Novell
Common Authentication

Services Adapter (CASA)

1.6 ®

‘ ADMINISTRATION GUIDE
May 22, 2006

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Novell Modular Authentication Services (NMAS)™ software includes support for a number of login methods from
third-party authentication developers. Refer to the NMAS Partners Web site (http://www.novell.com/products/nmas/
partners/) for a list of authorized NMAS partners and a description of their login methods.

Each NMAS partner addresses network authentication with unique product features and characteristics. Therefore,
each login method will vary in its actual security properties. Novell has not evaluated the security methodologies of
these partner products, and while these products may have qualified for the Novell Yes, Tested and Approved or
Novell Directory Enabled logos, those logos only relate to general product interoperability. Novell encourages you to
carefully investigate each NMAS partner's product features to determine which product will best meet your security
needs. Also, some login methods require addtional hardware and software not included with the NMAS product.

You may not export or re-export this product in violation of any applicable laws or regulations including, without
limitation, U.S. export regulations or the laws of the country in which you reside.

Copyright © 1993-2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

U.S. Patent No. 5,157,663; 5,349,642; 5,455,932; 5,553,139, 5,553,143; 5,572,528; 5,594,863; 5,608,903; 5,633,931;
5,652,854; 5,671,414; 5,677,851; 5,692,129; 5,701,459; 5,717,912; 5,758,069; 5,758,344; 5,781,724; 5,781,733;
5,784,560; 5,787,439; 5,818,936; 5,828,882; 5,832,274; 5,832,275; 5,832,483; 5,832,487; 5,859,978; 5,870,561;
5,870,739; 5,873,079; 5,878,415; 5,884,304; 5,893,118; 5,903,650; 5,903,720; 5,905,860; 5,910,803; 5,913,025;
5,913,209; 5,915,253; 5,925,108; 5,933,503; 5,933,826; 5,946,002; 5,946,467; 5,956,718; 5,956,745; 5,964,872;
5,974,474; 5,983,223; 5,983,234; 5,987,471; 5,991,810; 6,002,398; 6,014,667; 6,016,499; 6,023,586; 6,029,247
6,052,724; 6,061,726; 6,061,740; 6,061,743; 6,065,017; 6,081,774; 6,081,814; 6,094,672; 6,098,090; 6,105,062;
6,105,069; 6,105,132; 6,115,039; 6,119,122; 6,144,959; 6,151,688; 6,157,925; 6,167,393; 6,173,289; 6,216,123;
6,219,652; 6,233,859; 6,247,149; 6,269,391; 6,286,010; 6,308,181; 6,314,520; 6,324,670; 6,338,112; 6,345,266;
6,353,898; 6,424,976; 6,466,944; 6,477,583; 6,477,648; 6,484,186; 6,496,865; 6,510,450; 6,516,325; 6,519,610;
6,532,451; 6,532,491; 6,539,381; RE37,178. Patents Pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

USA

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark (http://www.novell.com/company/legal/
trademarks/tmlist.html) list.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide
1 Getting Started
1.1 Credentials.
1.2 Sharing Credentials
2 CASA on Linux
21 LinuX CompPOoNeNnts.o
211 CASA Identity Development Kit.
212 MICASAd. . ..
2.1.3 Login Credential Capture Module
214 CASALINUXPackagest e
215 Linux Directoriesand Files
2.2 Using CASA With LINUXottt e
221 Linux Installation
2.2.2 Starting, Stopping, and Restarting CASAon Linux.
2.2.3 Starting CASA Managert e
224 Linux Uninstallation e
3 CASA on Windows
3.1 WIndows CompPoONENntS.ottt e
3.1.1 Windows Directoriesand Files
3.2 Using CASAWIth WINdOWS e e e e
3.21 Installing CASA on WIindows.ot
3.2.2 Starting CASA on WiNdows.
3.2.3 Accessing CASA Managert e
3.24 Uninstalling CASAon WIindows e
4 Administering CASA Manager
4.1 CASA Manager GUI Components.
411 Credential Store Tab e
412 Secret-IDWINdOW oo
4.1.3 Native Information Window
4.2 CASA Manager Functionality.
421 Creating SecCrets e
422 Refreshing Credential Stores
423 LOCKING SeCrets.o
424 Destroying Secrets
425 Viewing SecretValues
426 Linking Secrets
427 Editing Secrets
4.2.8 Deleting Secrets
4.3 Editing CASA Manager Options it
431 Setting CASA Preferences i e

4.3.2 Setting Persistent Storage.

10
10

11

11
11
11
11
12
12
14
14
14
14
15

17

17
17
18
19
19
19
20

6

5 Functions

MICASAGetCredential.
MICASARemoveCredential. e
MICASASetCredential.

6 Structures
SSCS_BASIC _CREDENTIALo e e e e e e
SSCS _SECRET D T ..

A CASA Error Codes

B Revision History

Novell Common Authentication Services Adapter (CASA)

35

36
38
39

41
42
43

45

49

About This Guide

The Common Authentication Service Adapter (CASA) SDK provides a common authentication and
security package for client authentication across the Linux* and Microsoft* Windows* desktops.
Novell® products such as GroupWise®, GroupWise Messenger, iPrint, Novell iFolder®, and the
Novell clients for Windows and Linux are integrated with the miCASA interface and can take
advantage of the credential store that provides the cornerstone for CASA.

This guide contains the following sections:

* Chapter 1, “Getting Started,” on page 9

* Chapter 2, “CASA on Linux,” on page 11

* Chapter 3, “CASA on Windows,” on page 17

» Chapter 4, “Administering CASA Manager,” on page 21
» Chapter 5, “Functions,” on page 35

» Chapter 6, “Structures,” on page 41

* Appendix B, “Revision History,” on page 49

Audience

This guide is intended for advanced application developers who want to enable single sign-on to an
enterprise network. In order to deploy this API on your applications, you should be familiar with
Linux and Windows development platforms, as well as an understanding authentication and security
development concepts.

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of the CASA Documentation, visit the Novell Common Authentication
Service Adapter Web site (http://forge.novell.com/modules/xfmod/project/?casa).

Additional Documentation

For documentation on other authentication and SecretStore issues, see the Novell SecretStore
product documentation (http://www.novell.com/documentation/secretstore33/index.html) and the
Novell SecretStore Developer Kit for C (http://developer.novell.com/ndk/ssocomp.htm) Web sites.
The CASA SDK replaces the SecretStore Developer Kit.

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

http://forge.novell.com/modules/xfmod/project/?casa
http://forge.novell.com/modules/xfmod/project/?casa
http://www.novell.com/documentation/secretstore33/index.html
http://www.novell.com/documentation/secretstore33/index.html
http://developer.novell.com/ndk/ssocomp.htm

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX*, should use forward slashes as required by your software.

8 Novell Common Authentication Services Adapter (CASA)

Getting Started

The Novell Common Authentication Services Adaptor (CASA) is a common authentication and
security package that provides a set of libraries for application and service developers to enable
single sign-on to an enterprise network. CASA 1.5 provides a local, session-based credential store,
called miCASA, that is populated with desktop and network login credentials on the following
workstations:

* Novell Linux Desktop (NLD SP2)
¢ Windows XP Home/Professional
¢ Windows 2000 Professional

As shown in the following architectural diagram, within the CASA framework, the miCASA
credential store is the component you incorporate and enable on your applications.

Figure 1-1 CASA Architectural Structure

’ Aggregation and Distribution {A&0)]
(m— i _
Password
Manager™
[CASA Daemon/Service

The miCASA credential service is implemented in C# with API bindings in C, C#, and JAVA.
CASA also provides a Network Credential class to enable single sign-on in .NET framework
applications

Connectors to other EIIII'EE*

Applications that require credentials also require some type of credential management logic. The
miCASA framework provides applications a place to securely store their credentials and the ability
to share those credentials with other applications. This reduces the number of credentials that are
being managed and provides a single sign-on experience to the end user.

Getting Started

This document describes the functions provided by the miCASA framework, as well as the logic
used internally that allows applications to share common credentials:
» Section 1.1, “Credentials,” on page 10

» Section 1.2, “Sharing Credentials,” on page 10

1.1 Credentials

A credential stored in the miCASA framework is given a unique name known as the SecretID.
Currently, a credential consists of a username and a password. The username can be any of the
following forms:

* Common Name (CN). For example, John Smith.

* Distinguished Name (DN_NDAP). For example, admin.novell.

* Fully Distinguished Name (FDN_NDAP). For example, cn=admin,.o=novell.

* Fully Distinguished LDAP Name (DN_LDAP). For example, cn=admin, o=novell.

The miCASA framework is capable of storing all of these forms under the same credential name or
SecretID. This type of secret is known as a Credential Set, or SS_CredSet.

The SecretID should be unique for each application using the miCASA API. For example, we
suggest the following naming convention:

Company.ApplicationName
for example, Novell.Groupwise or Novell.iFolder.

If your application needs to store more than one credential, you can append additional strings to the
end of the SecretID.

1.2 Sharing Credentials

Credentials that are used by an application authenticate against some type of realm. This realm
might be an eDirectory™ Tree, an Active Directory* domain, a managed database, or even a
combination of all of these. The network administrator defines the Authentication Realm and
multiple applications commonly authenticate to the same realm. The miCASA functions enable
applications to share such credentials.

Discovering the Realm

In order for credential sharing to take place, your application either must be able to discover the
Authentication Realm or be configured to use the name of the Authentication Realm.

The miCASA API functions described in this document provide a sharedSecretID parameter that
you can use to leverage credential requirements of applications used within the realm. Although not
required, this parameter assists the API in accessing the proper credential. Novell® iPrint is an
example of an application that discovers the Tree name or authentication realm of a chosen network
printer.

NOTE: The miCASA framework is designed so that the user or network administrator can override
the sharedSecretID that is used by a given application. However, this feature is not yet functional.

10 Novell Common Authentication Services Adapter (CASA)

CASA on Linux

* Section 2.1, “Linux Components,” on page 11
» Section 2.2, “Using CASA with Linux,” on page 14

For information on using CASA with Microsoft Windows, see Chapter 3, “CASA on Windows,” on
page 17.

2.1 Linux Components

As shown in Figure 1-1 on page 9, the main components of CASA on Linux are:

» Section 2.1.1, “CASA Identity Development Kit,” on page 11
» Section 2.1.2, “miCASAd,” on page 11

* Section 2.1.3, “Login Credential Capture Module,” on page 11
* Section 2.1.4, “CASA Linux Packages,” on page 12

» Section 2.1.5, “Linux Directories and Files,” on page 12

2.1.1 CASA Identity Development Kit

Use the functions within this kit to write user/application credentials to the credential store. These
functions internally store the credentials passed onto them by the applications in miCASAd. There
are C, C++, C# and Java bindings available for the functions within this kit. See Section 2.1, “Linux
Components,” on page 11 and Section 3.1, “Windows Components,” on page 17.

2.1.2 miCASAd

miCASAd is an active component that starts during boot time. It stores and provides credentials or
secrets based on the Linux user identifier (uid) of the process that makes the IDK API calls. On
Linux, miCASAd is available in the run-levels 1, 2, 3, and 5. It runs with root privileges and is
active as long as the system is up.

The credentials, which are stored by applications in miCASAd, are maintained only in memory for
the first release. Session-based secrets implies secrets that are stored in an in-memory cache, are
available only as long as the user is in session on the desktop, and are destroyed when miCASA
daemon is restarted or the user logs off.

2.1.3 Login Credential Capture Module

On Linux, the login credential capture module is implemented as a pluggable authentication module
(PAM) (http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html). This PAM
module captures the user’s desktop login credentials and stores them in miCASAd using the IDK
functions.

This PAM module is placed as the last module in the auth and session stacks of xdm, gdm, kdm,
login and sshd PAM configuration files. In the auth stack, the functionality of this module is to store
the credentials in miCASAd and in the session stack, then closes the user’s session with miCASAd.

CASA on Linux

1"

http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html
http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html

IMPORTANT: Any PAM that uses the Identity Development Kit must temporarily set its effective
user id to that of the user logging in (the user returned by calling pam_get user), if the credentials
need to be stored against that user. However, there might be cases where the user obtained by calling
pam_get user is not the user against whom the PAM module actually intends to store credentials.

2.1.4 CASA Linux Packages

CASA consists of two Linux packages:

¢ CASA-1.5.xxx.i586.rpm: Installs miCASAd, the startup scripts, the Login Credential Capture
PAM module, and the relevant libraries required by any application that is using the CASA
APL

¢ CASA-devel-1.5.xxx.i586.rpm: Installs the relevant header files that developers need to write
applications to the CASA functions. This is dependent on CASA-1.5.xxx.1586.rpm.

¢ CASA-gui-1.5.xxx.i586.rpm: Installs CASA Manager which allows the end user to add, edit,
and delete secrets. CASA Manager also allows the user to temporally suspend or lock the
miCASA credential store.

All other directories are installed by CASA-1.5.0.1586.rpm, except /opt/novell/CASA/, which is the
only directory installed by CASA-devel-1.5.0.i586.rpm.

2.1.5 Linux Directories and Files

CASA Linux files are located in the following directories:

» “/opt/novel/CASA/doc” on page 12

» “/opt/novell/CASA/Iib or /opt/novel/CASA/1ib64” on page 12
» “/lib/security or /1ib64/security”” on page 13

» “/opt/novell/CASA/bin” on page 13

+ “/opt/novell/CASA/images” on page 13

* “/etc/init.d” on page 14

» “/opt/novell/CASA/include” on page 14

lopt/novell/CASA/doc

The /opt/novell/CASA/doc directory contains the following files:

File Description

CASA Reference Guide.pdf This document.

README. txt The Readme file, which contains information about any last-minute
updates.

lopt/novell/CASAI/lib or /opt/novell/ CASA/lib64

This directory contains the following files for 32-bit machines (/opt/novell/CASA/1ib) or
64-bit machines (/opt/novell/CASA/1ib64):

12 Novell Common Authentication Services Adapter (CASA)

File

Description

libmicasa.so. [version number]
miCASA.jar
libjmicasa.so.*

Novell.CASA.miCASAWrapper.dll

Novell.CASA.Common.dll

Novell .CASA.A-D.dl1l

Novell.CASA.DataEngines.GnomeKeyRing.dll

Novell.CASA.DataEngines.KWallet.dll

Novell .CASAS.Policy.dll

The miCASA C/C++ developer kit library.
The miCASA Java* developer kit jar file.
The miCASA Java developer kit library.

The miCASA C# developer kit library, which
is based on Mono®.

A common .NET library used by micasad
and CASAManager.

A NET library that collects secrets from
other credential stores.

A C# wrapper to interact with GNOME
Keyring.

A C# wrapper to interact with the KDE
Wallet.

A .NET library to configures policy for
miCASA.

llib/security or /lib64/security

This directory contains the following file for 32-bit machines (/1ib/security) or 64-bit

machines (/11ib64/security):

File Description

pam micasa.so

The miCASA login credential capture module that is inserted in the auth and

session stacks of the PAM configuration files of xdm, gdm, kdm, login, and sshd.

lopt/novell/CASA/bin

The /opt/novell/CASA/bin directory contains the following files:

File Description

micasad.exe
on Mono).

micasad.sh
bin directory.

The miCASA daemon that starts up at run levels 1, 2, 3, and 5 (which is based

A script that starts micasad.exe, which is located in the /opt/novell/CASA/

CASAManager.exe The management console used to view, edit, and delete secrets.

CASAManager.sh

The script file which starts CASAManager.

lopt/novell/CASA/images

The /opt/novell/CASA/images directory contains all images used by CASA Manager.

CASA on Linux

13

letcl/init.d

The /etc/init.d directory contains the following file:

File Description

micasad The micasad startup script. This script is started in run levels 1, 2, 3, and 5.There
are links to this script from the appropriate runlevel directories (/etc/rcl.d, /
etc/rc2.d, /etc/rc3.d,and /etc/rc5.d). This script calls the /opt/
novell/CASA/bin/micasad. sh script to start the daemon.

lopt/novell/CASA/include

The /opt/novell/CASA/include directory contains the following files:

File Description

micasa.h The low-level header file that lists the C/C++ functions.

micasa mgmd.h The main header file for C/C++ developers.

2.2 Using CASA with Linux

* Section 2.2.1, “Linux Installation,” on page 14

» Section 2.2.2, “Starting, Stopping, and Restarting CASA on Linux,” on page 14
» Section 2.2.3, “Starting CASA Manager,” on page 14

» Section 2.2.4, “Linux Uninstallation,” on page 15

2.2.1 Linux Installation

CASA is preinstalled on the Novell Linux Desktop SP2 operating system.

On other distributions, use the following commands to install all of the required CASA components:
rpm -Uvh CASA-1.5.xxx.1586.rpm sdsd (CASA product installation)

rpm -Uvh CASA-devel-1.5.xxx.1586.rpm (CASA NDK installation)

rpm -Uvh CASA-gui-1.5.xxx.1i586.rpm (CASA Manager installation)

2.2.2 Starting, Stopping, and Restarting CASA on Linux

Use the following command to start, stop, and restart the CASA service:

/etc/init.d/micasad [start|stop|restart]

2.2.3 Starting CASA Manager

Use the following command to start CASA Manager:

/opt/novell /CASA/bin/CASAManager.sh

14 Novell Common Authentication Services Adapter (CASA)

2.2.4 Linux Uninstallation

Use the following commands to uninstall the CASA packages:
rpm -e CASA-gui

rpm -e CASA-devel

rpm —-e CASA

CASAon Linux 15

16 Novell Common Authentication Services Adapter (CASA)

CASA on Windows

This is your guide to using the Common Authentication Service Adapter (CASA) developer kit on
Microsoft Windows.

» Section 3.1, “Windows Components,” on page 17

» Section 3.2, “Using CASA with Windows,” on page 18

For information on using CASA with Linux*, see Chapter 2, “CASA on Linux,” on page 11.

3.1 Windows Components

CASA consists of one Windows package, CASA-1.5.0.msi, which is the installation module
that contains the following two components that match their Linux counterparts (see Section 2.1,
“Linux Components,” on page 11):

* CASA-devel-1.5.0.msm
e CASA-1.5.0.msm

3.1.1 Windows Directories and Files

CASA Windows files are located in the following directories:

* “\Program Files\Novel\CASA\bin” on page 17

* “\Program Files\NovelN\CASA\include” on page 17
* “\Program Files\Novel\CASA\lib” on page 18

» “\Program Files\NovelN\CASA\doc” on page 18

» “\‘windows\system32(64)” on page 18

\Program Files\Novel\CASA\bin

The \Program Files\Novell\CASA\bin directory contains the following files:

File Description

CASAManager.exe A management console for adding, editing, and deleting secrets.

Lcredmgr.dll The login capture, login extension, and logout for Novell Client32.
micasad.exe The miCASA service for Windows.
Sshtst.exe The tool to test the mICASA service.

\Program Files\Novel\CASAl\include

The \Program Files\Novell\CASA\include directory contains the following files:

CASA on Windows

17

File Description

micasa.h The low-level header file that lists the C/C++ functions.

micasa mgmd.h The main header file for C/C++ developers.

\Program Files\Novell\CASAl\lib

The \Program Files\Novell\CASA\1lib directory contains the following files:

File Description

micasa.lib The miCASA C/C++ developer kit front-end dynamic
library for linking.

miCASA.jar The miCASA Java developer kit jar file.

Novell.Security.ClientPassword The .NET wrapper for Novell iFolder access.
Manager.
NetCredential.dll

Novell.CASA.miCASAWrapper.dll The miCASA C# developer kit library, which is based on
.NET.

Novell.Security.Utilities.dll The miCASA utility for debug logging.

\Program Files\Novel\CASA\doc

The \Program Files\Novell\CASA\doc directory contains the following files:

File Description
CASA Reference Guide.pdf This document.
README. txt The readme file, which contains information about any last-

minute updates.

\windows\system32(64)

The \windows\system32 (64) directory contains the following files:

File Description

micasa.dll The miCASA C/C++ developer kit dynamic library.
micasacache.dll The miCASA library that allows the developer kit to talk to the miCASA service.

jmicasa.dll The miCASA JNI library for the Java interface.

3.2 Using CASA with Windows

» Section 3.2.1, “Installing CASA on Windows,” on page 19
» Section 3.2.2, “Starting CASA on Windows,” on page 19

18 Novell Common Authentication Services Adapter (CASA)

» Section 3.2.3, “Accessing CASA Manager,” on page 19
» Section 3.2.4, “Uninstalling CASA on Windows,” on page 20

3.2.1 Installing CASA on Windows

1 Before installing CASA on Windows, your system must be configured with the Microsoft
NET Framework and the Gtk# components that CASA requires. The CASA installation will
determine if these software packages are already installed.

2 To install CASA on the Windows operating system, double-click the CASA . ms1 file.

3.2.2 Starting CASA on Windows

After installing CASA, you can start the Novell Identity Store service by either of the following
methods:

1 Click Start > Settings > Control Panel > Administrative Tools > Services > Novell Identity
Store, or to start CASA automatically, reboot your machine.

3.2.3 Accessing CASA Manager

To run CASA Manager, double-click the CASA Manager icon on the desktop, or the
CASAManager . exe file found in the [Program files]\Novell\CASA\bin directory.

1 The first time you run CASA Manager, you will be prompted to set a master password. This is
used to encrypt and secure your persistent credentials. The Master Password must be at least
eight characters in length.

Figure 3-1 Set your master password when you start CASA Manager.

§ CASA Master Passwort _ o] x|

Set/Verify Master Password

The Master Password is uszed to encrypt and
secure your persistent credentials. You are
prompted for the Master Password at starfup.

Master Passworg @ |[HHrHE*

Re-enter Password @ [* =+ % 4|

See also Chapter 4, “Administering CASA Manager,” on page 21.

CASA on Windows

19

3.2.4 Uninstalling CASA on Windows

To uninstall CASA, click Start > Control Panel > Add/Remove Programs, select CASA, then follow
the instructions.

20 Novell Common Authentication Services Adapter (CASA)

Administering CASA Manager

CASA Manager is the graphical user interface that enables you to access and manage the
authentication credentials (secrets) of the programs and services installed on your Linux or
Windows devices.

WARNING: Because CASA collects and displays security credentials from secure applications
running on your system, this software should not be used in any public environment where security
might be compromised.

In addition, because CASA is integrated with your workstation login and other resident applications
that require authentication credentials, you should create confidential passwords that are not easily
broken to prevent unauthorized access.

To install CASA Manager on Linux, see Section 2.2, “Using CASA with Linux,” on page 14. To
install CASA Manager on Windows, see Section 3.2, “Using CASA with Windows,” on page 18.

User credentials (secrets) are created automatically when installing and instantiating many routine
applications and services on a system, such “name” and “password” values. For example, user
secrets for SS_CredSet:GroupWise is created when the Novell® GroupWise® application is used, as
shown in the Secrets-ID window in Figure 4-1 on page 22.

SS_CredSet identifies that a credential has one or more sets of key-value pairs assigned to it. The
miCASA credential store is supported on Linux and Windows. CASA Manager also supports KDE

Administering CASA Manager

21

Wallet and GNOME Keyring on Linux. CASA enables you to manage secrets among all three
credential stores in Novell legacy applications or third-party applications.

Figure 4-1 CASA Manager GUI Showing Sample Credential Directory

8 CASA Manager ; | o |EI|£|
File Edit Cptions Help |
Novell: CASA N

Common Authentication Services Adapter

miCASA
Secret-1D

SS_CredSet: Groupiise
S55_CredsSet:STUDLY
SS_CredSet:Deskiop

Mative Information

keychain Mame = Default

Syncronization Status = Persistent Secret

| 4

CASA Manager allows the user to view, edit, and add Secrets stored my the miCASA store.
Applications such as Novell GroupWise, iPrint, and iFolder are CASA enabled and may store
secrets in the miCASA store.

Secrets are stored in miCASA only in memory for CASA 1.0 and in an external directory in Version
1.5 or later. Session-based secrets imply secrets that are stored in an in-memory cache, are available
only as long as the user is in session on the desktop, and are destroyed when miCASA daemon is
restarted or the user logs off the workstation.

This section discusses the following topics:

+ Section 4.1, “CASA Manager GUI Components,” on page 23
» Section 4.2, “CASA Manager Functionality,” on page 25
» Section 4.3, “Editing CASA Manager Options,” on page 32

22 Novell Common Authentication Services Adapter (CASA)

4.1 CASA Manager GUI Components

CASA Manager has the following components:

» Section 4.1.1, “Credential Store Tab,” on page 23
» Section 4.1.2, “Secret-ID Window,” on page 24

» Section 4.1.3, “Native Information Window,” on page 25

4.1.1 Credential Store Tab

In Figure 4-1 on page 22, the miCASA tab lists all secrets stored in the miCASA cache that CASA
detects when CASA Manager is run. This example, which identifies three secrets cached on a
Windows machine, displays only a single tab as shown below.

Figure 4-2 CASA Manager Credential Store Tab
o

Q:JJIJ miCASA

Secret-1ID

55_CredSet: Grouplitise

However, if CASA is installed on a Linux machine where KDE Wallet and GNOME Keyring are
supported, for example, two additional tabs can be enabled to access all credentials cached in each
of those credential stores. To access the secrets stored in each of these credential stores, you simply
click on the individual tab.

NOTE: The example figure shows the tab only for the miCASA credential store.

Administering CASA Manager

23

4.1.2 Secret-ID Window

After selecting a credential store tab, the Secret-ID window displays the names of all secrets cached
in the enabled credential store of your machine, as shown in the example in Figure 4-3 on page 24.

Figure 4-3 Secret-1D Example

§§ CASA Manager ;IEI il

SI=W Edit Ontions Help |

[Hew / N
?,
@ Befresh Stores BN ices Adapter

1 Lodk Secrets
B Unlock Serrets
ﬁ' Destroy Secrets

el Exit Chrl+Q

S55_CredSet:Groupiiise
55_CredSet:STUDLY
S55_CredSet:Deskiop

Select a secret to manage by either of two methods:
* Right-click the Secret-ID item listed in the window and select the task you wish to perform.
This method allows you to do the following tasks:

* Create new secrets
* Create new keys
* View and manage secrets and key-value pairs
» Link keys and value pairs among secrets
* Delete secrets stored in the session cache

* Click the Secret-ID item you wish to manage > Click one of the File/Edit/Options/Help
functions in the menu.

24 Novell Common Authentication Services Adapter (CASA)

4.1.3 Native Information Window

The Native Information window displays the attributes of the secrets that are cached in miCASA.

Figure 4-4 Native Information Window

MNative Information

keychain Marne = Default
Syhcronization Status = Persistent Secrat

| A

The Native Information window displays information about the secret. The information in this
window will vary depending on which credential store is being viewed.

4.2 CASA Manager Functionality

Secrets for each of the services shown in the Secret-ID window (Figure 4-1 on page 22), which are
cached in miCASA, can be managed in the following ways:

» Section 4.2.1, “Creating Secrets,” on page 26

» Section 4.2.2, “Refreshing Credential Stores,” on page 27

 Section 4.2.3, “Locking Secrets,” on page 27

» Section 4.2.4, “Destroying Secrets,” on page 27

» Section 4.2.5, “Viewing Secret Values,” on page 28

» Section 4.2.6, “Linking Secrets,” on page 28

» Section 4.2.7, “Editing Secrets,” on page 30

» Section 4.2.8, “Deleting Secrets,” on page 31

Administering CASA Manager 25

4.2.1 Creating Secrets

CASA Manager enables you to manually create new secrets or to manage secrets that have been
previously created by programs that integrate with CASA.

Figure 4-5 Add New Secret or Key-Vale Pairs

i ADD NEW SECRET _ o] x|

D Add new Secrets or Key-¥Yalue pairs

Enter the Key-value pairs and click Add buthon to add
Key-Yalue pairs or click Delete bution to remove newly
added Key-Value pairs from the list.

Secret ID:

Example Secret

Key: Yalue:

Password testpassword 3P

Key-¥alue pairs:

Key Yalue Linked =

Password testpassword Mo

W Show passwords in clear text.

Help Cancel ok

To manually create a new secret, use the following procedure:

1 In CASA Manager, click File > New > New Secret
2 Type the name that identifies the new secret in the Secret ID field, such as, Example Secret.

3 Type the name of the key and its value in the Key and Value fields, such as, Key: Password, and
Value: testpassword.

The asterisk (*) is the only restricted character in both the Key and Value fields.
4 Click the + button to add the newly formed Key -Value pair for the new secret.

In the example shown in Figure 4-5 on page 26, the value of the password key is shown in clear
text, that is “testpassword.” The password value is always be shown in encrypted form to help
secure confidential information (that is, in asterisk characters) unless you select the Show

26 Novell Common Authentication Services Adapter (CASA)

passwords in clear text. You are then prompted to enter your master password to enable a single
instance display of the password in the Value field.

5 Click OK to add the new secret, with its corresponding Key-Value pair, to the credential store.

The secret now displays in the Secret-ID window, indicating that it has been added to the
miCASA credential store.

4.2.2 Refreshing Credential Stores

Refresh Stores menu option in CASA Manager is used to re-read all secrets in each of the

configured stores. The miCASA credential store is supported on Linux and Windows. KDE Wallet
and GNOME Keyring are additional stores supported on Linux.

4.2.3 Locking Secrets

To prevent individuals and other applications from viewing or manipulating your secrets, CASA
Manager enables you to Lock Secrets. The Lock Secrets menu option temporarily disables the
functionality of the miCASA store. CASA-enabled applications are not able to read or write secrets

to the miCASA store.
1 Click File > Lock Secrets.

Figure 4-6 Locking CASA Manager

& CASA Manager o |I:I |£|
Eile Edit Options Help

Novell: CASA N

Common Authentication Services Adapter

Serret-1

S5_CredSet:Grouphiise
S5 _CredSet:STUDLY

Notice that all credential store tabs (miCASA, KDE Wallet, and GNOME Keyring) and cached

secrets are dimmed when CASA is locked. Use the following procedure to unlock and restore
functionality to CASA:

1a Click File > Unlock Secrets

1b Enter your master password

4.2.4 Destroying Secrets

Use the following procedure to clear your cache and destroy all credentials that are stored in
memory:

1 Click File > Destroy Secrets > OK.

Administering CASA Manager 27

You can restore your secrets manually by creating new secrets or by using CASA-enabled
applications to store your credentials in the miCASA store.

4.2.5 Viewing Secret Values

You can view the key-value pairs of all secrets cached in the miCASA credential store.

1 In the main Secret-ID window, click the secret you want to view.
2 Click Edit > View or press F2.

3 By default, key values are encrypted and displayed as asterisks. To show the value in clear text,
click the “Show Values in clear text” box, and enter your master password.

4.2.6 Linking Secrets

You can link two or more secret keys so that their respective values are synchronized
simultaneously. For example, you can link the CN of one secret to the password of another secret, all
of the keys with one secret to each other, or any combination to synchronize all your secrets.

Currently, CASA only provides the ability to link keys within the miCASA credential store.
Link keys of secrets by using the Link feature from the CASA Manager:

1 Select the Secret you want to link and press F2 or select Edit > Link from the menu. This will
open the Edit Secret and Key-Value pairs window.

2 Double-click on key in the Key field to open the Link management window.

28 Novell Common Authentication Services Adapter (CASA)

This utility enables you to link the key of any secret to the key of any other secret contained in
the miCASA store.

Figure 4-7 The CASA Link utility.

m Link Key-¥alue pairs

You can link two or rmore keys using this dialog. Further, linking
two passwaord keys will keep their values synchronized.

Secret ID: 55_CredSet:Example Secret
Key: Password

b R

Yalue:

Select the Keys to be Linked:

=

QL*uL ICASA
|
Secret-ID ey |
S5_CredSet:Groupiiise Password
S5_CredSet:Example Secret CM
S5_CredSet:STUDLY .

S55_CredSet:Deskiop

! |21

Existing Linked Keys:

Secret-ID | Key | -

S5_CredSet:Groupiiise Password
S5_CredSet:Example Secret Passwiord

Help Cloge

Click the Secret-ID you want to link. This will display all keys associated to this secret.

4 Click the Key you want to link, then click the + Button to link the selected key-value pair.

Repeat Step 4 to add and link as many secrets as you wish. All linked secrets and keys are
displayed in the Existing Linked Keys window.

To verify if a secret is linked, view its status in the Edit Secret pairs window. The Link field
displays either Yes or No. Verify by following any one of these steps:

* Double-click the secret.
» Right click the secret > click View.

» After selecting a Secret from the main window, press the F2 key.

Administering CASA Manager

7 To unlink selected secrets, click any of the Secret-ID components listed in the Existing Linked
Keys window, then click the — button. The selected secret is deleted from the Existing Linked
Keys window.

4.2.7 Editing Secrets

NOTE: The Copy secrets feature is not available in CASA 1.5.

1 In the main Secret-ID window, double-click the secret you want to edit.

Figure 4-8 Select a secret to edit in CASA Manager.

@ CASA Manager : ;IE'E
Novell: CASA N

Common Authentication Services Adapter

miCASA
Secret-I10
SS_CredSet: Grouphiise

S5_CredSet:Example Secret
55 _CradSet:STUDLY
S5_CredSet:Desktop

30 Novell Common Authentication Services Adapter (CASA)

2 As shown below, you edit a secret by adding new or changing existing Key-Value pairs.

Figure 4-9 CASA MAnager features an Add/View/Edit/Screen.

B ADD / VIEW / EDIT / LINK

% Manage Secrets and Key-¥Yalue pairs

To EDIT a Key-Yalue pair, select and single-click the
respective Yalue and enter the new Yalue,

Secret ID:

(=] .

S5_CredSet:Example Secret

Help

Pasowordz H*HwssssE pn

[Show Yalues in clear text.

Key: Yalue:
Passwordz2 testnasswordz)|
Key-V¥alue pairs:
key Yalue Linked
Pasgwordg Fkwwsser

Cancel

In this example, a second password key and corresponding password value were added by
typing “Password2” and “testpassword2” in the Key and Value fields, then clicking the +

button.

In this example, the value is encrypted and displays as asterisks for the new Password?2 key. To
show the value in clear text, then click Show Values in clear text. You are then prompted to

enter your master password before the values are displayed.

3 To edit the password value, click the Value field in the Key-Value pairs window, type your new
value, then click OK. The new password value is saved in the miCASA credential store.

After they are created, Secret ID names cannot be edited.

4.2.8 Deleting Secrets

Use the following procedure to delete a secret from the credential store:

1 In the main Secret-ID window, right-click the secret you want to delete, then click Delete.

Administering CASA Manager

31

32

Alternatively, select Edit > Delete in the main menu.

Figure 4-10 Edit a secret by selecting it from CASA Manager.

@ CASA Manager

Novell: CASA

Common Authentication Services Adapter

Secret-ID

S5_CredSet:Groupiiise

S5_CredSet:Example Secret
S5_CredSet: STUDLY
S5_CredSet:Desktop

2 Click Yes to delete the selected secret and all of its associated key-value pairs.

Figure 4-11 Deleting secrets also deletes all of its associated key-value pairs.

£ WARNING " _ o] x|

@ Are you sure you want to Delete the Secret?
Secret ID : |S5_CredSet:Example Secret
This will delete the selected Secret
and all the key-value pairs.

HElp HD | , IES f

4.3 Editing CASA Manager Options

» Section 4.3.1, “Setting CASA Preferences,” on page 32
» Section 4.3.2, “Setting Persistent Storage,” on page 33

4.3.1 Setting CASA Preferences

This option is active only when CASA is installed in a Linux environment. CASA Manager
provides support for miCASA, KDE Wallet, and GNOME Keyring credential stores. Use the
following procedure to specify which credential stores you want to use:

1 From the CASA Manager page, click Options > Preferences.

Novell Common Authentication Services Adapter (CASA)

2 The miCASA store is always active and cannot be removed. You can select additional
credential stores you wish to use in CASA Manager (that is, KDE Wallet or GNOME Keyring).

NOTE: In Windows, miCASA is the only credential store available, so references to KDE Wallet
and GNOME Keyring are inactive.

4.3.2 Setting Persistent Storage

CASA automatically saves your secrets on your computer and retrieves them the next time you
login. Your secrets are encrypted using the password used for login, as well as the master password
required to use CASA Manager. When the desktop password changes, you must enter your master
password to decrypt your saved secrets.

To change your master password:
1 Enter your old master password, enter your new master password twice, then click OK.

Your master password must be at least eight characters long.

Administering CASA Manager 33

34 Novell Common Authentication Services Adapter (CASA)

Functions

The following functions allow an application that requires credentials to get, set, and clear a
credential:

* “miCASAGetCredential” on page 36
* “miCASARemoveCredential” on page 38
* “miCASASetCredential” on page 39

All strings must be NULL terminated, and their length must include the NULL byte.

For a list of possible error codes, see the micasa_mgmd.h header file located in the default install
directory.

Functions 35

mMiCASAGetCredential

Allows an application to get a credential.

Syntax

int miCASAGetCredential (
uint32 t ssFlags,
SSCS_SECRET_ID T *appSecretlD,
SSCS_SECRET_ID T *sharedSecretlD,

int32 t *credentialType,
void *credential,
SSCS_EXT T *ext

);

Parameters

ssFlags

(IN) Set to 0 for this release.

appSecretID

(IN) Points to a structure of a unique string that represents the name of the service that is
requesting the credentials, such as Novell.GroupWise or Novell.iFolder.

sharedSecretID

(IN) Optional. Points to a structure of the shared name of the back end authentication realm that

relates a group of services. This ID allows multiple applications to find and store a shared

credential, such as Novell Collaboration. You can set this parameter to NULL.
credentialType

(IN/OUT) Points to the type of credential that is being used. Supported types are:

Value Description

SSCS_CRED_TYPE BASIC F ***

credential
(OUT) Points to the credential structure SSCS BASIC CREDENTIAL (page 42).

ext

Reserved for future use.

Return Values

If successful, returns one of the following:

» The credential for the sharedSecretID, if one is requested, and found.

 The credential for the appSecretID, if the sharedSecretID is not found or not requested.

36 Novell Common Authentication Services Adapter (CASA)

» The default credential if Steps 1 and 2 fail.

Functions 37

miCASARemoveCredential

Allows an application to remove a credential.

Syntax

int miCASARemoveCredential

(
uint32 t ssFlags,
SSCS_SECRET_ID T *appSecretID,
SSCS_SECRET_ID T *sharedSecretID,
SSCS_EXT T *ext

);

Parameters

ssFlags
(IN) Set to 0 for this release.

appSecretID

(IN) Points to a unique string that represents the name of the credential that should be removed,
such as Novell.GroupWise or Novell.iFolder.

sharedSecretID
(IN) Ignored for this release.

ext

Reserved for future use.

Return Values

If successful, returns 0. Otherwise, returns a non-zero error code.

38 Novell Common Authentication Services Adapter (CASA)

miCASASetCredential

Allows an application to set a credential.

Syntax

int miCASASetCredential

(
uint32 t ssFlags,
SSCS_SECRET_ID T *appSecretlD,
SSCS_SECRET_ID T *sharedSecretlD,

int32 t *credentialType,
void *credential,
SSCS_EXT T *ext

);

Parameters

ssFlags

(IN) Specifies to persist the credentials across reboots of the application. Set to 0.

appSecretID

(IN) Points to a structure of a unique string that represents the name of the service that is
requesting the credentials, such as Novell. GroupWise or Novell.iFolder.

sharedSecretID

(IN) Optional. Points to a structure of the shared name of the back end authentication realm that
relates a group of services. This ID allows multiple applications to find and store a shared
credential, such as Novell Collaboration. You can set this parameter to NULL.

credential Type
(IN) Points to the type of credential that is being used.

credential

(IN) Points to the credential structure.

ext

Reserved for future use.

Return Values

If successful, set a credential and returns 0.

Remarks

NSSCSSetCredential sets the requested credential by using the following steps:

1. Sets the credential for the sharedSecretID, if one is supplied.

2. Sets the credential for the appSecretID, if the sharedSecretID is not supplied or if setting the
sharedSecretID fails.

Functions

39

40 Novell Common Authentication Services Adapter (CASA)

Structures

CASA uses the following structures:

* “SSCS BASIC CREDENTIAL” on page 42
* “SSCS _SECRET ID T” on page 43

Structures 41

SSCS_BASIC_CREDENTIAL

Contains credential information.

Syntax
typedef struct sscs basic_credential
{

uint32 t unFlags;

uint32 t unlLen;

SS UTF8 T username;

uint32 t pwordLen;

SSs _UTF8 T password;
} SSCS BASIC CREDENTIAL;

Fields

unFlags
Specifies the supported flags (see the header file). Currently, 0 is the only support flag.

unlLen

Specifies the length of the structure.

username
Specifies the user name, with a maximum length of NSSCS MAX USERID LEN.

pwordLen

Specifies the length of the password.

password
Specifies the password, with a maximum length of NSSCS_ MAX PWORD_ LEN.

42 Novell Common Authentication Services Adapter (CASA)

SSCS_SECRET ID_T

Provides the credential information.

Syntax
typedef struct sscs_secret id
{

uint32 t len;

SS_UTF8 T id;

} SSCS_SECRET ID T;

Fields

len

Specifies the length of the secretID.

id

UTF-8 string representing either the secret or the credential.

Structures

43

44 Novell Common Authentication Services Adapter (CASA)

CASA Error Codes

Dec

Hexadecimal

Value Value Name Description

0 0x00000000 NSSCS _SUCCESS The requested function completed
successfully.

-800 OxFFFFFCEO NSSCS E OBJECT_NOT_FOUND Can't find the target object DN in
eDirectory. (Resolve name failed.)

-801 OxFFFFFCDF NSSCS_E_NICI_FAILURE The NICI encryption operations
have failed.

-802 OxFFFFFCDE NSSCS E_INVALID _SECRET_ID The secret ID is not in the user
SecretStore.

-803 OxFFFFFCDD NSSCS E_SYSTEM_FAILURE Some internal operating system
services have not been available.

-804 OxFFFFFCDC NSSCS E_ACCESS DENIED Access to the target SecretStore
has been denied.

-805 OxFFFFFCDB NSSCS E _NDS_INTERNAL_FAILURE Some internal eDirectory services
are not available.

-806 OxFFFFFCDA NSSCS E_SECRET_UNINITIALIZED A secret has not been initialized
with a write.

-807 OxFFFFFCD9 NSSCS E BUFFER _LEN The size of the buffer is not in a
nominal range between minimum
and maximum values.

-808 OxFFFFFCD7 NSSCS_E _CORRUPTED_STORE Versions of the client and server
components are not compatible.

-809 OxFFFFFCD7 NSSCS E _CORRUPTED_STORE SecretStore data on the server
has been corrupted.

-810 OxFFFFFCD6 NSSCS_E_SECRET_ID_EXISTS The secret ID already exists in the
SecretStore.

-811 OxFFFFFCD5 NSSCS _E NDS PWORD_CHANGED The user’s eDirectory password
has been changed by the
administrator.

-812 OxFFFFFCD4 NSSCS_E_INVALID_TARGET_OBJECT The target eDirectory user object
is not found.

-813 OxFFFFFCD3 NSSCS_E_STORE_NOT_FOUND The target eDirectory user object
does not have a SecretStore.

-814 OxFFFFFCD2 NSSCS_E_SERVICE_NOT_FOUND The SecretStore is not on the
Network.

-815 OxFFFFFCD1 NSSCS_E_SECRET_ID_TOO_LONG The length of the secret ID buffer

exceeds the limit.

CASA Error Codes

45

Dec
Value

Hexadecimal
Value

Name

Description

-816

-817
-818
-819

-820

-821

-822

-823

-824
-825

-826

-827

-828

-829

-830

-831

-832

-833

-834

-835

OxFFFFFCDO

OxFFFFFCCF
OXFFFFFCCE
OXFFFFFCCD

OxFFFFFCCC

OxFFFFFCCB

OxFFFFFCCA

OxFFFFFCC9

OxFFFFFCC8
OxFFFFFCC7

OxFFFFFCC6

OxFFFFFCC5

OXFFFFFCC4

OxFFFFFCC3

OxFFFFFCC2

OxFFFFFCCA1

OxFFFFFCCO

OXxFFFFFCBF

OxFFFFFCBE

OxFFFFFCBD

NSSCS_E_ENUM_BUFF_TOO_SHORT

NSSCS_E_NOT_AUTHENTICATED
NSSCS_E_NOT_SUPPORTED
NSSCS_E_NDS_PWORD_INVALID

NSSCS_E_NICI_OUTOF_SYNC

NSSCS_E_SERVICE_NOT_SUPPORTED

NSSCS_E_TOKEN_NOT_SUPPORTED

NSSCS_E_UNICODE_OP_FAILURE

NSSCS_E_TRANSPORT_FAILURE
NSSCS_E_CRYPTO_OP_FAILURE

NSSCS_E_SERVER_CONN_FAILURE

NSSCS_E_CONN_ACCESS_FAILURE

NSSCS_E_ENUM_BUFF_TOO_LONG

NSSCS_E_SECRET BUFF_TOO_LONG

NSSCS_E_SECRET_ID_TOO_SHORT

NSSCS_E_CORRUPTED_PACKET_DATA

NSSCS_E_EP_ACCESS_DENIED

NSSCS_E_SCHEMA_NOT_EXTENDED

NSSCS_E_ATTR_NOT_FOUND

NSSCS_E_MIGRATION_NEEDED

The length of the enumeration
buffer too short.

The user is not authenticated.
The operation is not supported.

The eDirectory password entered
is not valid.

The session keys of the client and
server NICI are out of sync.

The requested service is not yet
supported.

The eDirectory authentication
typeis not supported.

The Unicode text conversion
operation failed.

The server connection is lost.

The cryptographic operation
failed.

Opening a connection to the
server failed.

Access to a server connection
failed.

The size of the enumeration buffer
exceeds the limit.

The size of the secret buffer
exceeds the limit.

The length of the Secret ID should
be greater than zero.

The protocol data was corrupted
on the wire.

The EP password validation failed,
so access to the secret was
denied.

The schema is not extended to
support SecreStore on the target
tree.

One of the optional service
attributes is not instantiated.

The server has been upgraded, so
the user SecretStore should be
updated.

46 Novell Common Authentication Services Adapter (CASA)

Dec

Hexadecimal

Name

Description

Value Value

-836 OxFFFFFCBC NSSCS_E_MP_PWORD_INVALID The Master password could not be
verified to read or unlock the
secrets.

-837 OxFFFFFCBB NSSCS_E_MP_PWORD_NOT_SET The master password has not
been set on the SecretStore.

-838 OxFFFFFCBA NSSCS_E_MP_PWORD_NOT_ALLOWED The ability to use master
password has been disabled.

-839 NSSCS_E_WRONG_REPLICA_TYPE There’s no writable replica of
eDirectory.

-840 OxFFFFFCB9 NSSCS_E_ATTR_VAL_NOT_FOUND The target attribute is not

OxFFFFFCBS8 instantiated in eDirectory.

-841 OxFFFFFCB7 NSSCS_E_INVALID_PARAM The API parameter is not
initialized.

-842 OxFFFFFCB6 NSSCS_E_NEED_SECURE_CHANNEL The connection to the SecretStore
needs to be over SSL.

-843 OxFFFFFCB5 NSSCS_E_CONFIG_NOT_SUPPORTED No server to support the given
override configuration is found.

-844 OxFFFFFCB4 NSSCS_E_STORE_NOT_LOCKED The attempt to unlock SecretStore
failed because the store is not
locked.

-845 OxFFFFFCB3 NSSCS_E_TIME_OUT_OF_SYNC The eDirectory replica on the
server that holds SecretStore is
out of sync with the replica ring.

-846 OxFFFFFCB2 NSSCS _E_VERSION_MISMATCH The versions of the client dlls don't
match.

-847 OxFFFFFCB1 NSSCS E _SECRET BUFF_TOO_SHORT The buffer supplied for the secret
is too short (minimum
NSSCS_MIN_IDLIST_BUF_LEN).

-848 OxFFFFFCBO NSSCS_E_SH_SECRET_FAILURE The shared secret’s processing
and operations failed.

-849 OxFFFFFCAF NSSCS_E_PARSER_FAILURE The shared secret’s parser
operations failed.

-850 OxFFFFFCAE NSSCS_E_UTF8_OP_FAILURE The Utf8 string operations failed.

-851 OxFFFFFCAD NSSCS E CTX LESS CN_NOT_UNIQUE The contextless name for LDAP
bind does not resolve to a unique
DN.

-852 OxFFFFFCAC NSSCS_E_UNSUPPORTED_BIND_CRED The login credential for advanced
bind is not supported.

-853 OxFFFFFCAB NSSCS E_CERTIFICATE_NOT_FOUND The LDAP root certificate required
for bind operations was not found.

-854 OxFFFFFCAA NSSCS_E_CANT_OPEN_CLIENT_CACHE ***

CASA Error Codes

47

Dec Hexadecimal

Name
Value Value

Description

-855 OxFFFFFCA9 NSSCS_E_WRONG_SH_SEC_TYPE

-888 OxFFFFFC88 NSSCS_E_NOT_IMPLEMENTED

-899 OxFFFFFC7D NSSCS_E_BETA_EXPIRED

The shared secret tag is
unrecognized or unknown.

The feature is not implemented
yet.

The product's BETA life has
expired. Purchase an official
release copy.

48 Novell Common Authentication Services Adapter (CASA)

Revision History

This section outlines all the changes that have been made to the Common Authentication Service
Adapter (CASA) documentation (in reverse chronological order).

May 22, 2005 Updated CASA documentation and deliverables from version 1.5 to 1.6.

November 18, 2005 * Updated CASA documentation and deliverables from version 1.0 to 1.5.

» Documented new CASA Manager functionality in Chapter 4, “Administering
CASA Manager,” on page 21.

October 5, 2005 Transitioned to revised Novell® documentation standards.
June 15, 2005 Revised documentation to coincide with Version 1.0 software updates.
June 3, 2005 Posted as beta documentation.

Revision History

49

	Novell Common Authentication Services Adapter (CASA)
	About This Guide
	1 Getting Started
	1.1 Credentials
	1.2 Sharing Credentials

	2 CASA on Linux
	2.1 Linux Components
	2.1.1 CASA Identity Development Kit
	2.1.2 miCASAd
	2.1.3 Login Credential Capture Module
	2.1.4 CASA Linux Packages
	2.1.5 Linux Directories and Files

	2.2 Using CASA with Linux
	2.2.1 Linux Installation
	2.2.2 Starting, Stopping, and Restarting CASA on Linux
	2.2.3 Starting CASA Manager
	2.2.4 Linux Uninstallation

	3 CASA on Windows
	3.1 Windows Components
	3.1.1 Windows Directories and Files

	3.2 Using CASA with Windows
	3.2.1 Installing CASA on Windows
	3.2.2 Starting CASA on Windows
	3.2.3 Accessing CASA Manager
	3.2.4 Uninstalling CASA on Windows

	4 Administering CASA Manager
	4.1 CASA Manager GUI Components
	4.1.1 Credential Store Tab
	4.1.2 Secret-ID Window
	4.1.3 Native Information Window

	4.2 CASA Manager Functionality
	4.2.1 Creating Secrets
	4.2.2 Refreshing Credential Stores
	4.2.3 Locking Secrets
	4.2.4 Destroying Secrets
	4.2.5 Viewing Secret Values
	4.2.6 Linking Secrets
	4.2.7 Editing Secrets
	4.2.8 Deleting Secrets

	4.3 Editing CASA Manager Options
	4.3.1 Setting CASA Preferences
	4.3.2 Setting Persistent Storage

	5 Functions
	miCASAGetCredential
	miCASARemoveCredential
	miCASASetCredential

	6 Structures
	SSCS_BASIC_CREDENTIAL
	SSCS_SECRET_ID_T

	A CASA Error Codes
	B Revision History

