snapraid/cmdline/sync.c

1616 lines
54 KiB
C
Raw Normal View History

2019-01-07 14:06:15 +01:00
/*
* Copyright (C) 2011 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "portable.h"
#include "support.h"
#include "elem.h"
#include "state.h"
#include "parity.h"
#include "handle.h"
#include "io.h"
#include "raid/raid.h"
/****************************************************************************/
/* hash */
static int state_hash_process(struct snapraid_state* state, block_off_t blockstart, block_off_t blockmax, int* skip_sync)
{
struct snapraid_handle* handle;
unsigned diskmax;
block_off_t i;
unsigned j;
void* buffer;
void* buffer_alloc;
data_off_t countsize;
block_off_t countpos;
block_off_t countmax;
int ret;
unsigned error;
unsigned silent_error;
unsigned io_error;
char esc_buffer[ESC_MAX];
/* maps the disks to handles */
handle = handle_mapping(state, &diskmax);
/* buffer for reading */
buffer = malloc_nofail_direct(state->block_size, &buffer_alloc);
if (!state->opt.skip_self)
mtest_vector(1, state->block_size, &buffer);
error = 0;
silent_error = 0;
io_error = 0;
/* first count the number of blocks to process */
countmax = 0;
for (j = 0; j < diskmax; ++j) {
struct snapraid_disk* disk = handle[j].disk;
/* if no disk, nothing to check */
if (!disk)
continue;
for (i = blockstart; i < blockmax; ++i) {
struct snapraid_block* block;
unsigned block_state;
block = fs_par2block_find(disk, i);
/* get the state of the block */
block_state = block_state_get(block);
/* process REP and CHG blocks */
if (block_state != BLOCK_STATE_REP && block_state != BLOCK_STATE_CHG)
continue;
++countmax;
}
}
/* drop until now */
state_usage_waste(state);
countsize = 0;
countpos = 0;
if (!state_progress_begin(state, blockstart, blockmax, countmax))
goto end;
for (j = 0; j < diskmax; ++j) {
struct snapraid_disk* disk = handle[j].disk;
/* if no disk, nothing to check */
if (!disk)
continue;
for (i = blockstart; i < blockmax; ++i) {
snapraid_info info;
int rehash;
struct snapraid_block* block;
int read_size;
unsigned char hash[HASH_MAX];
unsigned block_state;
struct snapraid_file* file;
block_off_t file_pos;
block = fs_par2block_find(disk, i);
/* get the state of the block */
block_state = block_state_get(block);
/* process REP and CHG blocks */
if (block_state != BLOCK_STATE_REP && block_state != BLOCK_STATE_CHG)
continue;
/* get the file of this block */
file = fs_par2file_get(disk, i, &file_pos);
/* get block specific info */
info = info_get(&state->infoarr, i);
/* if we have to use the old hash */
rehash = info_get_rehash(info);
/* until now is misc */
state_usage_misc(state);
/* if the file is different than the current one, close it */
if (handle[j].file != 0 && handle[j].file != file) {
/* keep a pointer at the file we are going to close for error reporting */
struct snapraid_file* report = handle[j].file;
ret = handle_close(&handle[j]);
if (ret == -1) {
/* LCOV_EXCL_START */
/* This one is really an unexpected error, because we are only reading */
/* and closing a descriptor should never fail */
if (errno == EIO) {
log_tag("error:%u:%s:%s: Close EIO error. %s\n", i, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected input/output close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle[j].path);
log_fatal("Stopping at block %u\n", i);
++io_error;
goto bail;
}
log_tag("error:%u:%s:%s: Close error. %s\n", i, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("WARNING! Unexpected close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be accessed.\n", handle[j].path);
log_fatal("Stopping at block %u\n", i);
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
}
ret = handle_open(&handle[j], file, state->file_mode, log_error, 0);
if (ret == -1) {
if (errno == EIO) {
/* LCOV_EXCL_START */
log_tag("error:%u:%s:%s: Open EIO error. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected input/output open error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle[j].path);
log_fatal("Stopping at block %u\n", i);
++io_error;
goto bail;
/* LCOV_EXCL_STOP */
}
if (errno == ENOENT) {
log_tag("error:%u:%s:%s: Open ENOENT error. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_error("Missing file '%s'.\n", handle[j].path);
log_error("WARNING! You cannot modify data disk during a sync.\n");
log_error("Rerun the sync command when finished.\n");
++error;
/* if the file is missing, it means that it was removed during sync */
/* this isn't a serious error, so we skip this block, and continue with others */
continue;
}
if (errno == EACCES) {
log_tag("error:%u:%s:%s: Open EACCES error. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_error("No access at file '%s'.\n", handle[j].path);
log_error("WARNING! Please fix the access permission in the data disk.\n");
log_error("Rerun the sync command when finished.\n");
++error;
/* this isn't a serious error, so we skip this block, and continue with others */
continue;
}
/* LCOV_EXCL_START */
log_tag("error:%u:%s:%s: Open error. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_fatal("WARNING! Unexpected open error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be accessed.\n", handle[j].path);
log_fatal("Stopping to allow recovery. Try with 'snapraid check -f /%s'\n", fmt_poll(disk, file->sub, esc_buffer));
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
/* check if the file is changed */
if (handle[j].st.st_size != file->size
|| handle[j].st.st_mtime != file->mtime_sec
|| STAT_NSEC(&handle[j].st) != file->mtime_nsec
|| handle[j].st.st_ino != file->inode
) {
log_tag("error:%u:%s:%s: Unexpected attribute change\n", i, disk->name, esc_tag(file->sub, esc_buffer));
if (handle[j].st.st_size != file->size) {
log_error("Unexpected size change at file '%s' from %" PRIu64 " to %" PRIu64 ".\n", handle[j].path, file->size, (uint64_t)handle[j].st.st_size);
} else if (handle[j].st.st_mtime != file->mtime_sec
|| STAT_NSEC(&handle[j].st) != file->mtime_nsec) {
log_error("Unexpected time change at file '%s' from %" PRIu64 ".%d to %" PRIu64 ".%d.\n", handle[j].path, file->mtime_sec, file->mtime_nsec, (uint64_t)handle[j].st.st_mtime, STAT_NSEC(&handle[j].st));
} else {
log_error("Unexpected inode change from %" PRIu64 " to %" PRIu64 " at file '%s'.\n", file->inode, (uint64_t)handle[j].st.st_ino, handle[j].path);
}
log_error("WARNING! You cannot modify files during a sync.\n");
log_error("Rerun the sync command when finished.\n");
++error;
/* if the file is changed, it means that it was modified during sync */
/* this isn't a serious error, so we skip this block, and continue with others */
continue;
}
read_size = handle_read(&handle[j], file_pos, buffer, state->block_size, log_fatal, 0);
if (read_size == -1) {
/* LCOV_EXCL_START */
if (errno == EIO) {
log_tag("error:%u:%s:%s: Read EIO error at position %u. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), file_pos, strerror(errno));
log_fatal("DANGER! Unexpected input/output read error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be read.\n", disk->dir, handle[j].path);
log_fatal("Stopping at block %u\n", i);
++io_error;
goto bail;
}
log_tag("error:%u:%s:%s: Read error at position %u. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), file_pos, strerror(errno));
log_fatal("WARNING! Unexpected read error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be read.\n", handle[j].path);
log_fatal("Stopping to allow recovery. Try with 'snapraid check -f /%s'\n", fmt_poll(disk, file->sub, esc_buffer));
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
/* until now is disk */
state_usage_disk(state, handle, &j, 1);
state_usage_file(state, disk, file);
countsize += read_size;
/* now compute the hash */
if (rehash) {
memhash(state->prevhash, state->prevhashseed, hash, buffer, read_size);
} else {
memhash(state->hash, state->hashseed, hash, buffer, read_size);
}
/* until now is hash */
state_usage_hash(state);
if (block_state == BLOCK_STATE_REP) {
/* compare the hash */
if (memcmp(hash, block->hash, BLOCK_HASH_SIZE) != 0) {
log_tag("error:%u:%s:%s: Unexpected data change\n", i, disk->name, esc_tag(file->sub, esc_buffer));
log_error("Data change at file '%s' at position '%u'\n", handle[j].path, file_pos);
log_error("WARNING! Unexpected data modification of a file without parity!\n");
if (file_flag_has(file, FILE_IS_COPY)) {
log_error("This file was detected as a copy of another file with the same name, size,\n");
log_error("and timestamp, but the file data isn't matching the assumed copy.\n");
log_error("If this is a false positive, and the files are expected to be different,\n");
log_error("you can 'sync' anyway using 'snapraid --force-nocopy sync'\n");
} else {
log_error("Try removing the file from the array and rerun the 'sync' command!\n");
}
/* block sync to allow a recovery before overwriting */
/* the parity needed to make such recovery */
*skip_sync = 1; /* avoid to run the next sync */
++silent_error;
continue;
}
} else {
/* the only other case is BLOCK_STATE_CHG */
assert(block_state == BLOCK_STATE_CHG);
/* copy the hash in the block */
memcpy(block->hash, hash, BLOCK_HASH_SIZE);
/* and mark the block as hashed */
block_state_set(block, BLOCK_STATE_REP);
/* mark the state as needing write */
state->need_write = 1;
}
/* count the number of processed block */
++countpos;
/* progress */
if (state_progress(state, 0, i, countpos, countmax, countsize)) {
/* LCOV_EXCL_START */
*skip_sync = 1; /* avoid to run the next sync */
break;
/* LCOV_EXCL_STOP */
}
}
/* close the last file in the disk */
if (handle[j].file != 0) {
/* keep a pointer at the file we are going to close for error reporting */
struct snapraid_file* report = handle[j].file;
ret = handle_close(&handle[j]);
if (ret == -1) {
/* LCOV_EXCL_START */
/* This one is really an unexpected error, because we are only reading */
/* and closing a descriptor should never fail */
if (errno == EIO) {
log_tag("error:%u:%s:%s: Close EIO error. %s\n", blockmax, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected input/output close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle[j].path);
log_fatal("Stopping at block %u\n", blockmax);
++io_error;
goto bail;
}
log_tag("error:%u:%s:%s: Close error. %s\n", blockmax, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("WARNING! Unexpected close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be accessed.\n", handle[j].path);
log_fatal("Stopping at block %u\n", blockmax);
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
}
}
end:
state_progress_end(state, countpos, countmax, countsize);
/* note that at this point no io_error is possible */
/* because at the first one we bail out */
assert(io_error == 0);
if (error || io_error || silent_error) {
msg_status("\n");
msg_status("%8u file errors\n", error);
msg_status("%8u io errors\n", io_error);
msg_status("%8u data errors\n", silent_error);
} else {
/* print the result only if processed something */
if (countpos != 0)
msg_status("Everything OK\n");
}
if (error)
log_fatal("WARNING! Unexpected file errors!\n");
log_tag("hash_summary:error_file:%u\n", error);
/* proceed without bailing out */
goto finish;
bail:
/* on bail, don't run the next sync */
*skip_sync = 1;
/* close files left open */
for (j = 0; j < diskmax; ++j) {
struct snapraid_file* file = handle[j].file;
struct snapraid_disk* disk = handle[j].disk;
ret = handle_close(&handle[j]);
if (ret == -1) {
log_tag("error:%u:%s:%s: Close error. %s\n", i, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected close error in a data disk.\n");
++error;
/* continue, as we are already exiting */
}
}
finish:
free(handle);
free(buffer_alloc);
if (error + io_error + silent_error != 0)
return -1;
return 0;
}
/****************************************************************************/
/* sync */
/**
* Sync plan to use.
*/
struct snapraid_plan {
unsigned handle_max;
struct snapraid_handle* handle_map;
int force_full;
};
/**
* A block that failed the hash check, or that was deleted.
*/
struct failed_struct {
unsigned index; /**< Index of the failed block. */
unsigned size; /**< Size of the block. */
struct snapraid_block* block; /**< The failed block, or BLOCK_DELETED for a deleted block */
};
/**
* Comparison function for sorting by index.
*/
int failed_compare_by_index(const void* void_a, const void* void_b)
{
const struct failed_struct* a = void_a;
const struct failed_struct* b = void_b;
if (a->index < b->index)
return -1;
if (a->index > b->index)
return 1;
return 0;
}
/**
* Buffer for storing the new hashes.
*/
struct snapraid_rehash {
unsigned char hash[HASH_MAX];
struct snapraid_block* block;
};
/**
* Check if we have to process the specified block index ::i.
*/
2021-10-03 10:04:53 +02:00
static int block_is_enabled(struct snapraid_plan* plan, block_off_t i)
2019-01-07 14:06:15 +01:00
{
unsigned j;
int one_invalid;
int one_valid;
/* for each disk */
one_invalid = 0;
one_valid = 0;
for (j = 0; j < plan->handle_max; ++j) {
struct snapraid_block* block;
struct snapraid_disk* disk = plan->handle_map[j].disk;
/* if no disk, nothing to check */
if (!disk)
continue;
block = fs_par2block_find(disk, i);
if (block_has_file(block))
one_valid = 1;
if (block_has_invalid_parity(block) || plan->force_full)
one_invalid = 1;
}
/* if none valid or none invalid, we don't need to update */
if (!one_invalid || !one_valid)
return 0;
return 1;
}
static void sync_data_reader(struct snapraid_worker* worker, struct snapraid_task* task)
{
struct snapraid_io* io = worker->io;
struct snapraid_state* state = io->state;
struct snapraid_handle* handle = worker->handle;
struct snapraid_disk* disk = handle->disk;
block_off_t blockcur = task->position;
unsigned char* buffer = task->buffer;
int ret;
char esc_buffer[ESC_MAX];
/* if the disk position is not used */
if (!disk) {
/* use an empty block */
memset(buffer, 0, state->block_size);
task->state = TASK_STATE_DONE;
return;
}
/* get the block */
task->block = fs_par2block_find(disk, blockcur);
/* if the block has no file, meaning that it's EMPTY or DELETED, */
/* it doesn't participate in the new parity computation */
if (!block_has_file(task->block)) {
/* use an empty block */
memset(buffer, 0, state->block_size);
task->state = TASK_STATE_DONE;
return;
}
/* get the file of this block */
task->file = fs_par2file_get(disk, blockcur, &task->file_pos);
/* if the file is different than the current one, close it */
if (handle->file != 0 && handle->file != task->file) {
/* keep a pointer at the file we are going to close for error reporting */
struct snapraid_file* report = handle->file;
ret = handle_close(handle);
if (ret == -1) {
/* LCOV_EXCL_START */
/* This one is really an unexpected error, because we are only reading */
/* and closing a descriptor should never fail */
if (errno == EIO) {
log_tag("error:%u:%s:%s: Close EIO error. %s\n", blockcur, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected input/output close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle->path);
log_fatal("Stopping at block %u\n", blockcur);
task->state = TASK_STATE_IOERROR;
return;
}
log_tag("error:%u:%s:%s: Close error. %s\n", blockcur, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
log_fatal("WARNING! Unexpected close error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be accessed.\n", handle->path);
log_fatal("Stopping at block %u\n", blockcur);
task->state = TASK_STATE_ERROR;
return;
/* LCOV_EXCL_STOP */
}
}
ret = handle_open(handle, task->file, state->file_mode, log_error, 0);
if (ret == -1) {
if (errno == EIO) {
/* LCOV_EXCL_START */
log_tag("error:%u:%s:%s: Open EIO error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected input/output open error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle->path);
log_fatal("Stopping at block %u\n", blockcur);
task->state = TASK_STATE_IOERROR;
return;
/* LCOV_EXCL_STOP */
}
if (errno == ENOENT) {
log_tag("error:%u:%s:%s: Open ENOENT error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
log_error("Missing file '%s'.\n", handle->path);
log_error("WARNING! You cannot modify data disk during a sync.\n");
log_error("Rerun the sync command when finished.\n");
/* if the file is missing, it means that it was removed during sync */
/* this isn't a serious error, so we skip this block, and continue with others */
task->state = TASK_STATE_ERROR_CONTINUE;
return;
}
if (errno == EACCES) {
log_tag("error:%u:%s:%s: Open EACCES error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
log_error("No access at file '%s'.\n", handle->path);
log_error("WARNING! Please fix the access permission in the data disk.\n");
log_error("Rerun the sync command when finished.\n");
/* this isn't a serious error, so we skip this block, and continue with others */
task->state = TASK_STATE_ERROR_CONTINUE;
return;
}
/* LCOV_EXCL_START */
log_tag("error:%u:%s:%s: Open error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
log_fatal("WARNING! Unexpected open error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be accessed.\n", handle->path);
log_fatal("Stopping to allow recovery. Try with 'snapraid check -f /%s'\n", fmt_poll(disk, task->file->sub, esc_buffer));
task->state = TASK_STATE_ERROR;
return;
/* LCOV_EXCL_STOP */
}
/* check if the file is changed */
if (handle->st.st_size != task->file->size
|| handle->st.st_mtime != task->file->mtime_sec
|| STAT_NSEC(&handle->st) != task->file->mtime_nsec
|| handle->st.st_ino != task->file->inode
) {
log_tag("error:%u:%s:%s: Unexpected attribute change\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer));
if (handle->st.st_size != task->file->size) {
log_error("Unexpected size change at file '%s' from %" PRIu64 " to %" PRIu64 ".\n", handle->path, task->file->size, (uint64_t)handle->st.st_size);
} else if (handle->st.st_mtime != task->file->mtime_sec
|| STAT_NSEC(&handle->st) != task->file->mtime_nsec) {
log_error("Unexpected time change at file '%s' from %" PRIu64 ".%d to %" PRIu64 ".%d.\n", handle->path, task->file->mtime_sec, task->file->mtime_nsec, (uint64_t)handle->st.st_mtime, STAT_NSEC(&handle->st));
} else {
log_error("Unexpected inode change from %" PRIu64 " to %" PRIu64 " at file '%s'.\n", task->file->inode, (uint64_t)handle->st.st_ino, handle->path);
}
log_error("WARNING! You cannot modify files during a sync.\n");
log_error("Rerun the sync command when finished.\n");
/* if the file is changed, it means that it was modified during sync */
/* this isn't a serious error, so we skip this block, and continue with others */
task->state = TASK_STATE_ERROR_CONTINUE;
return;
}
task->read_size = handle_read(handle, task->file_pos, buffer, state->block_size, log_error, 0);
if (task->read_size == -1) {
/* LCOV_EXCL_START */
if (errno == EIO) {
log_tag("error:%u:%s:%s: Read EIO error at position %u. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), task->file_pos, strerror(errno));
log_error("Input/Output error in file '%s' at position '%u'\n", handle->path, task->file_pos);
task->state = TASK_STATE_IOERROR_CONTINUE;
return;
}
log_tag("error:%u:%s:%s: Read error at position %u. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), task->file_pos, strerror(errno));
log_fatal("WARNING! Unexpected read error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that file '%s' can be read.\n", handle->path);
log_fatal("Stopping to allow recovery. Try with 'snapraid check -f /%s'\n", fmt_poll(disk, task->file->sub, esc_buffer));
task->state = TASK_STATE_ERROR;
return;
/* LCOV_EXCL_STOP */
}
/* store the path of the opened file */
pathcpy(task->path, sizeof(task->path), handle->path);
task->state = TASK_STATE_DONE;
}
static void sync_parity_writer(struct snapraid_worker* worker, struct snapraid_task* task)
{
struct snapraid_io* io = worker->io;
struct snapraid_state* state = io->state;
struct snapraid_parity_handle* parity_handle = worker->parity_handle;
unsigned level = parity_handle->level;
block_off_t blockcur = task->position;
unsigned char* buffer = task->buffer;
int ret;
/* write parity */
ret = parity_write(parity_handle, blockcur, buffer, state->block_size);
if (ret == -1) {
/* LCOV_EXCL_START */
if (errno == EIO) {
log_tag("parity_error:%u:%s: Write EIO error. %s\n", blockcur, lev_config_name(level), strerror(errno));
log_error("Input/Output error in parity '%s' at position '%u'\n", lev_config_name(level), blockcur);
task->state = TASK_STATE_IOERROR_CONTINUE;
return;
}
log_tag("parity_error:%u:%s: Write error. %s\n", blockcur, lev_config_name(level), strerror(errno));
log_fatal("WARNING! Unexpected write error in the %s disk, it isn't possible to sync.\n", lev_name(level));
log_fatal("Ensure that disk '%s' has some free space available.\n", lev_config_name(level));
log_fatal("Stopping at block %u\n", blockcur);
task->state = TASK_STATE_ERROR;
return;
/* LCOV_EXCL_STOP */
}
task->state = TASK_STATE_DONE;
}
static int state_sync_process(struct snapraid_state* state, struct snapraid_parity_handle* parity_handle, block_off_t blockstart, block_off_t blockmax)
{
struct snapraid_io io;
struct snapraid_plan plan;
struct snapraid_handle* handle;
void* rehandle_alloc;
struct snapraid_rehash* rehandle;
unsigned diskmax;
block_off_t blockcur;
unsigned j;
void* zero_alloc;
void** zero;
void* copy_alloc;
void** copy;
unsigned buffermax;
data_off_t countsize;
block_off_t countpos;
block_off_t countmax;
block_off_t autosavedone;
block_off_t autosavelimit;
block_off_t autosavemissing;
int ret;
unsigned error;
unsigned silent_error;
unsigned io_error;
time_t now;
struct failed_struct* failed;
int* failed_map;
unsigned l;
unsigned* waiting_map;
unsigned waiting_mac;
char esc_buffer[ESC_MAX];
2021-10-03 10:04:53 +02:00
bit_vect_t* block_enabled;
2019-01-07 14:06:15 +01:00
/* the sync process assumes that all the hashes are correct */
/* including the ones from CHG and DELETED blocks */
assert(state->clear_past_hash != 0);
/* get the present time */
now = time(0);
/* maps the disks to handles */
handle = handle_mapping(state, &diskmax);
/* rehash buffers */
rehandle = malloc_nofail_align(diskmax * sizeof(struct snapraid_rehash), &rehandle_alloc);
/* we need 1 * data + 1 * parity */
buffermax = diskmax + state->level;
/* initialize the io threads */
io_init(&io, state, state->opt.io_cache, buffermax, sync_data_reader, handle, diskmax, 0, sync_parity_writer, parity_handle, state->level);
/* allocate the copy buffer */
copy = malloc_nofail_vector_align(diskmax, diskmax, state->block_size, &copy_alloc);
/* allocate and fill the zero buffer */
zero = malloc_nofail_align(state->block_size, &zero_alloc);
memset(zero, 0, state->block_size);
raid_zero(zero);
failed = malloc_nofail(diskmax * sizeof(struct failed_struct));
failed_map = malloc_nofail(diskmax * sizeof(unsigned));
/* possibly waiting disks */
waiting_mac = diskmax > RAID_PARITY_MAX ? diskmax : RAID_PARITY_MAX;
waiting_map = malloc_nofail(waiting_mac * sizeof(unsigned));
error = 0;
silent_error = 0;
io_error = 0;
2021-10-03 10:04:53 +02:00
msg_progress("Selecting...\n");
2019-01-07 14:06:15 +01:00
/* first count the number of blocks to process */
countmax = 0;
plan.handle_max = diskmax;
plan.handle_map = handle;
plan.force_full = state->opt.force_full;
2021-10-03 10:04:53 +02:00
block_enabled = calloc_nofail(1, bit_vect_size(blockmax)); /* preinitialize to 0 */
2019-01-07 14:06:15 +01:00
for (blockcur = blockstart; blockcur < blockmax; ++blockcur) {
if (!block_is_enabled(&plan, blockcur))
continue;
2021-10-03 10:04:53 +02:00
bit_vect_set(block_enabled, blockcur);
2019-01-07 14:06:15 +01:00
++countmax;
}
/* compute the autosave size for all disk, even if not read */
/* this makes sense because the speed should be almost the same */
/* if the disks are read in parallel */
autosavelimit = state->autosave / (diskmax * state->block_size);
autosavemissing = countmax; /* blocks to do */
autosavedone = 0; /* blocks done */
/* drop until now */
state_usage_waste(state);
countsize = 0;
countpos = 0;
2021-10-03 10:04:53 +02:00
msg_progress("Syncing...\n");
2019-01-07 14:06:15 +01:00
/* start all the worker threads */
2021-10-03 10:04:53 +02:00
io_start(&io, blockstart, blockmax, block_enabled);
2019-01-07 14:06:15 +01:00
if (!state_progress_begin(state, blockstart, blockmax, countmax))
goto end;
while (1) {
unsigned failed_count;
int error_on_this_block;
int silent_error_on_this_block;
int io_error_on_this_block;
int fixed_error_on_this_block;
int parity_needs_to_be_updated;
int parity_going_to_be_updated;
snapraid_info info;
int rehash;
void** buffer;
int writer_error[IO_WRITER_ERROR_MAX];
/* go to the next block */
blockcur = io_read_next(&io, &buffer);
if (blockcur >= blockmax)
break;
/* until now is scheduling */
state_usage_sched(state);
/* one more block processed for autosave */
++autosavedone;
--autosavemissing;
/* by default process the block, and skip it if something goes wrong */
error_on_this_block = 0;
silent_error_on_this_block = 0;
io_error_on_this_block = 0;
fixed_error_on_this_block = 0;
/* keep track of the number of failed blocks */
failed_count = 0;
/* get block specific info */
info = info_get(&state->infoarr, blockcur);
/* if we have to use the old hash */
rehash = info_get_rehash(info);
/* if the parity requires to be updated */
/* It could happens that all the blocks are EMPTY/BLK and CHG but with the hash */
/* still matching because the specific CHG block was not modified. */
/* In such case, we can avoid to update parity, because it would be the same as before */
/* Note that CHG/DELETED blocks already present in the content file loaded */
/* have the hash cleared (::clear_past_hash flag), and then they won't never match the hash. */
/* We are treating only CHG blocks created at runtime. */
parity_needs_to_be_updated = state->opt.force_full || state->opt.force_parity_update;
/* if the parity is going to be updated */
parity_going_to_be_updated = 0;
/* if the block is marked as bad, we force the parity update */
/* because the bad block may be the result of a wrong parity */
if (info_get_bad(info))
parity_needs_to_be_updated = 1;
/* for each disk, process the block */
for (j = 0; j < diskmax; ++j) {
struct snapraid_task* task;
int read_size;
unsigned char hash[HASH_MAX];
struct snapraid_block* block;
unsigned block_state;
struct snapraid_disk* disk;
struct snapraid_file* file;
block_off_t file_pos;
unsigned diskcur;
/* until now is misc */
state_usage_misc(state);
task = io_data_read(&io, &diskcur, waiting_map, &waiting_mac);
/* until now is disk */
state_usage_disk(state, handle, waiting_map, waiting_mac);
/* get the results */
disk = task->disk;
block = task->block;
file = task->file;
file_pos = task->file_pos;
read_size = task->read_size;
/* by default no rehash in case of "continue" */
rehandle[diskcur].block = 0;
/* if the disk position is not used */
if (!disk)
continue;
state_usage_file(state, disk, file);
/* get the state of the block */
block_state = block_state_get(block);
/* if the block has invalid parity, */
/* we have to take care of it in case of recover */
if (block_has_invalid_parity(block)) {
/* store it in the failed set, because */
/* the parity may be still computed with the previous content */
failed[failed_count].index = diskcur;
failed[failed_count].size = state->block_size;
failed[failed_count].block = block;
++failed_count;
/* if the block has invalid parity, we have to update the parity */
/* to include this block change */
/* This also apply to CHG blocks, but we are going to handle */
/* later this case to do the updates only if really needed */
if (block_state != BLOCK_STATE_CHG)
parity_needs_to_be_updated = 1;
/* note that DELETE blocks are skipped in the next check */
/* and we have to store them in the failed blocks */
/* before skipping */
/* follow */
}
/* if the block is not used */
if (!block_has_file(block))
continue;
/* handle error conditions */
if (task->state == TASK_STATE_IOERROR) {
/* LCOV_EXCL_START */
++io_error;
goto bail;
/* LCOV_EXCL_STOP */
}
if (task->state == TASK_STATE_ERROR) {
/* LCOV_EXCL_START */
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
if (task->state == TASK_STATE_ERROR_CONTINUE) {
++error;
error_on_this_block = 1;
continue;
}
if (task->state == TASK_STATE_IOERROR_CONTINUE) {
++io_error;
if (io_error >= state->opt.io_error_limit) {
/* LCOV_EXCL_START */
log_fatal("DANGER! Unexpected input/output read error in a data disk, it isn't possible to sync.\n");
log_fatal("Ensure that disk '%s' is sane and that file '%s' can be read.\n", disk->dir, task->path);
log_fatal("Stopping at block %u\n", blockcur);
goto bail;
/* LCOV_EXCL_STOP */
}
/* otherwise continue */
io_error_on_this_block = 1;
continue;
}
if (task->state != TASK_STATE_DONE) {
/* LCOV_EXCL_START */
log_fatal("Internal inconsistency in task state\n");
os_abort();
/* LCOV_EXCL_STOP */
}
countsize += read_size;
/* now compute the hash */
if (rehash) {
memhash(state->prevhash, state->prevhashseed, hash, buffer[diskcur], read_size);
/* compute the new hash, and store it */
rehandle[diskcur].block = block;
memhash(state->hash, state->hashseed, rehandle[diskcur].hash, buffer[diskcur], read_size);
} else {
memhash(state->hash, state->hashseed, hash, buffer[diskcur], read_size);
}
/* until now is hash */
state_usage_hash(state);
if (block_has_updated_hash(block)) {
/* compare the hash */
if (memcmp(hash, block->hash, BLOCK_HASH_SIZE) != 0) {
/* if the file has invalid parity, it's a REP changed during the sync */
if (block_has_invalid_parity(block)) {
log_tag("error:%u:%s:%s: Unexpected data change\n", blockcur, disk->name, esc_tag(file->sub, esc_buffer));
log_error("Data change at file '%s' at position '%u'\n", task->path, file_pos);
log_error("WARNING! Unexpected data modification of a file without parity!\n");
if (file_flag_has(file, FILE_IS_COPY)) {
log_error("This file was detected as a copy of another file with the same name, size,\n");
log_error("and timestamp, but the file data isn't matching the assumed copy.\n");
log_error("If this is a false positive, and the files are expected to be different,\n");
log_error("you can 'sync' anyway using 'snapraid --force-nocopy sync'\n");
} else {
log_error("Try removing the file from the array and rerun the 'sync' command!\n");
}
++error;
/* if the file is changed, it means that it was modified during sync */
/* this isn't a serious error, so we skip this block, and continue with others */
error_on_this_block = 1;
continue;
} else { /* otherwise it's a BLK with silent error */
unsigned diff = memdiff(hash, block->hash, BLOCK_HASH_SIZE);
log_tag("error:%u:%s:%s: Data error at position %u, diff bits %u/%u\n", blockcur, disk->name, esc_tag(file->sub, esc_buffer), file_pos, diff, BLOCK_HASH_SIZE * 8);
log_error("Data error in file '%s' at position '%u', diff bits %u/%u\n", task->path, file_pos, diff, BLOCK_HASH_SIZE * 8);
/* save the failed block for the fix */
failed[failed_count].index = diskcur;
failed[failed_count].size = read_size;
failed[failed_count].block = block;
++failed_count;
/* silent errors are very rare, and are not a signal that a disk */
/* is going to fail. So, we just continue marking the block as bad */
/* just like in scrub */
++silent_error;
silent_error_on_this_block = 1;
continue;
}
}
} else {
/* if until now the parity doesn't need to be updated */
if (!parity_needs_to_be_updated) {
/* for sure it's a CHG block, because EMPTY are processed before with "continue" */
/* and BLK and REP have "block_has_updated_hash()" as 1, and all the others */
/* have "parity_needs_to_be_updated" already at 1 */
assert(block_state_get(block) == BLOCK_STATE_CHG);
/* if the hash represents the data unequivocally */
if (hash_is_unique(block->hash)) {
/* check if the hash is changed */
if (memcmp(hash, block->hash, BLOCK_HASH_SIZE) != 0) {
/* the block is different, and we must update parity */
parity_needs_to_be_updated = 1;
}
} else {
/* if the hash is already invalid, we update parity */
parity_needs_to_be_updated = 1;
}
}
/* copy the hash in the block, but doesn't mark the block as hashed */
/* this allow in case of skipped block to do not save the failed computation */
memcpy(block->hash, hash, BLOCK_HASH_SIZE);
/* note that in case of rehash, this is the wrong hash, */
/* but it will be overwritten later */
}
}
/* if we have only silent errors we can try to fix them on-the-fly */
2020-09-11 13:42:22 +02:00
/* note the fix is not written to disk, but used only to */
2019-01-07 14:06:15 +01:00
/* compute the new parity */
if (!error_on_this_block && !io_error_on_this_block && silent_error_on_this_block) {
unsigned failed_mac;
int something_to_recover = 0;
/* sort the failed vector */
/* because with threads it may be in any order */
/* but RAID requires the indexes to be sorted */
qsort(failed, failed_count, sizeof(failed[0]), failed_compare_by_index);
/* setup the blocks to recover */
failed_mac = 0;
for (j = 0; j < failed_count; ++j) {
unsigned char* block_buffer = buffer[failed[j].index];
unsigned char* block_copy = copy[failed[j].index];
unsigned block_state = block_state_get(failed[j].block);
/* we try to recover only if at least one BLK is present */
if (block_state == BLOCK_STATE_BLK)
something_to_recover = 1;
/* save a copy of the content just read */
/* that it's going to be overwritten by the recovering function */
memcpy(block_copy, block_buffer, state->block_size);
if (block_state == BLOCK_STATE_CHG
&& hash_is_zero(failed[j].block->hash)
) {
/* if the block was filled with 0, restore this state */
/* and avoid to recover it */
memset(block_buffer, 0, state->block_size);
} else {
/* if we have too many failures, we cannot recover */
if (failed_mac >= state->level)
break;
/* otherwise it has to be recovered */
failed_map[failed_mac++] = failed[j].index;
}
}
/* if we have something to recover and enough parity */
if (something_to_recover && j == failed_count) {
/* until now is misc */
state_usage_misc(state);
/* read the parity */
/* we are sure that parity exists because */
/* we have at least one BLK block */
for (l = 0; l < state->level; ++l) {
ret = parity_read(&parity_handle[l], blockcur, buffer[diskmax + l], state->block_size, log_error);
if (ret == -1) {
/* LCOV_EXCL_START */
if (errno == EIO) {
log_tag("parity_error:%u:%s: Read EIO error. %s\n", blockcur, lev_config_name(l), strerror(errno));
if (io_error >= state->opt.io_error_limit) {
log_fatal("DANGER! Unexpected input/output read error in the %s disk, it isn't possible to sync.\n", lev_name(l));
log_fatal("Ensure that disk '%s' is sane and can be read.\n", lev_config_name(l));
log_fatal("Stopping at block %u\n", blockcur);
++io_error;
goto bail;
}
log_error("Input/Output error in parity '%s' at position '%u'\n", lev_config_name(l), blockcur);
++io_error;
io_error_on_this_block = 1;
continue;
}
log_tag("parity_error:%u:%s: Read error. %s\n", blockcur, lev_config_name(l), strerror(errno));
log_fatal("WARNING! Unexpected read error in the %s disk, it isn't possible to sync.\n", lev_name(l));
log_fatal("Ensure that disk '%s' can be read.\n", lev_config_name(l));
log_fatal("Stopping at block %u\n", blockcur);
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
/* until now is parity */
state_usage_parity(state, &l, 1);
}
/* if no error in parity read */
if (!io_error_on_this_block) {
/* try to fix the data */
/* note that this is a simple fix algorithm, that doesn't take into */
/* account the case of a wrong parity */
/* only 'fix' supports the most advanced fixing */
raid_rec(failed_mac, failed_map, diskmax, state->level, state->block_size, buffer);
/* until now is raid */
state_usage_raid(state);
/* check the result and prepare the data */
for (j = 0; j < failed_count; ++j) {
unsigned char hash[HASH_MAX];
unsigned char* block_buffer = buffer[failed[j].index];
unsigned char* block_copy = copy[failed[j].index];
unsigned block_state = block_state_get(failed[j].block);
if (block_state == BLOCK_STATE_BLK) {
unsigned size = failed[j].size;
/* compute the hash of the recovered block */
if (rehash) {
memhash(state->prevhash, state->prevhashseed, hash, block_buffer, size);
} else {
memhash(state->hash, state->hashseed, hash, block_buffer, size);
}
/* until now is hash */
state_usage_hash(state);
/* if the hash doesn't match */
if (memcmp(hash, failed[j].block->hash, BLOCK_HASH_SIZE) != 0) {
/* we have not recovered */
break;
}
/* pad with 0 if needed */
if (size < state->block_size)
memset(block_buffer + size, 0, state->block_size - size);
} else {
/* otherwise restore the content */
/* because we are not interested in the old state */
/* that it's recovered for CHG, REP and DELETED blocks */
memcpy(block_buffer, block_copy, state->block_size);
}
}
/* if all is processed, we have fixed it */
if (j == failed_count)
fixed_error_on_this_block = 1;
}
}
}
/* if we have read all the data required and it's correct, proceed with the parity */
if (!error_on_this_block && !io_error_on_this_block
&& (!silent_error_on_this_block || fixed_error_on_this_block)
) {
/* update the parity only if really needed */
if (parity_needs_to_be_updated) {
/* compute the parity */
raid_gen(diskmax, state->level, state->block_size, buffer);
/* until now is raid */
state_usage_raid(state);
/* mark that the parity is going to be written */
parity_going_to_be_updated = 1;
}
/* for each disk, mark the blocks as processed */
for (j = 0; j < diskmax; ++j) {
struct snapraid_block* block;
if (!handle[j].disk)
continue;
block = fs_par2block_find(handle[j].disk, blockcur);
if (block == BLOCK_NULL) {
/* nothing to do */
continue;
}
/* if it's a deleted block */
if (block_state_get(block) == BLOCK_STATE_DELETED) {
/* the parity is now updated without this block, so it's now empty */
fs_deallocate(handle[j].disk, blockcur);
continue;
}
/* now all the blocks have the hash and the parity computed */
block_state_set(block, BLOCK_STATE_BLK);
}
/* we update the info block only if we really have updated the parity */
/* because otherwise the time/justsynced info would be misleading as we didn't */
/* wrote the parity at this time */
/* we also update the info block only if no silent error was found */
/* because has no sense to refresh the time for data that we know bad */
if (parity_needs_to_be_updated
&& !silent_error_on_this_block
) {
/* if rehash is needed */
if (rehash) {
/* store all the new hash already computed */
for (j = 0; j < diskmax; ++j) {
if (rehandle[j].block)
memcpy(rehandle[j].block->hash, rehandle[j].hash, BLOCK_HASH_SIZE);
}
}
/* update the time info of the block */
/* we are also clearing any previous bad and rehash flag */
info_set(&state->infoarr, blockcur, info_make(now, 0, 0, 1));
}
}
/* if a silent (even if corrected) or input/output error was found */
/* mark the block as bad to have check/fix to handle it */
/* because our correction is in memory only and not yet written */
if (silent_error_on_this_block || io_error_on_this_block) {
/* set the error status keeping the other info */
info_set(&state->infoarr, blockcur, info_set_bad(info));
}
/* finally schedule parity write */
/* Note that the calls to io_parity_write() are mandatory */
/* even if the parity doesn't need to be updated */
/* This because we want to keep track of the time usage */
state_usage_misc(state);
/* write start */
io_write_preset(&io, blockcur, !parity_going_to_be_updated);
/* write the parity */
for (l = 0; l < state->level; ++l) {
unsigned levcur;
io_parity_write(&io, &levcur, waiting_map, &waiting_mac);
/* until now is parity */
state_usage_parity(state, waiting_map, waiting_mac);
}
/* write finished */
io_write_next(&io, blockcur, !parity_going_to_be_updated, writer_error);
/* handle errors reported */
for (j = 0; j < IO_WRITER_ERROR_MAX; ++j) {
if (writer_error[j]) {
switch (j + IO_WRITER_ERROR_BASE) {
case TASK_STATE_IOERROR_CONTINUE :
++io_error;
if (io_error >= state->opt.io_error_limit) {
/* LCOV_EXCL_START */
log_fatal("DANGER! Unexpected input/output write error in a parity disk, it isn't possible to sync.\n");
log_fatal("Stopping at block %u\n", blockcur);
goto bail;
/* LCOV_EXCL_STOP */
}
break;
case TASK_STATE_ERROR_CONTINUE :
++error;
break;
case TASK_STATE_IOERROR :
/* LCOV_EXCL_START */
++io_error;
goto bail;
/* LCOV_EXCL_STOP */
case TASK_STATE_ERROR :
/* LCOV_EXCL_START */
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
}
}
/* mark the state as needing write */
state->need_write = 1;
/* count the number of processed block */
++countpos;
/* progress */
if (state_progress(state, &io, blockcur, countpos, countmax, countsize)) {
/* LCOV_EXCL_START */
break;
/* LCOV_EXCL_STOP */
}
/* autosave */
if ((state->autosave != 0
&& autosavedone >= autosavelimit /* if we have reached the limit */
&& autosavemissing >= autosavelimit) /* if we have at least a full step to do */
/* or if we have a forced autosave at the specified block */
|| (state->opt.force_autosave_at != 0 && state->opt.force_autosave_at == blockcur)
) {
autosavedone = 0; /* restart the counter */
/* until now is misc */
state_usage_misc(state);
state_progress_stop(state);
msg_progress("Autosaving...\n");
/* before writing the new content file we ensure that */
/* the parity is really written flushing the disk cache */
for (l = 0; l < state->level; ++l) {
ret = parity_sync(&parity_handle[l]);
if (ret == -1) {
/* LCOV_EXCL_START */
log_tag("parity_error:%u:%s: Sync error\n", blockcur, lev_config_name(l));
log_fatal("DANGER! Unexpected sync error in %s disk.\n", lev_name(l));
log_fatal("Ensure that disk '%s' is sane.\n", lev_config_name(l));
log_fatal("Stopping at block %u\n", blockcur);
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
}
/* now we can safely write the content file */
state_write(state);
state_progress_restart(state);
/* drop until now */
state_usage_waste(state);
}
}
end:
state_progress_end(state, countpos, countmax, countsize);
state_usage_print(state);
/* before returning we ensure that */
/* the parity is really written flushing the disk cache */
for (l = 0; l < state->level; ++l) {
ret = parity_sync(&parity_handle[l]);
if (ret == -1) {
/* LCOV_EXCL_START */
log_tag("parity_error:%u:%s: Sync error\n", blockcur, lev_config_name(l));
log_fatal("DANGER! Unexpected sync error in %s disk.\n", lev_name(l));
log_fatal("Ensure that disk '%s' is sane.\n", lev_config_name(l));
log_fatal("Stopping at block %u\n", blockcur);
++error;
goto bail;
/* LCOV_EXCL_STOP */
}
}
if (error || silent_error || io_error) {
msg_status("\n");
msg_status("%8u file errors\n", error);
msg_status("%8u io errors\n", io_error);
msg_status("%8u data errors\n", silent_error);
} else {
/* print the result only if processed something */
if (countpos != 0)
msg_status("Everything OK\n");
}
if (error)
log_fatal("WARNING! Unexpected file errors!\n");
if (io_error)
log_fatal("DANGER! Unexpected input/output errors! The failing blocks are now marked as bad!\n");
if (silent_error)
log_fatal("DANGER! Unexpected data errors! The failing blocks are now marked as bad!\n");
if (io_error || silent_error) {
log_fatal("Use 'snapraid status' to list the bad blocks.\n");
log_fatal("Use 'snapraid -e fix' to recover.\n");
}
log_tag("summary:error_file:%u\n", error);
log_tag("summary:error_io:%u\n", io_error);
log_tag("summary:error_data:%u\n", silent_error);
if (error + silent_error + io_error == 0)
log_tag("summary:exit:ok\n");
else
log_tag("summary:exit:error\n");
log_flush();
bail:
/* stop all the worker threads */
io_stop(&io);
for (j = 0; j < diskmax; ++j) {
struct snapraid_file* file = handle[j].file;
struct snapraid_disk* disk = handle[j].disk;
ret = handle_close(&handle[j]);
if (ret == -1) {
/* LCOV_EXCL_START */
log_tag("error:%u:%s:%s: Close error. %s\n", blockcur, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
log_fatal("DANGER! Unexpected close error in a data disk.\n");
++error;
/* continue, as we are already exiting */
/* LCOV_EXCL_STOP */
}
}
free(handle);
free(zero_alloc);
free(copy_alloc);
free(copy);
free(rehandle_alloc);
free(failed);
free(failed_map);
free(waiting_map);
io_done(&io);
2021-10-03 10:04:53 +02:00
free(block_enabled);
2019-01-07 14:06:15 +01:00
if (state->opt.expect_recoverable) {
if (error + silent_error + io_error == 0)
return -1;
} else {
if (error + silent_error + io_error != 0)
return -1;
}
return 0;
}
int state_sync(struct snapraid_state* state, block_off_t blockstart, block_off_t blockcount)
{
block_off_t blockmax;
block_off_t used_paritymax;
block_off_t file_paritymax;
data_off_t size;
int ret;
struct snapraid_parity_handle parity_handle[LEV_MAX];
unsigned unrecoverable_error;
unsigned l;
int skip_sync = 0;
msg_progress("Initializing...\n");
blockmax = parity_allocated_size(state);
size = blockmax * (data_off_t)state->block_size;
/* minimum size of the parity files we expect */
used_paritymax = parity_used_size(state);
/* effective size of the parity files */
file_paritymax = 0;
if (blockstart > blockmax) {
/* LCOV_EXCL_START */
log_fatal("Error in the starting block %u. It's bigger than the parity size %u.\n", blockstart, blockmax);
exit(EXIT_FAILURE);
/* LCOV_EXCL_STOP */
}
/* adjust the number of block to process */
if (blockcount != 0 && blockstart + blockcount < blockmax) {
blockmax = blockstart + blockcount;
}
for (l = 0; l < state->level; ++l) {
data_off_t out_size;
block_off_t parityblocks;
/* create the file and open for writing */
ret = parity_create(&parity_handle[l], &state->parity[l], l, state->file_mode, state->block_size, state->opt.parity_limit_size);
if (ret == -1) {
/* LCOV_EXCL_START */
log_fatal("WARNING! Without an accessible %s file, it isn't possible to sync.\n", lev_name(l));
exit(EXIT_FAILURE);
/* LCOV_EXCL_STOP */
}
/* number of block in the parity file */
parity_size(&parity_handle[l], &out_size);
parityblocks = out_size / state->block_size;
/* if the file is too small */
if (parityblocks < used_paritymax) {
log_fatal("WARNING! The %s parity has data only %u blocks instead of %u.\n", lev_name(l), parityblocks, used_paritymax);
}
/* keep the smallest parity number of blocks */
if (l == 0 || file_paritymax > parityblocks)
file_paritymax = parityblocks;
}
/* if we do a full parity realloc or computation, having a wrong parity size is expected */
if (!state->opt.force_realloc && !state->opt.force_full) {
/* if the parities are too small */
if (file_paritymax < used_paritymax) {
/* LCOV_EXCL_START */
log_fatal("DANGER! One or more the parity files are smaller than expected!\n");
if (file_paritymax != 0) {
log_fatal("If this happens because you are using an old content file,\n");
log_fatal("you can 'sync' anyway using 'snapraid --force-full sync'\n");
log_fatal("to force a full rebuild of the parity.\n");
} else {
log_fatal("It's possible that the parity disks are not mounted.\n");
log_fatal("If instead you are adding a new parity level, you can 'sync' using\n");
log_fatal("'snapraid --force-full sync' to force a full rebuild of the parity.\n");
}
exit(EXIT_FAILURE);
/* LCOV_EXCL_STOP */
}
}
unrecoverable_error = 0;
if (state->opt.prehash) {
msg_progress("Hashing...\n");
ret = state_hash_process(state, blockstart, blockmax, &skip_sync);
if (ret == -1) {
/* LCOV_EXCL_START */
++unrecoverable_error;
/* continue, in case also doing the sync if ::skip_sync is not set */
/* LCOV_EXCL_STOP */
}
}
if (!skip_sync) {
msg_progress("Resizing...\n");
/* now change the size of all parities */
for (l = 0; l < state->level; ++l) {
int is_modified;
/* change the size of the parity file, truncating or extending it */
/* from this point all the DELETED blocks after the end of the parity are invalid */
/* and they are automatically removed when we save the new content file */
ret = parity_chsize(&parity_handle[l], &state->parity[l], &is_modified, size, state->block_size, state->opt.skip_fallocate, state->opt.skip_space_holder);
if (ret == -1) {
/* LCOV_EXCL_START */
data_off_t out_size;
parity_size(&parity_handle[l], &out_size);
parity_overflow(state, out_size);
2020-09-11 13:42:22 +02:00
log_fatal("WARNING! Without a usable %s file, it isn't possible to sync.\n", lev_name(l));
2019-01-07 14:06:15 +01:00
exit(EXIT_FAILURE);
/* LCOV_EXCL_STOP */
}
if (is_modified)
state->need_write = 1;
}
/* after resizing parity files, refresh again the free info */
state_refresh(state);
/**
* Save the new state before the sync but after the hashing phase
*
* This allows to recover after an aborted sync, and at the same time
* it allows to recover broken copied/moved files identified in the
* hashing phase.
*
* For example, think at this case:
* - Add some files at the array
* - Run a sync command, it will recompute the parity adding the new files
* - Abort the sync command before it stores the new content file
* - Delete the not yet synced files from the array
* - Run a new sync command
*
* The sync command has no way to know that the parity file was modified
* because the files triggering these changes are now deleted and they aren't
* listed in the content file.
* Instead, saving the new content file in advance, keeps track of all the parity
* that may be modified.
*/
if (!state->opt.skip_content_write) {
if (state->need_write)
state_write(state);
} else {
log_fatal("WARNING! Skipped state write for --test-skip-content-write option.\n");
}
/* skip degenerated cases of empty parity, or skipping all */
if (blockstart < blockmax) {
ret = state_sync_process(state, parity_handle, blockstart, blockmax);
if (ret == -1) {
/* LCOV_EXCL_START */
++unrecoverable_error;
/* continue, as we are already exiting */
/* LCOV_EXCL_STOP */
}
} else {
msg_status("Nothing to do\n");
}
}
for (l = 0; l < state->level; ++l) {
ret = parity_close(&parity_handle[l]);
if (ret == -1) {
/* LCOV_EXCL_START */
log_fatal("DANGER! Unexpected close error in %s disk.\n", lev_name(l));
++unrecoverable_error;
/* continue, as we are already exiting */
/* LCOV_EXCL_STOP */
}
}
/* abort if required */
if (unrecoverable_error != 0)
return -1;
return 0;
}