p7zip-rar/CPP/7zip/Compress/Lzham/lzhamcomp/lzham_pthreads_threading.h

536 lines
13 KiB
C
Raw Normal View History

2017-10-11 12:40:22 +02:00
// File: lzham_task_pool_pthreads.h
// See Copyright Notice and license at the end of include/lzham.h
#pragma once
#if LZHAM_USE_PTHREADS_API
#if LZHAM_NO_ATOMICS
#error No atomic operations defined in lzham_platform.h!
#endif
#ifdef __APPLE__
#include <libkern/OSAtomic.h>
#endif
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#include <sys/time.h>
#define LZHAM_RND_CONG(jcong) (69069U * jcong + 1234567U)
namespace lzham
{
// semaphore
#ifdef __APPLE__
class semaphore
{
LZHAM_NO_COPY_OR_ASSIGNMENT_OP(semaphore);
public:
inline semaphore(long initialCount = 0, long maximumCount = 1)
{
LZHAM_NOTE_UNUSED(maximumCount);
LZHAM_ASSERT(maximumCount >= initialCount);
for (uint tries = 0; tries < 16; tries++)
{
struct timeval tp;
struct timezone tzp;
gettimeofday(&tp, &tzp);
uint x = tp.tv_usec;
// Argh this stinks. Try to choose a name that won't conflict with anything the calling process uses.
for (uint i = 0; i < sizeof(m_name) - 1; i++)
{
x = LZHAM_RND_CONG(x);
char c = 'A' + (static_cast<uint8>(x ^ (x >> 20)) % 26);
m_name[i] = c;
}
m_name[sizeof(m_name) - 1] = '\0';
m_pSem = sem_open(m_name, O_CREAT | O_EXCL, S_IRWXU, initialCount);
if (m_pSem != SEM_FAILED)
break;
}
if (m_pSem == SEM_FAILED)
{
LZHAM_FAIL("semaphore: sem_init() failed");
}
}
inline ~semaphore()
{
sem_close(m_pSem);
sem_unlink(m_name);
}
inline void release(long releaseCount = 1)
{
LZHAM_ASSERT(releaseCount >= 1);
int status = 0;
#ifdef WIN32
if (1 == releaseCount)
status = sem_post(m_pSem);
else
status = sem_post_multiple(m_pSem, releaseCount);
#else
while (releaseCount > 0)
{
status = sem_post(m_pSem);
if (status)
break;
releaseCount--;
}
#endif
if (status)
{
LZHAM_FAIL("semaphore: sem_post() or sem_post_multiple() failed");
}
}
inline bool wait()
{
int status = sem_wait(m_pSem);
if (status)
{
if (errno != ETIMEDOUT)
{
LZHAM_FAIL("semaphore: sem_wait() or sem_timedwait() failed");
}
return false;
}
return true;
}
private:
sem_t *m_pSem;
char m_name[16];
};
#else
class semaphore
{
LZHAM_NO_COPY_OR_ASSIGNMENT_OP(semaphore);
public:
inline semaphore(long initialCount = 0, long maximumCount = 1, const char* pName = NULL)
{
LZHAM_NOTE_UNUSED(maximumCount), LZHAM_NOTE_UNUSED(pName);
LZHAM_ASSERT(maximumCount >= initialCount);
if (sem_init(&m_sem, 0, initialCount))
{
LZHAM_FAIL("semaphore: sem_init() failed");
}
}
inline ~semaphore()
{
sem_destroy(&m_sem);
}
inline void release(long releaseCount = 1)
{
LZHAM_ASSERT(releaseCount >= 1);
int status = 0;
#ifdef WIN32
if (1 == releaseCount)
status = sem_post(&m_sem);
else
status = sem_post_multiple(&m_sem, releaseCount);
#else
while (releaseCount > 0)
{
status = sem_post(&m_sem);
if (status)
break;
releaseCount--;
}
#endif
if (status)
{
LZHAM_FAIL("semaphore: sem_post() or sem_post_multiple() failed");
}
}
inline bool wait(uint32 milliseconds = cUINT32_MAX)
{
int status;
if (milliseconds == cUINT32_MAX)
{
status = sem_wait(&m_sem);
}
else
{
struct timespec interval;
interval.tv_sec = milliseconds / 1000;
interval.tv_nsec = (milliseconds % 1000) * 1000000L;
status = sem_timedwait(&m_sem, &interval);
}
if (status)
{
if (errno != ETIMEDOUT)
{
LZHAM_FAIL("semaphore: sem_wait() or sem_timedwait() failed");
}
return false;
}
return true;
}
private:
sem_t m_sem;
};
#endif
// spinlock
#ifdef __APPLE__
class spinlock
{
public:
inline spinlock() : m_lock(0)
{
}
inline ~spinlock()
{
}
inline void lock()
{
OSSpinLockLock(&m_lock);
}
inline void unlock()
{
OSSpinLockUnlock(&m_lock);
}
private:
OSSpinLock m_lock;
};
#else
class spinlock
{
public:
inline spinlock()
{
if (pthread_spin_init(&m_spinlock, 0))
{
LZHAM_FAIL("spinlock: pthread_spin_init() failed");
}
}
inline ~spinlock()
{
pthread_spin_destroy(&m_spinlock);
}
inline void lock()
{
if (pthread_spin_lock(&m_spinlock))
{
LZHAM_FAIL("spinlock: pthread_spin_lock() failed");
}
}
inline void unlock()
{
if (pthread_spin_unlock(&m_spinlock))
{
LZHAM_FAIL("spinlock: pthread_spin_unlock() failed");
}
}
private:
pthread_spinlock_t m_spinlock;
};
#endif // __APPLE__
// Thread safe stack
template<typename T, uint cMaxSize>
class tsstack
{
public:
inline tsstack(lzham_malloc_context malloc_context) :
m_top(0)
{
LZHAM_NOTE_UNUSED(malloc_context);
}
inline ~tsstack()
{
}
inline void clear()
{
m_spinlock.lock();
m_top = 0;
m_spinlock.unlock();
}
inline bool try_push(const T& obj)
{
bool result = false;
m_spinlock.lock();
if (m_top < (int)cMaxSize)
{
m_stack[m_top++] = obj;
result = true;
}
m_spinlock.unlock();
return result;
}
inline bool pop(T& obj)
{
bool result = false;
m_spinlock.lock();
if (m_top > 0)
{
obj = m_stack[--m_top];
result = true;
}
m_spinlock.unlock();
return result;
}
private:
spinlock m_spinlock;
T m_stack[cMaxSize];
int m_top;
};
// Simple task pool
class task_pool
{
public:
task_pool(lzham_malloc_context malloc_context);
task_pool(lzham_malloc_context malloc_context, uint num_threads);
~task_pool();
lzham_malloc_context get_malloc_context() const { return m_malloc_context; }
enum { cMaxThreads = LZHAM_MAX_HELPER_THREADS };
bool init(uint num_threads);
void deinit();
inline uint get_num_threads() const { return m_num_threads; }
inline uint get_num_outstanding_tasks() const { return static_cast<uint>(m_num_outstanding_tasks); }
// C-style task callback
typedef void (*task_callback_func)(uint64 data, void* pData_ptr);
bool queue_task(task_callback_func pFunc, uint64 data = 0, void* pData_ptr = NULL);
class executable_task
{
public:
virtual void execute_task(uint64 data, void* pData_ptr) = 0;
};
// It's the caller's responsibility to delete pObj within the execute_task() method, if needed!
bool queue_task(executable_task* pObj, uint64 data = 0, void* pData_ptr = NULL);
template<typename S, typename T>
inline bool queue_object_task(S* pObject, T pObject_method, uint64 data = 0, void* pData_ptr = NULL);
template<typename S, typename T>
inline bool queue_multiple_object_tasks(S* pObject, T pObject_method, uint64 first_data, uint num_tasks, void* pData_ptr = NULL);
void join();
private:
struct task
{
inline task() : m_data(0), m_pData_ptr(NULL), m_pObj(NULL), m_flags(0) { }
uint64 m_data;
void* m_pData_ptr;
union
{
task_callback_func m_callback;
executable_task* m_pObj;
};
uint m_flags;
};
tsstack<task, cMaxThreads> m_task_stack;
uint m_num_threads;
pthread_t m_threads[cMaxThreads];
semaphore m_tasks_available;
lzham_malloc_context m_malloc_context;
enum task_flags
{
cTaskFlagObject = 1
};
volatile atomic32_t m_num_outstanding_tasks;
volatile atomic32_t m_exit_flag;
void process_task(task& tsk);
static void* thread_func(void *pContext);
};
enum object_task_flags
{
cObjectTaskFlagDefault = 0,
cObjectTaskFlagDeleteAfterExecution = 1
};
template<typename T>
class object_task : public task_pool::executable_task
{
public:
object_task(lzham_malloc_context malloc_context, uint flags = cObjectTaskFlagDefault) :
m_malloc_context(malloc_context),
m_pObject(NULL),
m_pMethod(NULL),
m_flags(flags)
{
}
typedef void (T::*object_method_ptr)(uint64 data, void* pData_ptr);
object_task(lzham_malloc_context malloc_context, T* pObject, object_method_ptr pMethod, uint flags = cObjectTaskFlagDefault) :
m_malloc_context(malloc_context),
m_pObject(pObject),
m_pMethod(pMethod),
m_flags(flags)
{
LZHAM_ASSERT(pObject && pMethod);
}
void init(lzham_malloc_context malloc_context, T* pObject, object_method_ptr pMethod, uint flags = cObjectTaskFlagDefault)
{
LZHAM_ASSERT(pObject && pMethod);
m_malloc_context = malloc_context;
m_pObject = pObject;
m_pMethod = pMethod;
m_flags = flags;
}
lzham_malloc_context get_malloc_context() const { return m_malloc_context; }
T* get_object() const { return m_pObject; }
object_method_ptr get_method() const { return m_pMethod; }
virtual void execute_task(uint64 data, void* pData_ptr)
{
(m_pObject->*m_pMethod)(data, pData_ptr);
if (m_flags & cObjectTaskFlagDeleteAfterExecution)
lzham_delete(m_malloc_context, this);
}
protected:
lzham_malloc_context m_malloc_context;
T* m_pObject;
object_method_ptr m_pMethod;
uint m_flags;
};
template<typename S, typename T>
inline bool task_pool::queue_object_task(S* pObject, T pObject_method, uint64 data, void* pData_ptr)
{
object_task<S> *pTask = lzham_new< object_task<S> >(m_malloc_context, m_malloc_context, pObject, pObject_method, cObjectTaskFlagDeleteAfterExecution);
if (!pTask)
return false;
return queue_task(pTask, data, pData_ptr);
}
template<typename S, typename T>
inline bool task_pool::queue_multiple_object_tasks(S* pObject, T pObject_method, uint64 first_data, uint num_tasks, void* pData_ptr)
{
LZHAM_ASSERT(m_num_threads);
LZHAM_ASSERT(pObject);
LZHAM_ASSERT(num_tasks);
if (!num_tasks)
return true;
bool status = true;
uint total_to_release = 0;
for (int i = num_tasks - 1; i >= 0; --i)
{
task tsk;
tsk.m_pObj = lzham_new< object_task<S> >(m_malloc_context, m_malloc_context, pObject, pObject_method, cObjectTaskFlagDeleteAfterExecution);
if (!tsk.m_pObj)
{
status = false;
break;
}
tsk.m_data = first_data + i;
tsk.m_pData_ptr = pData_ptr;
tsk.m_flags = cTaskFlagObject;
if (!m_task_stack.try_push(tsk))
{
status = false;
break;
}
total_to_release++;
}
if (total_to_release)
{
atomic_add32(&m_num_outstanding_tasks, total_to_release);
m_tasks_available.release(total_to_release);
}
return status;
}
// Sleep
inline void lzham_sleep(unsigned int milliseconds)
{
#ifdef WIN32
struct timespec interval;
interval.tv_sec = milliseconds / 1000;
interval.tv_nsec = (milliseconds % 1000) * 1000000L;
pthread_delay_np(&interval);
#else
while (milliseconds)
{
int msecs_to_sleep = LZHAM_MIN(milliseconds, 1000);
usleep(msecs_to_sleep * 1000);
milliseconds -= msecs_to_sleep;
}
#endif
}
// Returns number of helper threads we can add to the process on the current system (i.e. for a 4 CPU system this returns 3).
uint lzham_get_max_helper_threads();
} // namespace lzham
#endif // LZHAM_USE_PTHREADS_API