snapraid/raid/module.c
2019-01-07 14:06:15 +01:00

474 lines
9.9 KiB
C

/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "internal.h"
#include "memory.h"
#include "cpu.h"
/*
* Initializes and selects the best algorithm.
*/
void raid_init(void)
{
raid_gen3_ptr = raid_gen3_int8;
raid_gen_ptr[3] = raid_gen4_int8;
raid_gen_ptr[4] = raid_gen5_int8;
raid_gen_ptr[5] = raid_gen6_int8;
if (sizeof(void *) == 4) {
raid_gen_ptr[0] = raid_gen1_int32;
raid_gen_ptr[1] = raid_gen2_int32;
raid_genz_ptr = raid_genz_int32;
} else {
raid_gen_ptr[0] = raid_gen1_int64;
raid_gen_ptr[1] = raid_gen2_int64;
raid_genz_ptr = raid_genz_int64;
}
raid_rec_ptr[0] = raid_rec1_int8;
raid_rec_ptr[1] = raid_rec2_int8;
raid_rec_ptr[2] = raid_recX_int8;
raid_rec_ptr[3] = raid_recX_int8;
raid_rec_ptr[4] = raid_recX_int8;
raid_rec_ptr[5] = raid_recX_int8;
#ifdef CONFIG_X86
#ifdef CONFIG_SSE2
if (raid_cpu_has_sse2()) {
raid_gen_ptr[0] = raid_gen1_sse2;
#ifdef CONFIG_X86_64
if (raid_cpu_has_slowextendedreg()) {
raid_gen_ptr[1] = raid_gen2_sse2;
} else {
raid_gen_ptr[1] = raid_gen2_sse2ext;
}
/* note that raid_cpu_has_slowextendedreg() doesn't affect parz */
raid_genz_ptr = raid_genz_sse2ext;
#else
raid_gen_ptr[1] = raid_gen2_sse2;
raid_genz_ptr = raid_genz_sse2;
#endif
}
#endif
#ifdef CONFIG_SSSE3
if (raid_cpu_has_ssse3()) {
#ifdef CONFIG_X86_64
if (raid_cpu_has_slowextendedreg()) {
raid_gen3_ptr = raid_gen3_ssse3;
raid_gen_ptr[3] = raid_gen4_ssse3;
raid_gen_ptr[4] = raid_gen5_ssse3;
raid_gen_ptr[5] = raid_gen6_ssse3;
} else {
raid_gen3_ptr = raid_gen3_ssse3ext;
raid_gen_ptr[3] = raid_gen4_ssse3ext;
raid_gen_ptr[4] = raid_gen5_ssse3ext;
raid_gen_ptr[5] = raid_gen6_ssse3ext;
}
#else
raid_gen3_ptr = raid_gen3_ssse3;
raid_gen_ptr[3] = raid_gen4_ssse3;
raid_gen_ptr[4] = raid_gen5_ssse3;
raid_gen_ptr[5] = raid_gen6_ssse3;
#endif
raid_rec_ptr[0] = raid_rec1_ssse3;
raid_rec_ptr[1] = raid_rec2_ssse3;
raid_rec_ptr[2] = raid_recX_ssse3;
raid_rec_ptr[3] = raid_recX_ssse3;
raid_rec_ptr[4] = raid_recX_ssse3;
raid_rec_ptr[5] = raid_recX_ssse3;
}
#endif
#ifdef CONFIG_AVX2
if (raid_cpu_has_avx2()) {
raid_gen_ptr[0] = raid_gen1_avx2;
raid_gen_ptr[1] = raid_gen2_avx2;
#ifdef CONFIG_X86_64
raid_gen3_ptr = raid_gen3_avx2ext;
raid_genz_ptr = raid_genz_avx2ext;
raid_gen_ptr[3] = raid_gen4_avx2ext;
raid_gen_ptr[4] = raid_gen5_avx2ext;
raid_gen_ptr[5] = raid_gen6_avx2ext;
#endif
raid_rec_ptr[0] = raid_rec1_avx2;
raid_rec_ptr[1] = raid_rec2_avx2;
raid_rec_ptr[2] = raid_recX_avx2;
raid_rec_ptr[3] = raid_recX_avx2;
raid_rec_ptr[4] = raid_recX_avx2;
raid_rec_ptr[5] = raid_recX_avx2;
}
#endif
#endif /* CONFIG_X86 */
/* set the default mode */
raid_mode(RAID_MODE_CAUCHY);
}
/*
* Reference parity computation.
*/
void raid_gen_ref(int nd, int np, size_t size, void **vv)
{
uint8_t **v = (uint8_t **)vv;
size_t i;
for (i = 0; i < size; ++i) {
uint8_t p[RAID_PARITY_MAX];
int j, d;
for (j = 0; j < np; ++j)
p[j] = 0;
for (d = 0; d < nd; ++d) {
uint8_t b = v[d][i];
for (j = 0; j < np; ++j)
p[j] ^= gfmul[b][gfgen[j][d]];
}
for (j = 0; j < np; ++j)
v[nd + j][i] = p[j];
}
}
/*
* Size of the blocks to test.
*/
#define TEST_SIZE 4096
/*
* Number of data blocks to test.
*/
#define TEST_COUNT (65536 / TEST_SIZE)
/*
* Parity generation test.
*/
static int raid_test_par(int nd, int np, size_t size, void **v, void **ref)
{
int i;
void *t[TEST_COUNT + RAID_PARITY_MAX];
/* setup data */
for (i = 0; i < nd; ++i)
t[i] = ref[i];
/* setup parity */
for (i = 0; i < np; ++i)
t[nd + i] = v[nd + i];
raid_gen(nd, np, size, t);
/* compare parity */
for (i = 0; i < np; ++i) {
if (memcmp(t[nd + i], ref[nd + i], size) != 0) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
return 0;
}
/*
* Recovering test.
*/
static int raid_test_rec(int nr, int *ir, int nd, int np, size_t size, void **v, void **ref)
{
int i, j;
void *t[TEST_COUNT + RAID_PARITY_MAX];
/* setup data and parity vector */
for (i = 0, j = 0; i < nd + np; ++i) {
if (j < nr && ir[j] == i) {
/* this block has to be recovered */
t[i] = v[i];
++j;
} else {
/* this block is used for recovering */
t[i] = ref[i];
}
}
raid_rec(nr, ir, nd, np, size, t);
/* compare all data and parity */
for (i = 0; i < nd + np; ++i) {
if (t[i] != ref[i]
&& memcmp(t[i], ref[i], size) != 0) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
return 0;
}
/*
* Recovering test for data.
*/
static int raid_test_data(int nr, int *id, int *ip, int nd, int np, size_t size, void **v, void **ref)
{
int i, j;
void *t[TEST_COUNT + RAID_PARITY_MAX];
/* setup data vector */
for (i = 0, j = 0; i < nd; ++i) {
if (j < nr && id[j] == i) {
/* this block has to be recovered */
t[i] = v[i];
++j;
} else {
/* this block is left unchanged */
t[i] = ref[i];
}
}
/* setup parity vector */
for (i = 0, j = 0; i < np; ++i) {
if (j < nr && ip[j] == i) {
/* this block is used for recovering */
t[nd + i] = ref[nd + i];
++j;
} else {
/* this block should not be read or written */
t[nd + i] = 0;
}
}
raid_data(nr, id, ip, nd, size, t);
/* compare all data and parity */
for (i = 0; i < nd; ++i) {
if (t[i] != ref[i]
&& t[i] != 0
&& memcmp(t[i], ref[i], size) != 0) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
return 0;
}
/*
* Scan test.
*/
static int raid_test_scan(int nr, int *ir, int nd, int np, size_t size, void **v, void **ref)
{
int i, j, ret;
void *t[TEST_COUNT + RAID_PARITY_MAX];
int is[RAID_PARITY_MAX];
/* setup data and parity vector */
for (i = 0, j = 0; i < nd + np; ++i) {
if (j < nr && ir[j] == i) {
/* this block is bad */
t[i] = v[i];
++j;
} else {
/* this block is used for recovering */
t[i] = ref[i];
}
}
ret = raid_scan(is, nd, np, size, t);
/* compare identified bad blocks */
if (ret != nr)
return -1;
for (i = 0; i < nr; ++i) {
if (ir[i] != is[i]) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
return 0;
}
/*
* Basic functionality self test.
*/
int raid_selftest(void)
{
const int nd = TEST_COUNT;
const size_t size = TEST_SIZE;
const int nv = nd + RAID_PARITY_MAX * 2 + 1;
void *v_alloc;
void **v;
void *ref[nd + RAID_PARITY_MAX];
int ir[RAID_PARITY_MAX];
int ip[RAID_PARITY_MAX];
int i, np;
int ret = 0;
/* ensure to have enough space for data */
BUG_ON(nd * size > 65536);
v = raid_malloc_vector(nd, nv, size, &v_alloc);
if (!v) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
memset(v[nv - 1], 0, size);
raid_zero(v[nv - 1]);
/* use the multiplication table as data */
for (i = 0; i < nd; ++i)
ref[i] = ((uint8_t *)gfmul) + size * i;
/* setup reference parity */
for (i = 0; i < RAID_PARITY_MAX; ++i)
ref[nd + i] = v[nd + RAID_PARITY_MAX + i];
/* compute reference parity */
raid_gen_ref(nd, RAID_PARITY_MAX, size, ref);
/* test for each parity level */
for (np = 1; np <= RAID_PARITY_MAX; ++np) {
/* test parity generation */
ret = raid_test_par(nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
/* test recovering with broken ending data disks */
for (i = 0; i < np; ++i) {
/* bad data */
ir[i] = nd - np + i;
/* good parity */
ip[i] = i;
}
ret = raid_test_rec(np, ir, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
ret = raid_test_data(np, ir, ip, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
/* test recovering with broken leading data and broken leading parity */
for (i = 0; i < np / 2; ++i) {
/* bad data */
ir[i] = i;
/* good parity */
ip[i] = (np + 1) / 2 + i;
}
/* bad parity */
for (i = 0; i < (np + 1) / 2; ++i)
ir[np / 2 + i] = nd + i;
ret = raid_test_rec(np, ir, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
ret = raid_test_data(np / 2, ir, ip, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
/* test recovering with broken leading data and broken ending parity */
for (i = 0; i < np / 2; ++i) {
/* bad data */
ir[i] = i;
/* good parity */
ip[i] = i;
}
/* bad parity */
for (i = 0; i < (np + 1) / 2; ++i)
ir[np / 2 + i] = nd + np - (np + 1) / 2 + i;
ret = raid_test_rec(np, ir, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
ret = raid_test_data(np / 2, ir, ip, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
/* scan test with broken data and parity */
for (i = 0; i < np / 2; ++i) {
/* bad data */
ir[i] = i;
}
for (i = 0; i < (np - 1) / 2; ++i) {
/* bad parity */
ir[np / 2 + i] = nd + i;
}
for (i = 0; i < np - 1; ++i) {
/* make blocks bad */
/* we cannot fill them with 0, because the original */
/* data may be already filled with 0 */
memset(v[ir[i]], 0x55, size);
}
ret = raid_test_scan(np - 1, ir, nd, np, size, v, ref);
if (ret != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
}
/* scan test with no parity */
ret = raid_test_scan(0, 0, nd, 0, size, v, ref);
if (ret != -1) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
ret = 0;
bail:
free(v);
free(v_alloc);
return ret;
}