(value.bstrVal, isSolid))
break;
return SetSolidFromString(value.bstrVal);
default: return E_INVALIDARG;
}
if (isSolid)
InitSolid();
else
_numSolidFiles = 1;
return S_OK;
}
static HRESULT PROPVARIANT_to_BoolPair(const PROPVARIANT &prop, CBoolPair &dest)
{
RINOK(PROPVARIANT_to_bool(prop, dest.Val));
dest.Def = true;
return S_OK;
}
HRESULT COutHandler::SetProperty(const wchar_t *nameSpec, const PROPVARIANT &value)
{
UString name = nameSpec;
name.MakeLower_Ascii();
if (name.IsEmpty())
return E_INVALIDARG;
if (name[0] == L's')
{
name.Delete(0);
if (name.IsEmpty())
return SetSolidFromPROPVARIANT(value);
if (value.vt != VT_EMPTY)
return E_INVALIDARG;
return SetSolidFromString(name);
}
UInt32 number;
int index = ParseStringToUInt32(name, number);
// UString realName = name.Ptr(index);
if (index == 0)
{
if (name.IsEqualTo("rsfx")) return PROPVARIANT_to_bool(value, _removeSfxBlock);
if (name.IsEqualTo("hc")) return PROPVARIANT_to_bool(value, _compressHeaders);
// if (name.IsEqualToNoCase(L"HS")) return PROPVARIANT_to_bool(value, _useParents);
if (name.IsEqualTo("hcf"))
{
bool compressHeadersFull = true;
RINOK(PROPVARIANT_to_bool(value, compressHeadersFull));
return compressHeadersFull ? S_OK: E_INVALIDARG;
}
if (name.IsEqualTo("he"))
{
RINOK(PROPVARIANT_to_bool(value, _encryptHeaders));
_encryptHeadersSpecified = true;
return S_OK;
}
if (name.IsEqualTo("tc")) return PROPVARIANT_to_BoolPair(value, Write_CTime);
if (name.IsEqualTo("ta")) return PROPVARIANT_to_BoolPair(value, Write_ATime);
if (name.IsEqualTo("tm")) return PROPVARIANT_to_BoolPair(value, Write_MTime);
if (name.IsEqualTo("mtf")) return PROPVARIANT_to_bool(value, _useMultiThreadMixer);
if (name.IsEqualTo("qs")) return PROPVARIANT_to_bool(value, _useTypeSorting);
// if (name.IsEqualTo("v")) return PROPVARIANT_to_bool(value, _volumeMode);
}
return CMultiMethodProps::SetProperty(name, value);
}
STDMETHODIMP CHandler::SetProperties(const wchar_t * const *names, const PROPVARIANT *values, UInt32 numProps)
{
COM_TRY_BEGIN
_bonds.Clear();
InitProps();
for (UInt32 i = 0; i < numProps; i++)
{
UString name = names[i];
name.MakeLower_Ascii();
if (name.IsEmpty())
return E_INVALIDARG;
const PROPVARIANT &value = values[i];
if (name[0] == 'b')
{
if (value.vt != VT_EMPTY)
return E_INVALIDARG;
name.Delete(0);
CBond2 bond;
RINOK(ParseBond(name, bond.OutCoder, bond.OutStream));
if (name[0] != ':')
return E_INVALIDARG;
name.Delete(0);
UInt32 inStream = 0;
RINOK(ParseBond(name, bond.InCoder, inStream));
if (inStream != 0)
return E_INVALIDARG;
if (!name.IsEmpty())
return E_INVALIDARG;
_bonds.Add(bond);
continue;
}
RINOK(SetProperty(name, value));
}
unsigned numEmptyMethods = GetNumEmptyMethods();
if (numEmptyMethods > 0)
{
unsigned k;
for (k = 0; k < _bonds.Size(); k++)
{
const CBond2 &bond = _bonds[k];
if (bond.InCoder < (UInt32)numEmptyMethods ||
bond.OutCoder < (UInt32)numEmptyMethods)
return E_INVALIDARG;
}
for (k = 0; k < _bonds.Size(); k++)
{
CBond2 &bond = _bonds[k];
bond.InCoder -= (UInt32)numEmptyMethods;
bond.OutCoder -= (UInt32)numEmptyMethods;
}
_methods.DeleteFrontal(numEmptyMethods);
}
FOR_VECTOR (k, _bonds)
{
const CBond2 &bond = _bonds[k];
if (bond.InCoder >= (UInt32)_methods.Size() ||
bond.OutCoder >= (UInt32)_methods.Size())
return E_INVALIDARG;
}
return S_OK;
COM_TRY_END
}
}}

View File

@ -0,0 +1,19 @@
// 7zHeader.cpp
#include "StdAfx.h"
#include "7zHeader.h"
namespace NArchive {
namespace N7z {
Byte kSignature[kSignatureSize] = {'7', 'z', 0xBC, 0xAF, 0x27, 0x1C};
#ifdef _7Z_VOL
Byte kFinishSignature[kSignatureSize] = {'7', 'z', 0xBC, 0xAF, 0x27, 0x1C + 1};
#endif
// We can change signature. So file doesn't contain correct signature.
// struct SignatureInitializer { SignatureInitializer() { kSignature[0]--; } };
// static SignatureInitializer g_SignatureInitializer;
}}

View File

@ -0,0 +1,148 @@
// 7z/7zHeader.h
#ifndef __7Z_HEADER_H
#define __7Z_HEADER_H
#include "../../../Common/MyTypes.h"
namespace NArchive {
namespace N7z {
const unsigned kSignatureSize = 6;
extern Byte kSignature[kSignatureSize];
// #define _7Z_VOL
// 7z-MultiVolume is not finished yet.
// It can work already, but I still do not like some
// things of that new multivolume format.
// So please keep it commented.
#ifdef _7Z_VOL
extern Byte kFinishSignature[kSignatureSize];
#endif
struct CArchiveVersion
{
Byte Major;
Byte Minor;
};
const Byte kMajorVersion = 0;
struct CStartHeader
{
UInt64 NextHeaderOffset;
UInt64 NextHeaderSize;
UInt32 NextHeaderCRC;
};
const UInt32 kStartHeaderSize = 20;
#ifdef _7Z_VOL
struct CFinishHeader: public CStartHeader
{
UInt64 ArchiveStartOffset; // data offset from end if that struct
UInt64 AdditionalStartBlockSize; // start signature & start header size
};
const UInt32 kFinishHeaderSize = kStartHeaderSize + 16;
#endif
namespace NID
{
enum EEnum
{
kEnd,
kHeader,
kArchiveProperties,
kAdditionalStreamsInfo,
kMainStreamsInfo,
kFilesInfo,
kPackInfo,
kUnpackInfo,
kSubStreamsInfo,
kSize,
kCRC,
kFolder,
kCodersUnpackSize,
kNumUnpackStream,
kEmptyStream,
kEmptyFile,
kAnti,
kName,
kCTime,
kATime,
kMTime,
kWinAttrib,
kComment,
kEncodedHeader,
kStartPos,
kDummy
// kNtSecure,
// kParent,
// kIsAux
};
}
const UInt32 k_Copy = 0;
const UInt32 k_Delta = 3;
const UInt32 k_LZMA2 = 0x21;
const UInt32 k_SWAP2 = 0x20302;
const UInt32 k_SWAP4 = 0x20304;
const UInt32 k_LZMA = 0x30101;
const UInt32 k_PPMD = 0x30401;
const UInt32 k_Deflate = 0x40108;
const UInt32 k_BZip2 = 0x40202;
const UInt32 k_BCJ = 0x3030103;
const UInt32 k_BCJ2 = 0x303011B;
const UInt32 k_PPC = 0x3030205;
const UInt32 k_IA64 = 0x3030401;
const UInt32 k_ARM = 0x3030501;
const UInt32 k_ARMT = 0x3030701;
const UInt32 k_SPARC = 0x3030805;
const UInt32 k_AES = 0x6F10701;
static inline bool IsFilterMethod(UInt64 m)
{
if (m > (UInt64)0xFFFFFFFF)
return false;
switch ((UInt32)m)
{
case k_Delta:
case k_BCJ:
case k_BCJ2:
case k_PPC:
case k_IA64:
case k_ARM:
case k_ARMT:
case k_SPARC:
case k_SWAP2:
case k_SWAP4:
return true;
}
return false;
}
}}
#endif

1640
CPP/7zip/Archive/7z/7zIn.cpp Normal file

File diff suppressed because it is too large Load Diff

431
CPP/7zip/Archive/7z/7zIn.h Normal file
View File

@ -0,0 +1,431 @@
// 7zIn.h
#ifndef __7Z_IN_H
#define __7Z_IN_H
#include "../../../Common/MyCom.h"
#include "../../../Windows/PropVariant.h"
#include "../../IPassword.h"
#include "../../IStream.h"
#include "../../Common/CreateCoder.h"
#include "../../Common/InBuffer.h"
#include "7zItem.h"
namespace NArchive {
namespace N7z {
/*
We don't need to init isEncrypted and passwordIsDefined
We must upgrade them only */
#ifdef _NO_CRYPTO
#define _7Z_DECODER_CRYPRO_VARS_DECL
#define _7Z_DECODER_CRYPRO_VARS
#else
#define _7Z_DECODER_CRYPRO_VARS_DECL , ICryptoGetTextPassword *getTextPassword, bool &isEncrypted, bool &passwordIsDefined, UString &password
#define _7Z_DECODER_CRYPRO_VARS , getTextPassword, isEncrypted, passwordIsDefined, password
#endif
struct CParsedMethods
{
Byte Lzma2Prop;
UInt32 LzmaDic;
CRecordVector<UInt64> IDs;
CParsedMethods(): Lzma2Prop(0), LzmaDic(0) {}
};
struct CFolderEx: public CFolder
{
unsigned UnpackCoder;
};
struct CFolders
{
CNum NumPackStreams;
CNum NumFolders;
CObjArray<UInt64> PackPositions; // NumPackStreams + 1
// CUInt32DefVector PackCRCs; // we don't use PackCRCs now
CUInt32DefVector FolderCRCs; // NumFolders
CObjArray<CNum> NumUnpackStreamsVector; // NumFolders
CObjArray<UInt64> CoderUnpackSizes; // including unpack sizes of bond coders
CObjArray<CNum> FoToCoderUnpackSizes; // NumFolders + 1
CObjArray<CNum> FoStartPackStreamIndex; // NumFolders + 1
CObjArray<Byte> FoToMainUnpackSizeIndex; // NumFolders
CObjArray<size_t> FoCodersDataOffset; // NumFolders + 1
CByteBuffer CodersData;
CParsedMethods ParsedMethods;
void ParseFolderInfo(unsigned folderIndex, CFolder &folder) const;
void ParseFolderEx(unsigned folderIndex, CFolderEx &folder) const
{
ParseFolderInfo(folderIndex, folder);
folder.UnpackCoder = FoToMainUnpackSizeIndex[folderIndex];
}
unsigned GetNumFolderUnpackSizes(unsigned folderIndex) const
{
return (unsigned)(FoToCoderUnpackSizes[folderIndex + 1] - FoToCoderUnpackSizes[folderIndex]);
}
UInt64 GetFolderUnpackSize(unsigned folderIndex) const
{
return CoderUnpackSizes[FoToCoderUnpackSizes[folderIndex] + FoToMainUnpackSizeIndex[folderIndex]];
}
UInt64 GetStreamPackSize(unsigned index) const
{
return PackPositions[index + 1] - PackPositions[index];
}
CFolders(): NumPackStreams(0), NumFolders(0) {}
void Clear()
{
NumPackStreams = 0;
PackPositions.Free();
// PackCRCs.Clear();
NumFolders = 0;
FolderCRCs.Clear();
NumUnpackStreamsVector.Free();
CoderUnpackSizes.Free();
FoToCoderUnpackSizes.Free();
FoStartPackStreamIndex.Free();
FoToMainUnpackSizeIndex.Free();
FoCodersDataOffset.Free();
CodersData.Free();
}
};
struct CDatabase: public CFolders
{
CRecordVector<CFileItem> Files;
CUInt64DefVector CTime;
CUInt64DefVector ATime;
CUInt64DefVector MTime;
CUInt64DefVector StartPos;
CBoolVector IsAnti;
/*
CBoolVector IsAux;
CByteBuffer SecureBuf;
CRecordVector<UInt32> SecureIDs;
*/
CByteBuffer NamesBuf;
CObjArray<size_t> NameOffsets; // numFiles + 1, offsets of utf-16 symbols
/*
void ClearSecure()
{
SecureBuf.Free();
SecureIDs.Clear();
}
*/
void Clear()
{
CFolders::Clear();
// ClearSecure();
NamesBuf.Free();
NameOffsets.Free();
Files.Clear();
CTime.Clear();
ATime.Clear();
MTime.Clear();
StartPos.Clear();
IsAnti.Clear();
// IsAux.Clear();
}
bool IsSolid() const
{
for (CNum i = 0; i < NumFolders; i++)
if (NumUnpackStreamsVector[i] > 1)
return true;
return false;
}
bool IsItemAnti(unsigned index) const { return (index < IsAnti.Size() && IsAnti[index]); }
// bool IsItemAux(unsigned index) const { return (index < IsAux.Size() && IsAux[index]); }
/*
const void* GetName(unsigned index) const
{
if (!NameOffsets || !NamesBuf)
return NULL;
return (void *)((const Byte *)NamesBuf + NameOffsets[index] * 2);
};
*/
void GetPath(unsigned index, UString &path) const;
HRESULT GetPath_Prop(unsigned index, PROPVARIANT *path) const throw();
};
struct CInArchiveInfo
{
CArchiveVersion Version;
UInt64 StartPosition;
UInt64 StartPositionAfterHeader;
UInt64 DataStartPosition;
UInt64 DataStartPosition2;
CRecordVector<UInt64> FileInfoPopIDs;
void Clear()
{
StartPosition = 0;
StartPositionAfterHeader = 0;
DataStartPosition = 0;
DataStartPosition2 = 0;
FileInfoPopIDs.Clear();
}
};
struct CDbEx: public CDatabase
{
CInArchiveInfo ArcInfo;
CObjArray<CNum> FolderStartFileIndex;
CObjArray<CNum> FileIndexToFolderIndexMap;
UInt64 HeadersSize;
UInt64 PhySize;
/*
CRecordVector<size_t> SecureOffsets;
bool IsTree;
bool ThereAreAltStreams;
*/
bool IsArc;
bool PhySizeWasConfirmed;
bool ThereIsHeaderError;
bool UnexpectedEnd;
// bool UnsupportedVersion;
bool StartHeaderWasRecovered;
bool UnsupportedFeatureWarning;
bool UnsupportedFeatureError;
/*
void ClearSecureEx()
{
ClearSecure();
SecureOffsets.Clear();
}
*/
void Clear()
{
IsArc = false;
PhySizeWasConfirmed = false;
ThereIsHeaderError = false;
UnexpectedEnd = false;
// UnsupportedVersion = false;
StartHeaderWasRecovered = false;
UnsupportedFeatureError = false;
UnsupportedFeatureWarning = false;
/*
IsTree = false;
ThereAreAltStreams = false;
*/
CDatabase::Clear();
// SecureOffsets.Clear();
ArcInfo.Clear();
FolderStartFileIndex.Free();
FileIndexToFolderIndexMap.Free();
HeadersSize = 0;
PhySize = 0;
}
void FillLinks();
UInt64 GetFolderStreamPos(CNum folderIndex, unsigned indexInFolder) const
{
return ArcInfo.DataStartPosition +
PackPositions[FoStartPackStreamIndex[folderIndex] + indexInFolder];
}
UInt64 GetFolderFullPackSize(CNum folderIndex) const
{
return
PackPositions[FoStartPackStreamIndex[folderIndex + 1]] -
PackPositions[FoStartPackStreamIndex[folderIndex]];
}
UInt64 GetFolderPackStreamSize(CNum folderIndex, unsigned streamIndex) const
{
size_t i = FoStartPackStreamIndex[folderIndex] + streamIndex;
return PackPositions[i + 1] - PackPositions[i];
}
UInt64 GetFilePackSize(CNum fileIndex) const
{
CNum folderIndex = FileIndexToFolderIndexMap[fileIndex];
if (folderIndex != kNumNoIndex)
if (FolderStartFileIndex[folderIndex] == fileIndex)
return GetFolderFullPackSize(folderIndex);
return 0;
}
};
const unsigned kNumBufLevelsMax = 4;
struct CInByte2
{
const Byte *_buffer;
public:
size_t _size;
size_t _pos;
size_t GetRem() const { return _size - _pos; }
const Byte *GetPtr() const { return _buffer + _pos; }
void Init(const Byte *buffer, size_t size)
{
_buffer = buffer;
_size = size;
_pos = 0;
}
Byte ReadByte();
void ReadBytes(Byte *data, size_t size);
void SkipDataNoCheck(UInt64 size) { _pos += (size_t)size; }
void SkipData(UInt64 size);
void SkipData();
void SkipRem() { _pos = _size; }
UInt64 ReadNumber();
CNum ReadNum();
UInt32 ReadUInt32();
UInt64 ReadUInt64();
void ParseFolder(CFolder &folder);
};
class CStreamSwitch;
const UInt32 kHeaderSize = 32;
class CInArchive
{
friend class CStreamSwitch;
CMyComPtr<IInStream> _stream;
unsigned _numInByteBufs;
CInByte2 _inByteVector[kNumBufLevelsMax];
CInByte2 *_inByteBack;
bool ThereIsHeaderError;
UInt64 _arhiveBeginStreamPosition;
UInt64 _fileEndPosition;
Byte _header[kHeaderSize];
UInt64 HeadersSize;
bool _useMixerMT;
void AddByteStream(const Byte *buffer, size_t size);
void DeleteByteStream(bool needUpdatePos)
{
_numInByteBufs--;
if (_numInByteBufs > 0)
{
_inByteBack = &_inByteVector[_numInByteBufs - 1];
if (needUpdatePos)
_inByteBack->_pos += _inByteVector[_numInByteBufs]._pos;
}
}
HRESULT FindAndReadSignature(IInStream *stream, const UInt64 *searchHeaderSizeLimit);
void ReadBytes(Byte *data, size_t size) { _inByteBack->ReadBytes(data, size); }
Byte ReadByte() { return _inByteBack->ReadByte(); }
UInt64 ReadNumber() { return _inByteBack->ReadNumber(); }
CNum ReadNum() { return _inByteBack->ReadNum(); }
UInt64 ReadID() { return _inByteBack->ReadNumber(); }
UInt32 ReadUInt32() { return _inByteBack->ReadUInt32(); }
UInt64 ReadUInt64() { return _inByteBack->ReadUInt64(); }
void SkipData(UInt64 size) { _inByteBack->SkipData(size); }
void SkipData() { _inByteBack->SkipData(); }
void WaitId(UInt64 id);
void ReadArchiveProperties(CInArchiveInfo &archiveInfo);
void ReadHashDigests(unsigned numItems, CUInt32DefVector &crcs);
void ReadPackInfo(CFolders &f);
void ReadUnpackInfo(
const CObjectVector<CByteBuffer> *dataVector,
CFolders &folders);
void ReadSubStreamsInfo(
CFolders &folders,
CRecordVector<UInt64> &unpackSizes,
CUInt32DefVector &digests);
void ReadStreamsInfo(
const CObjectVector<CByteBuffer> *dataVector,
UInt64 &dataOffset,
CFolders &folders,
CRecordVector<UInt64> &unpackSizes,
CUInt32DefVector &digests);
void ReadBoolVector(unsigned numItems, CBoolVector &v);
void ReadBoolVector2(unsigned numItems, CBoolVector &v);
void ReadUInt64DefVector(const CObjectVector<CByteBuffer> &dataVector,
CUInt64DefVector &v, unsigned numItems);
HRESULT ReadAndDecodePackedStreams(
DECL_EXTERNAL_CODECS_LOC_VARS
UInt64 baseOffset, UInt64 &dataOffset,
CObjectVector<CByteBuffer> &dataVector
_7Z_DECODER_CRYPRO_VARS_DECL
);
HRESULT ReadHeader(
DECL_EXTERNAL_CODECS_LOC_VARS
CDbEx &db
_7Z_DECODER_CRYPRO_VARS_DECL
);
HRESULT ReadDatabase2(
DECL_EXTERNAL_CODECS_LOC_VARS
CDbEx &db
_7Z_DECODER_CRYPRO_VARS_DECL
);
public:
CInArchive(bool useMixerMT):
_numInByteBufs(0),
_useMixerMT(useMixerMT)
{}
HRESULT Open(IInStream *stream, const UInt64 *searchHeaderSizeLimit); // S_FALSE means is not archive
void Close();
HRESULT ReadDatabase(
DECL_EXTERNAL_CODECS_LOC_VARS
CDbEx &db
_7Z_DECODER_CRYPRO_VARS_DECL
);
};
}}
#endif

View File

@ -0,0 +1,183 @@
// 7zItem.h
#ifndef __7Z_ITEM_H
#define __7Z_ITEM_H
#include "../../../Common/MyBuffer.h"
#include "../../../Common/MyString.h"
#include "../../Common/MethodId.h"
#include "7zHeader.h"
namespace NArchive {
namespace N7z {
typedef UInt32 CNum;
const CNum kNumMax = 0x7FFFFFFF;
const CNum kNumNoIndex = 0xFFFFFFFF;
struct CCoderInfo
{
CMethodId MethodID;
CByteBuffer Props;
UInt32 NumStreams;
bool IsSimpleCoder() const { return NumStreams == 1; }
};
struct CBond
{
UInt32 PackIndex;
UInt32 UnpackIndex;
};
struct CFolder
{
CLASS_NO_COPY(CFolder)
public:
CObjArray2<CCoderInfo> Coders;
CObjArray2<CBond> Bonds;
CObjArray2<UInt32> PackStreams;
CFolder() {}
bool IsDecodingSupported() const { return Coders.Size() <= 32; }
int Find_in_PackStreams(UInt32 packStream) const
{
FOR_VECTOR(i, PackStreams)
if (PackStreams[i] == packStream)
return i;
return -1;
}
int FindBond_for_PackStream(UInt32 packStream) const
{
FOR_VECTOR(i, Bonds)
if (Bonds[i].PackIndex == packStream)
return i;
return -1;
}
/*
int FindBond_for_UnpackStream(UInt32 unpackStream) const
{
FOR_VECTOR(i, Bonds)
if (Bonds[i].UnpackIndex == unpackStream)
return i;
return -1;
}
int FindOutCoder() const
{
for (int i = (int)Coders.Size() - 1; i >= 0; i--)
if (FindBond_for_UnpackStream(i) < 0)
return i;
return -1;
}
*/
bool IsEncrypted() const
{
FOR_VECTOR(i, Coders)
if (Coders[i].MethodID == k_AES)
return true;
return false;
}
};
struct CUInt32DefVector
{
CBoolVector Defs;
CRecordVector<UInt32> Vals;
void ClearAndSetSize(unsigned newSize)
{
Defs.ClearAndSetSize(newSize);
Vals.ClearAndSetSize(newSize);
}
void Clear()
{
Defs.Clear();
Vals.Clear();
}
void ReserveDown()
{
Defs.ReserveDown();
Vals.ReserveDown();
}
bool ValidAndDefined(unsigned i) const { return i < Defs.Size() && Defs[i]; }
};
struct CUInt64DefVector
{
CBoolVector Defs;
CRecordVector<UInt64> Vals;
void Clear()
{
Defs.Clear();
Vals.Clear();
}
void ReserveDown()
{
Defs.ReserveDown();
Vals.ReserveDown();
}
bool GetItem(unsigned index, UInt64 &value) const
{
if (index < Defs.Size() && Defs[index])
{
value = Vals[index];
return true;
}
value = 0;
return false;
}
void SetItem(unsigned index, bool defined, UInt64 value);
bool CheckSize(unsigned size) const { return Defs.Size() == size || Defs.Size() == 0; }
};
struct CFileItem
{
UInt64 Size;
UInt32 Attrib;
UInt32 Crc;
/*
int Parent;
bool IsAltStream;
*/
bool HasStream; // Test it !!! it means that there is
// stream in some folder. It can be empty stream
bool IsDir;
bool CrcDefined;
bool AttribDefined;
CFileItem():
/*
Parent(-1),
IsAltStream(false),
*/
HasStream(true),
IsDir(false),
CrcDefined(false),
AttribDefined(false)
{}
void SetAttrib(UInt32 attrib)
{
AttribDefined = true;
Attrib = attrib;
}
};
}}
#endif

View File

@ -0,0 +1,916 @@
// 7zOut.cpp
#include "StdAfx.h"
#include "../../../../C/7zCrc.h"
#include "../../../Common/AutoPtr.h"
#include "../../Common/StreamObjects.h"
#include "7zOut.h"
namespace NArchive {
namespace N7z {
HRESULT COutArchive::WriteSignature()
{
Byte buf[8];
memcpy(buf, kSignature, kSignatureSize);
buf[kSignatureSize] = kMajorVersion;
buf[kSignatureSize + 1] = 4;
return WriteDirect(buf, 8);
}
#ifdef _7Z_VOL
HRESULT COutArchive::WriteFinishSignature()
{
RINOK(WriteDirect(kFinishSignature, kSignatureSize));
CArchiveVersion av;
av.Major = kMajorVersion;
av.Minor = 2;
RINOK(WriteDirectByte(av.Major));
return WriteDirectByte(av.Minor);
}
#endif
static void SetUInt32(Byte *p, UInt32 d)
{
for (int i = 0; i < 4; i++, d >>= 8)
p[i] = (Byte)d;
}
static void SetUInt64(Byte *p, UInt64 d)
{
for (int i = 0; i < 8; i++, d >>= 8)
p[i] = (Byte)d;
}
HRESULT COutArchive::WriteStartHeader(const CStartHeader &h)
{
Byte buf[24];
SetUInt64(buf + 4, h.NextHeaderOffset);
SetUInt64(buf + 12, h.NextHeaderSize);
SetUInt32(buf + 20, h.NextHeaderCRC);
SetUInt32(buf, CrcCalc(buf + 4, 20));
return WriteDirect(buf, 24);
}
#ifdef _7Z_VOL
HRESULT COutArchive::WriteFinishHeader(const CFinishHeader &h)
{
CCRC crc;
crc.UpdateUInt64(h.NextHeaderOffset);
crc.UpdateUInt64(h.NextHeaderSize);
crc.UpdateUInt32(h.NextHeaderCRC);
crc.UpdateUInt64(h.ArchiveStartOffset);
crc.UpdateUInt64(h.AdditionalStartBlockSize);
RINOK(WriteDirectUInt32(crc.GetDigest()));
RINOK(WriteDirectUInt64(h.NextHeaderOffset));
RINOK(WriteDirectUInt64(h.NextHeaderSize));
RINOK(WriteDirectUInt32(h.NextHeaderCRC));
RINOK(WriteDirectUInt64(h.ArchiveStartOffset));
return WriteDirectUInt64(h.AdditionalStartBlockSize);
}
#endif
HRESULT COutArchive::Create(ISequentialOutStream *stream, bool endMarker)
{
Close();
#ifdef _7Z_VOL
// endMarker = false;
_endMarker = endMarker;
#endif
SeqStream = stream;
if (!endMarker)
{
SeqStream.QueryInterface(IID_IOutStream, &Stream);
if (!Stream)
{
return E_NOTIMPL;
// endMarker = true;
}
}
#ifdef _7Z_VOL
if (endMarker)
{
/*
CStartHeader sh;
sh.NextHeaderOffset = (UInt32)(Int32)-1;
sh.NextHeaderSize = (UInt32)(Int32)-1;
sh.NextHeaderCRC = 0;
WriteStartHeader(sh);
*/
}
else
#endif
{
if (!Stream)
return E_FAIL;
RINOK(WriteSignature());
RINOK(Stream->Seek(0, STREAM_SEEK_CUR, &_prefixHeaderPos));
}
return S_OK;
}
void COutArchive::Close()
{
SeqStream.Release();
Stream.Release();
}
HRESULT COutArchive::SkipPrefixArchiveHeader()
{
#ifdef _7Z_VOL
if (_endMarker)
return S_OK;
#endif
Byte buf[24];
memset(buf, 0, 24);
return WriteDirect(buf, 24);
}
UInt64 COutArchive::GetPos() const
{
if (_countMode)
return _countSize;
if (_writeToStream)
return _outByte.GetProcessedSize();
return _outByte2.GetPos();
}
void COutArchive::WriteBytes(const void *data, size_t size)
{
if (_countMode)
_countSize += size;
else if (_writeToStream)
{
_outByte.WriteBytes(data, size);
_crc = CrcUpdate(_crc, data, size);
}
else
_outByte2.WriteBytes(data, size);
}
void COutArchive::WriteByte(Byte b)
{
if (_countMode)
_countSize++;
else if (_writeToStream)
{
_outByte.WriteByte(b);
_crc = CRC_UPDATE_BYTE(_crc, b);
}
else
_outByte2.WriteByte(b);
}
void COutArchive::WriteUInt32(UInt32 value)
{
for (int i = 0; i < 4; i++)
{
WriteByte((Byte)value);
value >>= 8;
}
}
void COutArchive::WriteUInt64(UInt64 value)
{
for (int i = 0; i < 8; i++)
{
WriteByte((Byte)value);
value >>= 8;
}
}
void COutArchive::WriteNumber(UInt64 value)
{
Byte firstByte = 0;
Byte mask = 0x80;
int i;
for (i = 0; i < 8; i++)
{
if (value < ((UInt64(1) << ( 7 * (i + 1)))))
{
firstByte |= Byte(value >> (8 * i));
break;
}
firstByte |= mask;
mask >>= 1;
}
WriteByte(firstByte);
for (; i > 0; i--)
{
WriteByte((Byte)value);
value >>= 8;
}
}
static UInt32 GetBigNumberSize(UInt64 value)
{
int i;
for (i = 1; i < 9; i++)
if (value < (((UInt64)1 << (i * 7))))
break;
return i;
}
#ifdef _7Z_VOL
UInt32 COutArchive::GetVolHeadersSize(UInt64 dataSize, int nameLength, bool props)
{
UInt32 result = GetBigNumberSize(dataSize) * 2 + 41;
if (nameLength != 0)
{
nameLength = (nameLength + 1) * 2;
result += nameLength + GetBigNumberSize(nameLength) + 2;
}
if (props)
{
result += 20;
}
if (result >= 128)
result++;
result += kSignatureSize + 2 + kFinishHeaderSize;
return result;
}
UInt64 COutArchive::GetVolPureSize(UInt64 volSize, int nameLength, bool props)
{
UInt32 headersSizeBase = COutArchive::GetVolHeadersSize(1, nameLength, props);
int testSize;
if (volSize > headersSizeBase)
testSize = volSize - headersSizeBase;
else
testSize = 1;
UInt32 headersSize = COutArchive::GetVolHeadersSize(testSize, nameLength, props);
UInt64 pureSize = 1;
if (volSize > headersSize)
pureSize = volSize - headersSize;
return pureSize;
}
#endif
void COutArchive::WriteFolder(const CFolder &folder)
{
WriteNumber(folder.Coders.Size());
unsigned i;
for (i = 0; i < folder.Coders.Size(); i++)
{
const CCoderInfo &coder = folder.Coders[i];
{
UInt64 id = coder.MethodID;
unsigned idSize;
for (idSize = 1; idSize < sizeof(id); idSize++)
if ((id >> (8 * idSize)) == 0)
break;
idSize &= 0xF;
Byte temp[16];
for (unsigned t = idSize; t != 0; t--, id >>= 8)
temp[t] = (Byte)(id & 0xFF);
Byte b = (Byte)(idSize);
bool isComplex = !coder.IsSimpleCoder();
b |= (isComplex ? 0x10 : 0);
size_t propsSize = coder.Props.Size();
b |= ((propsSize != 0) ? 0x20 : 0);
temp[0] = b;
WriteBytes(temp, idSize + 1);
if (isComplex)
{
WriteNumber(coder.NumStreams);
WriteNumber(1); // NumOutStreams;
}
if (propsSize == 0)
continue;
WriteNumber(propsSize);
WriteBytes(coder.Props, propsSize);
}
}
for (i = 0; i < folder.Bonds.Size(); i++)
{
const CBond &bond = folder.Bonds[i];
WriteNumber(bond.PackIndex);
WriteNumber(bond.UnpackIndex);
}
if (folder.PackStreams.Size() > 1)
for (i = 0; i < folder.PackStreams.Size(); i++)
WriteNumber(folder.PackStreams[i]);
}
void COutArchive::WriteBoolVector(const CBoolVector &boolVector)
{
Byte b = 0;
Byte mask = 0x80;
FOR_VECTOR (i, boolVector)
{
if (boolVector[i])
b |= mask;
mask >>= 1;
if (mask == 0)
{
WriteByte(b);
mask = 0x80;
b = 0;
}
}
if (mask != 0x80)
WriteByte(b);
}
static inline unsigned Bv_GetSizeInBytes(const CBoolVector &v) { return ((unsigned)v.Size() + 7) / 8; }
void COutArchive::WritePropBoolVector(Byte id, const CBoolVector &boolVector)
{
WriteByte(id);
WriteNumber(Bv_GetSizeInBytes(boolVector));
WriteBoolVector(boolVector);
}
void COutArchive::WriteHashDigests(const CUInt32DefVector &digests)
{
unsigned numDefined = 0;
unsigned i;
for (i = 0; i < digests.Defs.Size(); i++)
if (digests.Defs[i])
numDefined++;
if (numDefined == 0)
return;
WriteByte(NID::kCRC);
if (numDefined == digests.Defs.Size())
WriteByte(1);
else
{
WriteByte(0);
WriteBoolVector(digests.Defs);
}
for (i = 0; i < digests.Defs.Size(); i++)
if (digests.Defs[i])
WriteUInt32(digests.Vals[i]);
}
void COutArchive::WritePackInfo(
UInt64 dataOffset,
const CRecordVector<UInt64> &packSizes,
const CUInt32DefVector &packCRCs)
{
if (packSizes.IsEmpty())
return;
WriteByte(NID::kPackInfo);
WriteNumber(dataOffset);
WriteNumber(packSizes.Size());
WriteByte(NID::kSize);
FOR_VECTOR (i, packSizes)
WriteNumber(packSizes[i]);
WriteHashDigests(packCRCs);
WriteByte(NID::kEnd);
}
void COutArchive::WriteUnpackInfo(const CObjectVector<CFolder> &folders, const COutFolders &outFolders)
{
if (folders.IsEmpty())
return;
WriteByte(NID::kUnpackInfo);
WriteByte(NID::kFolder);
WriteNumber(folders.Size());
{
WriteByte(0);
FOR_VECTOR (i, folders)
WriteFolder(folders[i]);
}
WriteByte(NID::kCodersUnpackSize);
FOR_VECTOR (i, outFolders.CoderUnpackSizes)
WriteNumber(outFolders.CoderUnpackSizes[i]);
WriteHashDigests(outFolders.FolderUnpackCRCs);
WriteByte(NID::kEnd);
}
void COutArchive::WriteSubStreamsInfo(const CObjectVector<CFolder> &folders,
const COutFolders &outFolders,
const CRecordVector<UInt64> &unpackSizes,
const CUInt32DefVector &digests)
{
const CRecordVector<CNum> &numUnpackStreamsInFolders = outFolders.NumUnpackStreamsVector;
WriteByte(NID::kSubStreamsInfo);
unsigned i;
for (i = 0; i < numUnpackStreamsInFolders.Size(); i++)
if (numUnpackStreamsInFolders[i] != 1)
{
WriteByte(NID::kNumUnpackStream);
for (i = 0; i < numUnpackStreamsInFolders.Size(); i++)
WriteNumber(numUnpackStreamsInFolders[i]);
break;
}
for (i = 0; i < numUnpackStreamsInFolders.Size(); i++)
if (numUnpackStreamsInFolders[i] > 1)
{
WriteByte(NID::kSize);
CNum index = 0;
for (i = 0; i < numUnpackStreamsInFolders.Size(); i++)
{
CNum num = numUnpackStreamsInFolders[i];
for (CNum j = 0; j < num; j++)
{
if (j + 1 != num)
WriteNumber(unpackSizes[index]);
index++;
}
}
break;
}
CUInt32DefVector digests2;
unsigned digestIndex = 0;
for (i = 0; i < folders.Size(); i++)
{
unsigned numSubStreams = (unsigned)numUnpackStreamsInFolders[i];
if (numSubStreams == 1 && outFolders.FolderUnpackCRCs.ValidAndDefined(i))
digestIndex++;
else
for (unsigned j = 0; j < numSubStreams; j++, digestIndex++)
{
digests2.Defs.Add(digests.Defs[digestIndex]);
digests2.Vals.Add(digests.Vals[digestIndex]);
}
}
WriteHashDigests(digests2);
WriteByte(NID::kEnd);
}
// 7-Zip 4.50 - 4.58 contain BUG, so they do not support .7z archives with Unknown field.
void COutArchive::SkipAlign(unsigned pos, unsigned alignSize)
{
if (!_useAlign)
return;
pos += (unsigned)GetPos();
pos &= (alignSize - 1);
if (pos == 0)
return;
unsigned skip = alignSize - pos;
if (skip < 2)
skip += alignSize;
skip -= 2;
WriteByte(NID::kDummy);
WriteByte((Byte)skip);
for (unsigned i = 0; i < skip; i++)
WriteByte(0);
}
void COutArchive::WriteAlignedBoolHeader(const CBoolVector &v, unsigned numDefined, Byte type, unsigned itemSize)
{
const unsigned bvSize = (numDefined == v.Size()) ? 0 : Bv_GetSizeInBytes(v);
const UInt64 dataSize = (UInt64)numDefined * itemSize + bvSize + 2;
SkipAlign(3 + (unsigned)bvSize + (unsigned)GetBigNumberSize(dataSize), itemSize);
WriteByte(type);
WriteNumber(dataSize);
if (numDefined == v.Size())
WriteByte(1);
else
{
WriteByte(0);
WriteBoolVector(v);
}
WriteByte(0);
}
void COutArchive::WriteUInt64DefVector(const CUInt64DefVector &v, Byte type)
{
unsigned numDefined = 0;
unsigned i;
for (i = 0; i < v.Defs.Size(); i++)
if (v.Defs[i])
numDefined++;
if (numDefined == 0)
return;
WriteAlignedBoolHeader(v.Defs, numDefined, type, 8);
for (i = 0; i < v.Defs.Size(); i++)
if (v.Defs[i])
WriteUInt64(v.Vals[i]);
}
HRESULT COutArchive::EncodeStream(
DECL_EXTERNAL_CODECS_LOC_VARS
CEncoder &encoder, const CByteBuffer &data,
CRecordVector<UInt64> &packSizes, CObjectVector<CFolder> &folders, COutFolders &outFolders)
{
CBufInStream *streamSpec = new CBufInStream;
CMyComPtr<ISequentialInStream> stream = streamSpec;
streamSpec->Init(data, data.Size());
outFolders.FolderUnpackCRCs.Defs.Add(true);
outFolders.FolderUnpackCRCs.Vals.Add(CrcCalc(data, data.Size()));
// outFolders.NumUnpackStreamsVector.Add(1);
UInt64 dataSize64 = data.Size();
UInt64 unpackSize;
RINOK(encoder.Encode(
EXTERNAL_CODECS_LOC_VARS
stream,
// NULL,
&dataSize64,
folders.AddNew(), outFolders.CoderUnpackSizes, unpackSize, SeqStream, packSizes, NULL))
return S_OK;
}
void COutArchive::WriteHeader(
const CArchiveDatabaseOut &db,
// const CHeaderOptions &headerOptions,
UInt64 &headerOffset)
{
/*
bool thereIsSecure = (db.SecureBuf.Size() != 0);
*/
_useAlign = true;
{
UInt64 packSize = 0;
FOR_VECTOR (i, db.PackSizes)
packSize += db.PackSizes[i];
headerOffset = packSize;
}
WriteByte(NID::kHeader);
// Archive Properties
if (db.Folders.Size() > 0)
{
WriteByte(NID::kMainStreamsInfo);
WritePackInfo(0, db.PackSizes, db.PackCRCs);
WriteUnpackInfo(db.Folders, (const COutFolders &)db);
CRecordVector<UInt64> unpackSizes;
CUInt32DefVector digests;
FOR_VECTOR (i, db.Files)
{
const CFileItem &file = db.Files[i];
if (!file.HasStream)
continue;
unpackSizes.Add(file.Size);
digests.Defs.Add(file.CrcDefined);
digests.Vals.Add(file.Crc);
}
WriteSubStreamsInfo(db.Folders, (const COutFolders &)db, unpackSizes, digests);
WriteByte(NID::kEnd);
}
if (db.Files.IsEmpty())
{
WriteByte(NID::kEnd);
return;
}
WriteByte(NID::kFilesInfo);
WriteNumber(db.Files.Size());
{
/* ---------- Empty Streams ---------- */
CBoolVector emptyStreamVector;
emptyStreamVector.ClearAndSetSize(db.Files.Size());
unsigned numEmptyStreams = 0;
{
FOR_VECTOR (i, db.Files)
if (db.Files[i].HasStream)
emptyStreamVector[i] = false;
else
{
emptyStreamVector[i] = true;
numEmptyStreams++;
}
}
if (numEmptyStreams != 0)
{
WritePropBoolVector(NID::kEmptyStream, emptyStreamVector);
CBoolVector emptyFileVector, antiVector;
emptyFileVector.ClearAndSetSize(numEmptyStreams);
antiVector.ClearAndSetSize(numEmptyStreams);
bool thereAreEmptyFiles = false, thereAreAntiItems = false;
unsigned cur = 0;
FOR_VECTOR (i, db.Files)
{
const CFileItem &file = db.Files[i];
if (file.HasStream)
continue;
emptyFileVector[cur] = !file.IsDir;
if (!file.IsDir)
thereAreEmptyFiles = true;
bool isAnti = db.IsItemAnti(i);
antiVector[cur] = isAnti;
if (isAnti)
thereAreAntiItems = true;
cur++;
}
if (thereAreEmptyFiles)
WritePropBoolVector(NID::kEmptyFile, emptyFileVector);
if (thereAreAntiItems)
WritePropBoolVector(NID::kAnti, antiVector);
}
}
{
/* ---------- Names ---------- */
unsigned numDefined = 0;
size_t namesDataSize = 0;
FOR_VECTOR (i, db.Files)
{
const UString &name = db.Names[i];
if (!name.IsEmpty())
numDefined++;
namesDataSize += (name.Len() + 1) * 2;
}
if (numDefined > 0)
{
namesDataSize++;
SkipAlign(2 + GetBigNumberSize(namesDataSize), 16);
WriteByte(NID::kName);
WriteNumber(namesDataSize);
WriteByte(0);
FOR_VECTOR (i, db.Files)
{
const UString &name = db.Names[i];
for (unsigned t = 0; t <= name.Len(); t++)
{
wchar_t c = name[t];
WriteByte((Byte)c);
WriteByte((Byte)(c >> 8));
}
}
}
}
/* if (headerOptions.WriteCTime) */ WriteUInt64DefVector(db.CTime, NID::kCTime);
/* if (headerOptions.WriteATime) */ WriteUInt64DefVector(db.ATime, NID::kATime);
/* if (headerOptions.WriteMTime) */ WriteUInt64DefVector(db.MTime, NID::kMTime);
WriteUInt64DefVector(db.StartPos, NID::kStartPos);
{
/* ---------- Write Attrib ---------- */
CBoolVector boolVector;
boolVector.ClearAndSetSize(db.Files.Size());
unsigned numDefined = 0;
{
FOR_VECTOR (i, db.Files)
{
bool defined = db.Files[i].AttribDefined;
boolVector[i] = defined;
if (defined)
numDefined++;
}
}
if (numDefined != 0)
{
WriteAlignedBoolHeader(boolVector, numDefined, NID::kWinAttrib, 4);
FOR_VECTOR (i, db.Files)
{
const CFileItem &file = db.Files[i];
if (file.AttribDefined)
WriteUInt32(file.Attrib);
}
}
}
/*
{
// ---------- Write IsAux ----------
unsigned numAux = 0;
const CBoolVector &isAux = db.IsAux;
for (i = 0; i < isAux.Size(); i++)
if (isAux[i])
numAux++;
if (numAux > 0)
{
const unsigned bvSize = Bv_GetSizeInBytes(isAux);
WriteByte(NID::kIsAux);
WriteNumber(bvSize);
WriteBoolVector(isAux);
}
}
{
// ---------- Write Parent ----------
CBoolVector boolVector;
boolVector.Reserve(db.Files.Size());
unsigned numIsDir = 0;
unsigned numParentLinks = 0;
for (i = 0; i < db.Files.Size(); i++)
{
const CFileItem &file = db.Files[i];
bool defined = !file.IsAltStream;
boolVector.Add(defined);
if (defined)
numIsDir++;
if (file.Parent >= 0)
numParentLinks++;
}
if (numParentLinks > 0)
{
// WriteAlignedBoolHeader(boolVector, numDefined, NID::kParent, 4);
const unsigned bvSize = (numIsDir == boolVector.Size()) ? 0 : Bv_GetSizeInBytes(boolVector);
const UInt64 dataSize = (UInt64)db.Files.Size() * 4 + bvSize + 1;
SkipAlign(2 + (unsigned)bvSize + (unsigned)GetBigNumberSize(dataSize), 4);
WriteByte(NID::kParent);
WriteNumber(dataSize);
if (numIsDir == boolVector.Size())
WriteByte(1);
else
{
WriteByte(0);
WriteBoolVector(boolVector);
}
for (i = 0; i < db.Files.Size(); i++)
{
const CFileItem &file = db.Files[i];
// if (file.Parent >= 0)
WriteUInt32(file.Parent);
}
}
}
if (thereIsSecure)
{
UInt64 secureDataSize = 1 + 4 +
db.SecureBuf.Size() +
db.SecureSizes.Size() * 4;
// secureDataSize += db.SecureIDs.Size() * 4;
for (i = 0; i < db.SecureIDs.Size(); i++)
secureDataSize += GetBigNumberSize(db.SecureIDs[i]);
SkipAlign(2 + GetBigNumberSize(secureDataSize), 4);
WriteByte(NID::kNtSecure);
WriteNumber(secureDataSize);
WriteByte(0);
WriteUInt32(db.SecureSizes.Size());
for (i = 0; i < db.SecureSizes.Size(); i++)
WriteUInt32(db.SecureSizes[i]);
WriteBytes(db.SecureBuf, db.SecureBuf.Size());
for (i = 0; i < db.SecureIDs.Size(); i++)
{
WriteNumber(db.SecureIDs[i]);
// WriteUInt32(db.SecureIDs[i]);
}
}
*/
WriteByte(NID::kEnd); // for files
WriteByte(NID::kEnd); // for headers
}
HRESULT COutArchive::WriteDatabase(
DECL_EXTERNAL_CODECS_LOC_VARS
const CArchiveDatabaseOut &db,
const CCompressionMethodMode *options,
const CHeaderOptions &headerOptions)
{
if (!db.CheckNumFiles())
return E_FAIL;
UInt64 headerOffset;
UInt32 headerCRC;
UInt64 headerSize;
if (db.IsEmpty())
{
headerSize = 0;
headerOffset = 0;
headerCRC = CrcCalc(0, 0);
}
else
{
bool encodeHeaders = false;
if (options != 0)
if (options->IsEmpty())
options = 0;
if (options != 0)
if (options->PasswordIsDefined || headerOptions.CompressMainHeader)
encodeHeaders = true;
_outByte.SetStream(SeqStream);
_outByte.Init();
_crc = CRC_INIT_VAL;
_countMode = encodeHeaders;
_writeToStream = true;
_countSize = 0;
WriteHeader(db, /* headerOptions, */ headerOffset);
if (encodeHeaders)
{
CByteBuffer buf(_countSize);
_outByte2.Init((Byte *)buf, _countSize);
_countMode = false;
_writeToStream = false;
WriteHeader(db, /* headerOptions, */ headerOffset);
if (_countSize != _outByte2.GetPos())
return E_FAIL;
CCompressionMethodMode encryptOptions;
encryptOptions.PasswordIsDefined = options->PasswordIsDefined;
encryptOptions.Password = options->Password;
CEncoder encoder(headerOptions.CompressMainHeader ? *options : encryptOptions);
CRecordVector<UInt64> packSizes;
CObjectVector<CFolder> folders;
COutFolders outFolders;
RINOK(EncodeStream(
EXTERNAL_CODECS_LOC_VARS
encoder, buf,
packSizes, folders, outFolders));
_writeToStream = true;
if (folders.Size() == 0)
throw 1;
WriteID(NID::kEncodedHeader);
WritePackInfo(headerOffset, packSizes, CUInt32DefVector());
WriteUnpackInfo(folders, outFolders);
WriteByte(NID::kEnd);
FOR_VECTOR (i, packSizes)
headerOffset += packSizes[i];
}
RINOK(_outByte.Flush());
headerCRC = CRC_GET_DIGEST(_crc);
headerSize = _outByte.GetProcessedSize();
}
#ifdef _7Z_VOL
if (_endMarker)
{
CFinishHeader h;
h.NextHeaderSize = headerSize;
h.NextHeaderCRC = headerCRC;
h.NextHeaderOffset =
UInt64(0) - (headerSize +
4 + kFinishHeaderSize);
h.ArchiveStartOffset = h.NextHeaderOffset - headerOffset;
h.AdditionalStartBlockSize = 0;
RINOK(WriteFinishHeader(h));
return WriteFinishSignature();
}
else
#endif
{
CStartHeader h;
h.NextHeaderSize = headerSize;
h.NextHeaderCRC = headerCRC;
h.NextHeaderOffset = headerOffset;
RINOK(Stream->Seek(_prefixHeaderPos, STREAM_SEEK_SET, NULL));
return WriteStartHeader(h);
}
}
void CUInt64DefVector::SetItem(unsigned index, bool defined, UInt64 value)
{
while (index >= Defs.Size())
Defs.Add(false);
Defs[index] = defined;
if (!defined)
return;
while (index >= Vals.Size())
Vals.Add(0);
Vals[index] = value;
}
void CArchiveDatabaseOut::AddFile(const CFileItem &file, const CFileItem2 &file2, const UString &name)
{
unsigned index = Files.Size();
CTime.SetItem(index, file2.CTimeDefined, file2.CTime);
ATime.SetItem(index, file2.ATimeDefined, file2.ATime);
MTime.SetItem(index, file2.MTimeDefined, file2.MTime);
StartPos.SetItem(index, file2.StartPosDefined, file2.StartPos);
SetItem_Anti(index, file2.IsAnti);
// SetItem_Aux(index, file2.IsAux);
Names.Add(name);
Files.Add(file);
}
}}

321
CPP/7zip/Archive/7z/7zOut.h Normal file
View File

@ -0,0 +1,321 @@
// 7zOut.h
#ifndef __7Z_OUT_H
#define __7Z_OUT_H
#include "7zCompressionMode.h"
#include "7zEncode.h"
#include "7zHeader.h"
#include "7zItem.h"
#include "../../Common/OutBuffer.h"
#include "../../Common/StreamUtils.h"
namespace NArchive {
namespace N7z {
class CWriteBufferLoc
{
Byte *_data;
size_t _size;
size_t _pos;
public:
CWriteBufferLoc(): _size(0), _pos(0) {}
void Init(Byte *data, size_t size)
{
_data = data;
_size = size;
_pos = 0;
}
void WriteBytes(const void *data, size_t size)
{
if (size == 0)
return;
if (size > _size - _pos)
throw 1;
memcpy(_data + _pos, data, size);
_pos += size;
}
void WriteByte(Byte b)
{
if (_size == _pos)
throw 1;
_data[_pos++] = b;
}
size_t GetPos() const { return _pos; }
};
struct CHeaderOptions
{
bool CompressMainHeader;
/*
bool WriteCTime;
bool WriteATime;
bool WriteMTime;
*/
CHeaderOptions():
CompressMainHeader(true)
/*
, WriteCTime(false)
, WriteATime(false)
, WriteMTime(true)
*/
{}
};
struct CFileItem2
{
UInt64 CTime;
UInt64 ATime;
UInt64 MTime;
UInt64 StartPos;
bool CTimeDefined;
bool ATimeDefined;
bool MTimeDefined;
bool StartPosDefined;
bool IsAnti;
// bool IsAux;
void Init()
{
CTimeDefined = false;
ATimeDefined = false;
MTimeDefined = false;
StartPosDefined = false;
IsAnti = false;
// IsAux = false;
}
};
struct COutFolders
{
CUInt32DefVector FolderUnpackCRCs; // Now we use it for headers only.
CRecordVector<CNum> NumUnpackStreamsVector;
CRecordVector<UInt64> CoderUnpackSizes; // including unpack sizes of bond coders
void OutFoldersClear()
{
FolderUnpackCRCs.Clear();
NumUnpackStreamsVector.Clear();
CoderUnpackSizes.Clear();
}
void OutFoldersReserveDown()
{
FolderUnpackCRCs.ReserveDown();
NumUnpackStreamsVector.ReserveDown();
CoderUnpackSizes.ReserveDown();
}
};
struct CArchiveDatabaseOut: public COutFolders
{
CRecordVector<UInt64> PackSizes;
CUInt32DefVector PackCRCs;
CObjectVector<CFolder> Folders;
CRecordVector<CFileItem> Files;
UStringVector Names;
CUInt64DefVector CTime;
CUInt64DefVector ATime;
CUInt64DefVector MTime;
CUInt64DefVector StartPos;
CRecordVector<bool> IsAnti;
/*
CRecordVector<bool> IsAux;
CByteBuffer SecureBuf;
CRecordVector<UInt32> SecureSizes;
CRecordVector<UInt32> SecureIDs;
void ClearSecure()
{
SecureBuf.Free();
SecureSizes.Clear();
SecureIDs.Clear();
}
*/
void Clear()
{
OutFoldersClear();
PackSizes.Clear();
PackCRCs.Clear();
Folders.Clear();
Files.Clear();
Names.Clear();
CTime.Clear();
ATime.Clear();
MTime.Clear();
StartPos.Clear();
IsAnti.Clear();
/*
IsAux.Clear();
ClearSecure();
*/
}
void ReserveDown()
{
OutFoldersReserveDown();
PackSizes.ReserveDown();
PackCRCs.ReserveDown();
Folders.ReserveDown();
Files.ReserveDown();
Names.ReserveDown();
CTime.ReserveDown();
ATime.ReserveDown();
MTime.ReserveDown();
StartPos.ReserveDown();
IsAnti.ReserveDown();
/*
IsAux.ReserveDown();
*/
}
bool IsEmpty() const
{
return (
PackSizes.IsEmpty() &&
NumUnpackStreamsVector.IsEmpty() &&
Folders.IsEmpty() &&
Files.IsEmpty());
}
bool CheckNumFiles() const
{
unsigned size = Files.Size();
return (
CTime.CheckSize(size) &&
ATime.CheckSize(size) &&
MTime.CheckSize(size) &&
StartPos.CheckSize(size) &&
(size == IsAnti.Size() || IsAnti.Size() == 0));
}
bool IsItemAnti(unsigned index) const { return (index < IsAnti.Size() && IsAnti[index]); }
// bool IsItemAux(unsigned index) const { return (index < IsAux.Size() && IsAux[index]); }
void SetItem_Anti(unsigned index, bool isAnti)
{
while (index >= IsAnti.Size())
IsAnti.Add(false);
IsAnti[index] = isAnti;
}
/*
void SetItem_Aux(unsigned index, bool isAux)
{
while (index >= IsAux.Size())
IsAux.Add(false);
IsAux[index] = isAux;
}
*/
void AddFile(const CFileItem &file, const CFileItem2 &file2, const UString &name);
};
class COutArchive
{
UInt64 _prefixHeaderPos;
HRESULT WriteDirect(const void *data, UInt32 size) { return WriteStream(SeqStream, data, size); }
UInt64 GetPos() const;
void WriteBytes(const void *data, size_t size);
void WriteBytes(const CByteBuffer &data) { WriteBytes(data, data.Size()); }
void WriteByte(Byte b);
void WriteUInt32(UInt32 value);
void WriteUInt64(UInt64 value);
void WriteNumber(UInt64 value);
void WriteID(UInt64 value) { WriteNumber(value); }
void WriteFolder(const CFolder &folder);
HRESULT WriteFileHeader(const CFileItem &itemInfo);
void WriteBoolVector(const CBoolVector &boolVector);
void WritePropBoolVector(Byte id, const CBoolVector &boolVector);
void WriteHashDigests(const CUInt32DefVector &digests);
void WritePackInfo(
UInt64 dataOffset,
const CRecordVector<UInt64> &packSizes,
const CUInt32DefVector &packCRCs);
void WriteUnpackInfo(
const CObjectVector<CFolder> &folders,
const COutFolders &outFolders);
void WriteSubStreamsInfo(
const CObjectVector<CFolder> &folders,
const COutFolders &outFolders,
const CRecordVector<UInt64> &unpackSizes,
const CUInt32DefVector &digests);
void SkipAlign(unsigned pos, unsigned alignSize);
void WriteAlignedBoolHeader(const CBoolVector &v, unsigned numDefined, Byte type, unsigned itemSize);
void WriteUInt64DefVector(const CUInt64DefVector &v, Byte type);
HRESULT EncodeStream(
DECL_EXTERNAL_CODECS_LOC_VARS
CEncoder &encoder, const CByteBuffer &data,
CRecordVector<UInt64> &packSizes, CObjectVector<CFolder> &folders, COutFolders &outFolders);
void WriteHeader(
const CArchiveDatabaseOut &db,
// const CHeaderOptions &headerOptions,
UInt64 &headerOffset);
bool _countMode;
bool _writeToStream;
size_t _countSize;
UInt32 _crc;
COutBuffer _outByte;
CWriteBufferLoc _outByte2;
#ifdef _7Z_VOL
bool _endMarker;
#endif
bool _useAlign;
HRESULT WriteSignature();
#ifdef _7Z_VOL
HRESULT WriteFinishSignature();
#endif
HRESULT WriteStartHeader(const CStartHeader &h);
#ifdef _7Z_VOL
HRESULT WriteFinishHeader(const CFinishHeader &h);
#endif
CMyComPtr<IOutStream> Stream;
public:
COutArchive() { _outByte.Create(1 << 16); }
CMyComPtr<ISequentialOutStream> SeqStream;
HRESULT Create(ISequentialOutStream *stream, bool endMarker);
void Close();
HRESULT SkipPrefixArchiveHeader();
HRESULT WriteDatabase(
DECL_EXTERNAL_CODECS_LOC_VARS
const CArchiveDatabaseOut &db,
const CCompressionMethodMode *options,
const CHeaderOptions &headerOptions);
#ifdef _7Z_VOL
static UInt32 GetVolHeadersSize(UInt64 dataSize, int nameLength = 0, bool props = false);
static UInt64 GetVolPureSize(UInt64 volSize, int nameLength = 0, bool props = false);
#endif
};
}}
#endif

View File

@ -0,0 +1,174 @@
// 7zProperties.cpp
#include "StdAfx.h"
#include "7zProperties.h"
#include "7zHeader.h"
#include "7zHandler.h"
// #define _MULTI_PACK
namespace NArchive {
namespace N7z {
struct CPropMap
{
UInt32 FilePropID;
CStatProp StatProp;
};
static const CPropMap kPropMap[] =
{
{ NID::kName, { NULL, kpidPath, VT_BSTR } },
{ NID::kSize, { NULL, kpidSize, VT_UI8 } },
{ NID::kPackInfo, { NULL, kpidPackSize, VT_UI8 } },
#ifdef _MULTI_PACK
{ 100, { "Pack0", kpidPackedSize0, VT_UI8 } },
{ 101, { "Pack1", kpidPackedSize1, VT_UI8 } },
{ 102, { "Pack2", kpidPackedSize2, VT_UI8 } },
{ 103, { "Pack3", kpidPackedSize3, VT_UI8 } },
{ 104, { "Pack4", kpidPackedSize4, VT_UI8 } },
#endif
{ NID::kCTime, { NULL, kpidCTime, VT_FILETIME } },
{ NID::kMTime, { NULL, kpidMTime, VT_FILETIME } },
{ NID::kATime, { NULL, kpidATime, VT_FILETIME } },
{ NID::kWinAttrib, { NULL, kpidAttrib, VT_UI4 } },
{ NID::kStartPos, { NULL, kpidPosition, VT_UI8 } },
{ NID::kCRC, { NULL, kpidCRC, VT_UI4 } },
// { NID::kIsAux, { NULL, kpidIsAux, VT_BOOL } },
{ NID::kAnti, { NULL, kpidIsAnti, VT_BOOL } }
#ifndef _SFX
,
{ 97, { NULL, kpidEncrypted, VT_BOOL } },
{ 98, { NULL, kpidMethod, VT_BSTR } },
{ 99, { NULL, kpidBlock, VT_UI4 } }
#endif
};
static void CopyOneItem(CRecordVector<UInt64> &src,
CRecordVector<UInt64> &dest, UInt32 item)
{
FOR_VECTOR (i, src)
if (src[i] == item)
{
dest.Add(item);
src.Delete(i);
return;
}
}
static void RemoveOneItem(CRecordVector<UInt64> &src, UInt32 item)
{
FOR_VECTOR (i, src)
if (src[i] == item)
{
src.Delete(i);
return;
}
}
static void InsertToHead(CRecordVector<UInt64> &dest, UInt32 item)
{
FOR_VECTOR (i, dest)
if (dest[i] == item)
{
dest.Delete(i);
break;
}
dest.Insert(0, item);
}
#define COPY_ONE_ITEM(id) CopyOneItem(fileInfoPopIDs, _fileInfoPopIDs, NID::id);
void CHandler::FillPopIDs()
{
_fileInfoPopIDs.Clear();
#ifdef _7Z_VOL
if (_volumes.Size() < 1)
return;
const CVolume &volume = _volumes.Front();
const CArchiveDatabaseEx &_db = volume.Database;
#endif
CRecordVector<UInt64> fileInfoPopIDs = _db.ArcInfo.FileInfoPopIDs;
RemoveOneItem(fileInfoPopIDs, NID::kEmptyStream);
RemoveOneItem(fileInfoPopIDs, NID::kEmptyFile);
/*
RemoveOneItem(fileInfoPopIDs, NID::kParent);
RemoveOneItem(fileInfoPopIDs, NID::kNtSecure);
*/
COPY_ONE_ITEM(kName);
COPY_ONE_ITEM(kAnti);
COPY_ONE_ITEM(kSize);
COPY_ONE_ITEM(kPackInfo);
COPY_ONE_ITEM(kCTime);
COPY_ONE_ITEM(kMTime);
COPY_ONE_ITEM(kATime);
COPY_ONE_ITEM(kWinAttrib);
COPY_ONE_ITEM(kCRC);
COPY_ONE_ITEM(kComment);
_fileInfoPopIDs += fileInfoPopIDs;
#ifndef _SFX
_fileInfoPopIDs.Add(97);
_fileInfoPopIDs.Add(98);
_fileInfoPopIDs.Add(99);
#endif
#ifdef _MULTI_PACK
_fileInfoPopIDs.Add(100);
_fileInfoPopIDs.Add(101);
_fileInfoPopIDs.Add(102);
_fileInfoPopIDs.Add(103);
_fileInfoPopIDs.Add(104);
#endif
#ifndef _SFX
InsertToHead(_fileInfoPopIDs, NID::kMTime);
InsertToHead(_fileInfoPopIDs, NID::kPackInfo);
InsertToHead(_fileInfoPopIDs, NID::kSize);
InsertToHead(_fileInfoPopIDs, NID::kName);
#endif
}
STDMETHODIMP CHandler::GetNumberOfProperties(UInt32 *numProps)
{
*numProps = _fileInfoPopIDs.Size();
return S_OK;
}
STDMETHODIMP CHandler::GetPropertyInfo(UInt32 index, BSTR *name, PROPID *propID, VARTYPE *varType)
{
if (index >= _fileInfoPopIDs.Size())
return E_INVALIDARG;
UInt64 id = _fileInfoPopIDs[index];
for (unsigned i = 0; i < ARRAY_SIZE(kPropMap); i++)
{
const CPropMap &pr = kPropMap[i];
if (pr.FilePropID == id)
{
const CStatProp &st = pr.StatProp;
*propID = st.PropID;
*varType = st.vt;
/*
if (st.lpwstrName)
*name = ::SysAllocString(st.lpwstrName);
else
*/
*name = NULL;
return S_OK;
}
}
return E_INVALIDARG;
}
}}

View File

@ -0,0 +1,22 @@
// 7zProperties.h
#ifndef __7Z_PROPERTIES_H
#define __7Z_PROPERTIES_H
#include "../../PropID.h"
namespace NArchive {
namespace N7z {
enum
{
kpidPackedSize0 = kpidUserDefined,
kpidPackedSize1,
kpidPackedSize2,
kpidPackedSize3,
kpidPackedSize4
};
}}
#endif

Some files were not shown because too many files have changed in this diff Show More