wolfssl/tests/api.c
2018-02-19 12:29:49 +01:00

11441 lines
324 KiB
C

/* api.c API unit tests
*
* Copyright (C) 2006-2017 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*----------------------------------------------------------------------------*
| Includes
*----------------------------------------------------------------------------*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if defined(WOLFSSL_STATIC_MEMORY)
#include <wolfssl/wolfcrypt/memory.h>
#endif /* WOLFSSL_STATIC_MEMORY */
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h> /* wc_ecc_fp_free */
#endif
#ifndef NO_ASN
#include <wolfssl/wolfcrypt/asn_public.h>
#endif
#include <wolfssl/error-ssl.h>
#include <stdlib.h>
#include <wolfssl/ssl.h> /* compatibility layer */
#include <wolfssl/test.h>
#include <tests/unit.h>
#ifndef NO_MD5
#include <wolfssl/wolfcrypt/md5.h>
#endif
#ifndef NO_SHA
#include <wolfssl/wolfcrypt/sha.h>
#endif
#ifndef NO_SHA256
#include <wolfssl/wolfcrypt/sha256.h>
#endif
#ifdef WOLFSSL_SHA512
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#ifdef WOLFSSL_SHA384
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#ifndef NO_AES
#include <wolfssl/wolfcrypt/aes.h>
#ifdef HAVE_AES_DECRYPT
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#endif
#endif
#ifdef WOLFSSL_RIPEMD
#include <wolfssl/wolfcrypt/ripemd.h>
#endif
#ifdef HAVE_IDEA
#include <wolfssl/wolfcrypt/idea.h>
#endif
#ifndef NO_DES3
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#endif
#ifndef NO_HMAC
#include <wolfssl/wolfcrypt/hmac.h>
#endif
#ifdef HAVE_CHACHA
#include <wolfssl/wolfcrypt/chacha.h>
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
#include <wolfssl/wolfcrypt/chacha20_poly1305.h>
#endif
#ifdef HAVE_CAMELLIA
#include <wolfssl/wolfcrypt/camellia.h>
#endif
#ifndef NO_RABBIT
#include <wolfssl/wolfcrypt/rabbit.h>
#endif
#ifndef NO_RC4
#include <wolfssl/wolfcrypt/arc4.h>
#endif
#ifndef NO_RSA
#include <wolfssl/wolfcrypt/rsa.h>
#include <wolfssl/wolfcrypt/hash.h>
#define FOURK_BUF 4096
#define GEN_BUF 294
#ifndef USER_CRYPTO_ERROR
#define USER_CRYPTO_ERROR -101 /* error returned by IPP lib. */
#endif
#endif
#ifdef HAVE_AESCCM
#include <wolfssl/wolfcrypt/aes.h>
#endif
#ifdef HAVE_HC128
#include <wolfssl/wolfcrypt/hc128.h>
#endif
#ifndef NO_DSA
#include <wolfssl/wolfcrypt/dsa.h>
#ifndef ONEK_BUF
#define ONEK_BUF 1024
#endif
#ifndef TWOK_BUF
#define TWOK_BUF 2048
#endif
#ifndef FOURK_BUF
#define FOURK_BUF 4096
#endif
#ifndef DSA_SIG_SIZE
#define DSA_SIG_SIZE 40
#endif
#endif
#ifdef OPENSSL_EXTRA
#include <wolfssl/openssl/ssl.h>
#include <wolfssl/openssl/pkcs12.h>
#include <wolfssl/openssl/evp.h>
#include <wolfssl/openssl/dh.h>
#include <wolfssl/openssl/bn.h>
#include <wolfssl/openssl/pem.h>
#include <wolfssl/openssl/ec.h>
#ifndef NO_DES3
#include <wolfssl/openssl/des.h>
#endif
#ifndef NO_ASN
/* for ASN_COMMON_NAME DN_tags enum */
#include <wolfssl/wolfcrypt/asn.h>
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(RC_NO_RNG)
#include <wolfssl/wolfcrypt/srp.h>
#endif
/* enable testing buffer load functions */
#ifndef USE_CERT_BUFFERS_2048
#define USE_CERT_BUFFERS_2048
#endif
#include <wolfssl/certs_test.h>
typedef struct testVector {
const char* input;
const char* output;
size_t inLen;
size_t outLen;
} testVector;
/*----------------------------------------------------------------------------*
| Constants
*----------------------------------------------------------------------------*/
#define TEST_SUCCESS (1)
#define TEST_FAIL (0)
#define testingFmt " %s:"
#define resultFmt " %s\n"
static const char* passed = "passed";
static const char* failed = "failed";
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS)
static const char* bogusFile =
#ifdef _WIN32
"NUL"
#else
"/dev/null"
#endif
;
#endif
enum {
TESTING_RSA = 1,
TESTING_ECC = 2
};
/*----------------------------------------------------------------------------*
| Setup
*----------------------------------------------------------------------------*/
static int test_wolfSSL_Init(void)
{
int result;
printf(testingFmt, "wolfSSL_Init()");
result = wolfSSL_Init();
printf(resultFmt, result == WOLFSSL_SUCCESS ? passed : failed);
return result;
}
static int test_wolfSSL_Cleanup(void)
{
int result;
printf(testingFmt, "wolfSSL_Cleanup()");
result = wolfSSL_Cleanup();
printf(resultFmt, result == WOLFSSL_SUCCESS ? passed : failed);
return result;
}
/* Initialize the wolfCrypt state.
* POST: 0 success.
*/
static int test_wolfCrypt_Init(void)
{
int result;
printf(testingFmt, "wolfCrypt_Init()");
result = wolfCrypt_Init();
printf(resultFmt, result == 0 ? passed : failed);
return result;
} /* END test_wolfCrypt_Init */
/*----------------------------------------------------------------------------*
| Method Allocators
*----------------------------------------------------------------------------*/
static void test_wolfSSL_Method_Allocators(void)
{
#define TEST_METHOD_ALLOCATOR(allocator, condition) \
do { \
WOLFSSL_METHOD *method; \
condition(method = allocator()); \
XFREE(method, 0, DYNAMIC_TYPE_METHOD); \
} while(0)
#define TEST_VALID_METHOD_ALLOCATOR(a) \
TEST_METHOD_ALLOCATOR(a, AssertNotNull)
#define TEST_INVALID_METHOD_ALLOCATOR(a) \
TEST_METHOD_ALLOCATOR(a, AssertNull)
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_SSLV3
TEST_VALID_METHOD_ALLOCATOR(wolfSSLv3_server_method);
TEST_VALID_METHOD_ALLOCATOR(wolfSSLv3_client_method);
#endif
#ifdef WOLFSL_ALLOW_TLSV10
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_server_method);
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_client_method);
#endif
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_1_server_method);
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_1_client_method);
#endif
#ifndef NO_WOLFSSL_SERVER
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_2_server_method);
#endif
#ifndef NO_WOLFSSL_CLIENT
TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_2_client_method);
TEST_VALID_METHOD_ALLOCATOR(wolfSSLv23_client_method);
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_server_method);
TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_client_method);
#endif
TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_2_server_method);
TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_2_client_method);
#endif
#ifdef OPENSSL_EXTRA
TEST_INVALID_METHOD_ALLOCATOR(wolfSSLv2_server_method);
TEST_INVALID_METHOD_ALLOCATOR(wolfSSLv2_client_method);
#endif
}
/*----------------------------------------------------------------------------*
| Context
*----------------------------------------------------------------------------*/
#ifndef NO_WOLFSSL_SERVER
static void test_wolfSSL_CTX_new(WOLFSSL_METHOD *method)
{
WOLFSSL_CTX *ctx;
AssertNull(ctx = wolfSSL_CTX_new(NULL));
AssertNotNull(method);
AssertNotNull(ctx = wolfSSL_CTX_new(method));
wolfSSL_CTX_free(ctx);
}
#endif
static void test_wolfSSL_CTX_use_certificate_file(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX *ctx;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
/* invalid context */
AssertFalse(wolfSSL_CTX_use_certificate_file(NULL, svrCertFile,
WOLFSSL_FILETYPE_PEM));
/* invalid cert file */
AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, bogusFile,
WOLFSSL_FILETYPE_PEM));
/* invalid cert type */
AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, 9999));
#ifdef NO_RSA
/* rsa needed */
AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile,WOLFSSL_FILETYPE_PEM));
#else
/* success */
AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
#endif
wolfSSL_CTX_free(ctx);
#endif
}
/* Test function for wolfSSL_CTX_use_certificate_buffer. Load cert into
* context using buffer.
* PRE: NO_CERTS not defined; USE_CERT_BUFFERS_2048 defined; compile with
* --enable-testcert flag.
*/
static int test_wolfSSL_CTX_use_certificate_buffer(void)
{
#if !defined(NO_CERTS) && defined(USE_CERT_BUFFERS_2048) && \
!defined(NO_RSA) && !defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX* ctx;
int ret;
printf(testingFmt, "wolfSSL_CTX_use_certificate_buffer()");
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
ret = wolfSSL_CTX_use_certificate_buffer(ctx, server_cert_der_2048,
sizeof_server_cert_der_2048, WOLFSSL_FILETYPE_ASN1);
printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed);
wolfSSL_CTX_free(ctx);
return ret;
#else
return WOLFSSL_SUCCESS;
#endif
} /*END test_wolfSSL_CTX_use_certificate_buffer*/
static void test_wolfSSL_CTX_use_PrivateKey_file(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX *ctx;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
/* invalid context */
AssertFalse(wolfSSL_CTX_use_PrivateKey_file(NULL, svrKeyFile,
WOLFSSL_FILETYPE_PEM));
/* invalid key file */
AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, bogusFile,
WOLFSSL_FILETYPE_PEM));
/* invalid key type */
AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, 9999));
/* success */
#ifdef NO_RSA
/* rsa needed */
AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
#else
/* success */
AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
#endif
wolfSSL_CTX_free(ctx);
#endif
}
/* test both file and buffer versions along with unloading trusted peer certs */
static void test_wolfSSL_CTX_trust_peer_cert(void)
{
#if !defined(NO_CERTS) && defined(WOLFSSL_TRUST_PEER_CERT) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
#if !defined(NO_FILESYSTEM)
/* invalid file */
assert(wolfSSL_CTX_trust_peer_cert(ctx, NULL,
WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS);
assert(wolfSSL_CTX_trust_peer_cert(ctx, bogusFile,
WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS);
assert(wolfSSL_CTX_trust_peer_cert(ctx, cliCertFile,
WOLFSSL_FILETYPE_ASN1) != WOLFSSL_SUCCESS);
/* success */
assert(wolfSSL_CTX_trust_peer_cert(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM)
== WOLFSSL_SUCCESS);
/* unload cert */
assert(wolfSSL_CTX_Unload_trust_peers(NULL) != WOLFSSL_SUCCESS);
assert(wolfSSL_CTX_Unload_trust_peers(ctx) == WOLFSSL_SUCCESS);
#endif
/* Test of loading certs from buffers */
/* invalid buffer */
assert(wolfSSL_CTX_trust_peer_buffer(ctx, NULL, -1,
WOLFSSL_FILETYPE_ASN1) != WOLFSSL_SUCCESS);
/* success */
#ifdef USE_CERT_BUFFERS_1024
assert(wolfSSL_CTX_trust_peer_buffer(ctx, client_cert_der_1024,
sizeof_client_cert_der_1024, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS);
#endif
#ifdef USE_CERT_BUFFERS_2048
assert(wolfSSL_CTX_trust_peer_buffer(ctx, client_cert_der_2048,
sizeof_client_cert_der_2048, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS);
#endif
/* unload cert */
assert(wolfSSL_CTX_Unload_trust_peers(NULL) != WOLFSSL_SUCCESS);
assert(wolfSSL_CTX_Unload_trust_peers(ctx) == WOLFSSL_SUCCESS);
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_CTX_load_verify_locations(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx;
WOLFSSL_CERT_MANAGER* cm;
#ifdef PERSIST_CERT_CACHE
int cacheSz;
#endif
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
/* invalid context */
AssertFalse(wolfSSL_CTX_load_verify_locations(NULL, caCertFile, 0));
/* invalid ca file */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, NULL, 0));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, bogusFile, 0));
#ifndef WOLFSSL_TIRTOS
/* invalid path */
/* not working... investigate! */
/* AssertFalse(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, bogusFile)); */
#endif
/* load ca cert */
AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0));
#ifdef PERSIST_CERT_CACHE
/* Get cert cache size */
cacheSz = wolfSSL_CTX_get_cert_cache_memsize(ctx);
#endif
/* Test unloading CA's */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UnloadCAs(ctx));
#ifdef PERSIST_CERT_CACHE
/* Verify no certs (result is less than cacheSz) */
AssertIntGT(cacheSz, wolfSSL_CTX_get_cert_cache_memsize(ctx));
#endif
/* load ca cert again */
AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0));
/* Test getting CERT_MANAGER */
AssertNotNull(cm = wolfSSL_CTX_GetCertManager(ctx));
/* Test unloading CA's using CM */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CertManagerUnloadCAs(cm));
#ifdef PERSIST_CERT_CACHE
/* Verify no certs (result is less than cacheSz) */
AssertIntGT(cacheSz, wolfSSL_CTX_get_cert_cache_memsize(ctx));
#endif
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_CTX_SetTmpDH_file(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_DH) && \
!defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
/* invalid context */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(NULL,
dhParamFile, WOLFSSL_FILETYPE_PEM));
/* invalid dhParamFile file */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx,
NULL, WOLFSSL_FILETYPE_PEM));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx,
bogusFile, WOLFSSL_FILETYPE_PEM));
/* success */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx, dhParamFile,
WOLFSSL_FILETYPE_PEM));
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_CTX_SetTmpDH_buffer(void)
{
#if !defined(NO_CERTS) && !defined(NO_DH) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
/* invalid context */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(NULL, dh_key_der_2048,
sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1));
/* invalid dhParamFile file */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(NULL, NULL,
0, WOLFSSL_FILETYPE_ASN1));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(ctx, dsa_key_der_2048,
sizeof_dsa_key_der_2048, WOLFSSL_FILETYPE_ASN1));
/* success */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(ctx, dh_key_der_2048,
sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1));
wolfSSL_CTX_free(ctx);
#endif
}
/*----------------------------------------------------------------------------*
| SSL
*----------------------------------------------------------------------------*/
static void test_server_wolfSSL_new(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \
!defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX *ctx;
WOLFSSL_CTX *ctx_nocert;
WOLFSSL *ssl;
AssertNotNull(ctx_nocert = wolfSSL_CTX_new(wolfSSLv23_server_method()));
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
/* invalid context */
AssertNull(ssl = wolfSSL_new(NULL));
#ifndef WOLFSSL_SESSION_EXPORT
AssertNull(ssl = wolfSSL_new(ctx_nocert));
#endif
/* success */
AssertNotNull(ssl = wolfSSL_new(ctx));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
wolfSSL_CTX_free(ctx_nocert);
#endif
}
static void test_client_wolfSSL_new(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \
!defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx;
WOLFSSL_CTX *ctx_nocert;
WOLFSSL *ssl;
AssertNotNull(ctx_nocert = wolfSSL_CTX_new(wolfSSLv23_client_method()));
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0));
/* invalid context */
AssertNull(ssl = wolfSSL_new(NULL));
/* success */
AssertNotNull(ssl = wolfSSL_new(ctx_nocert));
wolfSSL_free(ssl);
/* success */
AssertNotNull(ssl = wolfSSL_new(ctx));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
wolfSSL_CTX_free(ctx_nocert);
#endif
}
static void test_wolfSSL_SetTmpDH_file(void)
{
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_DH) && \
!defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX *ctx;
WOLFSSL *ssl;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
#ifndef NO_RSA
AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile,
WOLFSSL_FILETYPE_PEM));
AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile,
WOLFSSL_FILETYPE_PEM));
#else
AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, eccCertFile,
WOLFSSL_FILETYPE_PEM));
AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, eccKeyFile,
WOLFSSL_FILETYPE_PEM));
#endif
AssertNotNull(ssl = wolfSSL_new(ctx));
/* invalid ssl */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(NULL,
dhParamFile, WOLFSSL_FILETYPE_PEM));
/* invalid dhParamFile file */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl,
NULL, WOLFSSL_FILETYPE_PEM));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl,
bogusFile, WOLFSSL_FILETYPE_PEM));
/* success */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl, dhParamFile,
WOLFSSL_FILETYPE_PEM));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_SetTmpDH_buffer(void)
{
#if !defined(NO_CERTS) && !defined(NO_DH) && !defined(NO_WOLFSSL_SERVER)
WOLFSSL_CTX *ctx;
WOLFSSL *ssl;
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(wolfSSL_CTX_use_certificate_buffer(ctx, server_cert_der_2048,
sizeof_server_cert_der_2048, WOLFSSL_FILETYPE_ASN1));
AssertTrue(wolfSSL_CTX_use_PrivateKey_buffer(ctx, server_key_der_2048,
sizeof_server_key_der_2048, WOLFSSL_FILETYPE_ASN1));
AssertNotNull(ssl = wolfSSL_new(ctx));
/* invalid ssl */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(NULL, dh_key_der_2048,
sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1));
/* invalid dhParamFile file */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(NULL, NULL,
0, WOLFSSL_FILETYPE_ASN1));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(ssl, dsa_key_der_2048,
sizeof_dsa_key_der_2048, WOLFSSL_FILETYPE_ASN1));
/* success */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(ssl, dh_key_der_2048,
sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
/* Test function for wolfSSL_SetMinVersion. Sets the minimum downgrade version
* allowed.
* POST: return 1 on success.
*/
static int test_wolfSSL_SetMinVersion(void)
{
int failFlag = WOLFSSL_SUCCESS;
#ifndef NO_WOLFSSL_CLIENT
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
int itr;
#ifndef NO_OLD_TLS
const int versions[] = { WOLFSSL_TLSV1, WOLFSSL_TLSV1_1,
WOLFSSL_TLSV1_2};
#else
const int versions[] = { WOLFSSL_TLSV1_2 };
#endif
AssertTrue(wolfSSL_Init());
ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method());
ssl = wolfSSL_new(ctx);
printf(testingFmt, "wolfSSL_SetMinVersion()");
for (itr = 0; itr < (int)(sizeof(versions)/sizeof(int)); itr++){
if(wolfSSL_SetMinVersion(ssl, *(versions + itr)) != WOLFSSL_SUCCESS){
failFlag = WOLFSSL_FAILURE;
}
}
printf(resultFmt, failFlag == WOLFSSL_SUCCESS ? passed : failed);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
AssertTrue(wolfSSL_Cleanup());
#endif
return failFlag;
} /* END test_wolfSSL_SetMinVersion */
/*----------------------------------------------------------------------------*
| EC
*----------------------------------------------------------------------------*/
/* Test function for EC_POINT_new, EC_POINT_mul, EC_POINT_free,
EC_GROUP_new_by_curve_name
*/
# if defined(OPENSSL_EXTRA)
static void test_wolfSSL_EC(void)
{
#ifdef HAVE_ECC
BN_CTX *ctx;
EC_GROUP *group;
EC_POINT *Gxy, *new_point;
BIGNUM *k = NULL, *Gx = NULL, *Gy = NULL, *Gz = NULL;
BIGNUM *X, *Y;
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL)
char* hexStr;
#endif
const char* kTest = "F4F8338AFCC562C5C3F3E1E46A7EFECD17AF381913FF7A96314EA47055EA0FD0";
/* NISTP256R1 Gx/Gy */
const char* kGx = "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296";
const char* kGy = "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5";
AssertNotNull(ctx = BN_CTX_new());
AssertNotNull(group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
AssertNotNull(Gxy = EC_POINT_new(group));
AssertNotNull(new_point = EC_POINT_new(group));
AssertNotNull(X = BN_new());
AssertNotNull(Y = BN_new());
/* load test values */
AssertIntEQ(BN_hex2bn(&k, kTest), WOLFSSL_SUCCESS);
AssertIntEQ(BN_hex2bn(&Gx, kGx), WOLFSSL_SUCCESS);
AssertIntEQ(BN_hex2bn(&Gy, kGy), WOLFSSL_SUCCESS);
AssertIntEQ(BN_hex2bn(&Gz, "1"), WOLFSSL_SUCCESS);
/* populate coordinates for input point */
Gxy->X = Gx;
Gxy->Y = Gy;
Gxy->Z = Gz;
/* perform point multiplication */
AssertIntEQ(EC_POINT_mul(group, new_point, NULL, Gxy, k, ctx), WOLFSSL_SUCCESS);
/* check if point X coordinate is zero */
AssertIntEQ(BN_is_zero(new_point->X), WOLFSSL_FAILURE);
/* extract the coordinates from point */
AssertIntEQ(EC_POINT_get_affine_coordinates_GFp(group, new_point, X, Y, ctx), WOLFSSL_SUCCESS);
/* check if point X coordinate is zero */
AssertIntEQ(BN_is_zero(X), WOLFSSL_FAILURE);
/* check bx2hex */
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL)
hexStr = BN_bn2hex(k);
AssertStrEQ(hexStr, kTest);
XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC);
hexStr = BN_bn2hex(Gx);
AssertStrEQ(hexStr, kGx);
XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC);
hexStr = BN_bn2hex(Gy);
AssertStrEQ(hexStr, kGy);
XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC);
#endif
/* cleanup */
BN_free(X);
BN_free(Y);
BN_free(k);
EC_POINT_free(new_point);
EC_POINT_free(Gxy);
EC_GROUP_free(group);
BN_CTX_free(ctx);
#endif /* HAVE_ECC */
}
#endif
#include <wolfssl/openssl/pem.h>
/*----------------------------------------------------------------------------*
| EVP
*----------------------------------------------------------------------------*/
/* Test function for wolfSSL_EVP_get_cipherbynid.
*/
# if defined(OPENSSL_EXTRA)
static void test_wolfSSL_EVP_get_cipherbynid(void)
{
#ifndef NO_AES
AssertNotNull(strcmp("EVP_AES_128_CBC", wolfSSL_EVP_get_cipherbynid(419)));
AssertNotNull(strcmp("EVP_AES_192_CBC", wolfSSL_EVP_get_cipherbynid(423)));
AssertNotNull(strcmp("EVP_AES_256_CBC", wolfSSL_EVP_get_cipherbynid(427)));
AssertNotNull(strcmp("EVP_AES_128_CTR", wolfSSL_EVP_get_cipherbynid(904)));
AssertNotNull(strcmp("EVP_AES_192_CTR", wolfSSL_EVP_get_cipherbynid(905)));
AssertNotNull(strcmp("EVP_AES_256_CTR", wolfSSL_EVP_get_cipherbynid(906)));
AssertNotNull(strcmp("EVP_AES_128_ECB", wolfSSL_EVP_get_cipherbynid(418)));
AssertNotNull(strcmp("EVP_AES_192_ECB", wolfSSL_EVP_get_cipherbynid(422)));
AssertNotNull(strcmp("EVP_AES_256_ECB", wolfSSL_EVP_get_cipherbynid(426)));
#endif
#ifndef NO_DES3
AssertNotNull(strcmp("EVP_DES_CBC", wolfSSL_EVP_get_cipherbynid(31)));
#ifdef WOLFSSL_DES_ECB
AssertNotNull(strcmp("EVP_DES_ECB", wolfSSL_EVP_get_cipherbynid(29)));
#endif
AssertNotNull(strcmp("EVP_DES_EDE3_CBC", wolfSSL_EVP_get_cipherbynid(44)));
#ifdef WOLFSSL_DES_ECB
AssertNotNull(strcmp("EVP_DES_EDE3_ECB", wolfSSL_EVP_get_cipherbynid(33)));
#endif
#endif /*NO_DES3*/
#ifdef HAVE_IDEA
AssertNotNull(strcmp("EVP_IDEA_CBC", wolfSSL_EVP_get_cipherbynid(34)));
#endif
/* test for nid is out of range */
AssertNull(wolfSSL_EVP_get_cipherbynid(1));
}
#endif
/*----------------------------------------------------------------------------*
| IO
*----------------------------------------------------------------------------*/
#if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && \
!defined(NO_RSA) && !defined(SINGLE_THREADED) && \
!defined(NO_WOLFSSL_SERVER) && !defined(NO_WOLFSSL_CLIENT)
#define HAVE_IO_TESTS_DEPENDENCIES
#endif
/* helper functions */
#ifdef HAVE_IO_TESTS_DEPENDENCIES
#ifdef WOLFSSL_SESSION_EXPORT
/* set up function for sending session information */
static int test_export(WOLFSSL* inSsl, byte* buf, word32 sz, void* userCtx)
{
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
AssertNotNull(inSsl);
AssertNotNull(buf);
AssertIntNE(0, sz);
/* Set ctx to DTLS 1.2 */
ctx = wolfSSL_CTX_new(wolfDTLSv1_2_server_method());
AssertNotNull(ctx);
ssl = wolfSSL_new(ctx);
AssertNotNull(ssl);
AssertIntGE(wolfSSL_dtls_import(ssl, buf, sz), 0);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
(void)userCtx;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_WOLFSSL_SERVER
static THREAD_RETURN WOLFSSL_THREAD test_server_nofail(void* args)
{
SOCKET_T sockfd = 0;
SOCKET_T clientfd = 0;
word16 port;
WOLFSSL_METHOD* method = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;
char msg[] = "I hear you fa shizzle!";
char input[1024];
int idx;
int ret, err = 0;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
((func_args*)args)->return_code = TEST_FAIL;
if (((func_args*)args)->callbacks != NULL &&
((func_args*)args)->callbacks->method != NULL) {
method = ((func_args*)args)->callbacks->method();
}
else {
method = wolfSSLv23_server_method();
}
ctx = wolfSSL_CTX_new(method);
#if defined(USE_WINDOWS_API)
port = ((func_args*)args)->signal->port;
#elif defined(NO_MAIN_DRIVER) && !defined(WOLFSSL_SNIFFER) && \
!defined(WOLFSSL_MDK_SHELL) && !defined(WOLFSSL_TIRTOS)
/* Let tcp_listen assign port */
port = 0;
#else
/* Use default port */
port = wolfSSLPort;
#endif
wolfSSL_CTX_set_verify(ctx,
WOLFSSL_VERIFY_PEER | WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0);
#ifdef OPENSSL_EXTRA
wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack);
#endif
if (wolfSSL_CTX_load_verify_locations(ctx, cliCertFile, 0) != WOLFSSL_SUCCESS)
{
/*err_sys("can't load ca file, Please run from wolfSSL home dir");*/
goto done;
}
if (wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)
!= WOLFSSL_SUCCESS)
{
/*err_sys("can't load server cert chain file, "
"Please run from wolfSSL home dir");*/
goto done;
}
if (wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)
!= WOLFSSL_SUCCESS)
{
/*err_sys("can't load server key file, "
"Please run from wolfSSL home dir");*/
goto done;
}
ssl = wolfSSL_new(ctx);
tcp_accept(&sockfd, &clientfd, (func_args*)args, port, 0, 0, 0, 0, 1);
CloseSocket(sockfd);
if (wolfSSL_set_fd(ssl, clientfd) != WOLFSSL_SUCCESS) {
/*err_sys("SSL_set_fd failed");*/
goto done;
}
#ifdef NO_PSK
#if !defined(NO_FILESYSTEM) && !defined(NO_DH)
wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM);
#elif !defined(NO_DH)
SetDH(ssl); /* will repick suites with DHE, higher priority than PSK */
#endif
#endif
do {
#ifdef WOLFSSL_ASYNC_CRYPT
if (err == WC_PENDING_E) {
ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW);
if (ret < 0) { break; } else if (ret == 0) { continue; }
}
#endif
err = 0; /* Reset error */
ret = wolfSSL_accept(ssl);
if (ret != WOLFSSL_SUCCESS) {
err = wolfSSL_get_error(ssl, 0);
}
} while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E);
if (ret != WOLFSSL_SUCCESS) {
char buffer[WOLFSSL_MAX_ERROR_SZ];
printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buffer));
/*err_sys("SSL_accept failed");*/
goto done;
}
idx = wolfSSL_read(ssl, input, sizeof(input)-1);
if (idx > 0) {
input[idx] = 0;
printf("Client message: %s\n", input);
}
if (wolfSSL_write(ssl, msg, sizeof(msg)) != sizeof(msg))
{
/*err_sys("SSL_write failed");*/
#ifdef WOLFSSL_TIRTOS
return;
#else
return 0;
#endif
}
#ifdef WOLFSSL_TIRTOS
Task_yield();
#endif
done:
wolfSSL_shutdown(ssl);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
CloseSocket(clientfd);
((func_args*)args)->return_code = TEST_SUCCESS;
#ifdef WOLFSSL_TIRTOS
fdCloseSession(Task_self());
#endif
#if defined(NO_MAIN_DRIVER) && defined(HAVE_ECC) && defined(FP_ECC) \
&& defined(HAVE_THREAD_LS)
wc_ecc_fp_free(); /* free per thread cache */
#endif
#ifndef WOLFSSL_TIRTOS
return 0;
#endif
}
#endif /* !NO_WOLFSSL_SERVER */
static void test_client_nofail(void* args)
{
SOCKET_T sockfd = 0;
WOLFSSL_METHOD* method = 0;
WOLFSSL_CTX* ctx = 0;
WOLFSSL* ssl = 0;
char msg[64] = "hello wolfssl!";
char reply[1024];
int input;
int msgSz = (int)XSTRLEN(msg);
int ret, err = 0;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
((func_args*)args)->return_code = TEST_FAIL;
if (((func_args*)args)->callbacks != NULL &&
((func_args*)args)->callbacks->method != NULL) {
method = ((func_args*)args)->callbacks->method();
}
else {
method = wolfSSLv23_client_method();
}
ctx = wolfSSL_CTX_new(method);
#ifdef OPENSSL_EXTRA
wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack);
#endif
if (wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0) != WOLFSSL_SUCCESS)
{
/* err_sys("can't load ca file, Please run from wolfSSL home dir");*/
goto done2;
}
if (wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM)
!= WOLFSSL_SUCCESS)
{
/*err_sys("can't load client cert file, "
"Please run from wolfSSL home dir");*/
goto done2;
}
if (wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, WOLFSSL_FILETYPE_PEM)
!= WOLFSSL_SUCCESS)
{
/*err_sys("can't load client key file, "
"Please run from wolfSSL home dir");*/
goto done2;
}
ssl = wolfSSL_new(ctx);
tcp_connect(&sockfd, wolfSSLIP, ((func_args*)args)->signal->port,
0, 0, ssl);
if (wolfSSL_set_fd(ssl, sockfd) != WOLFSSL_SUCCESS) {
/*err_sys("SSL_set_fd failed");*/
goto done2;
}
do {
#ifdef WOLFSSL_ASYNC_CRYPT
if (err == WC_PENDING_E) {
ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW);
if (ret < 0) { break; } else if (ret == 0) { continue; }
}
#endif
err = 0; /* Reset error */
ret = wolfSSL_connect(ssl);
if (ret != WOLFSSL_SUCCESS) {
err = wolfSSL_get_error(ssl, 0);
}
} while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E);
if (ret != WOLFSSL_SUCCESS) {
char buffer[WOLFSSL_MAX_ERROR_SZ];
printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buffer));
/*err_sys("SSL_connect failed");*/
goto done2;
}
if (wolfSSL_write(ssl, msg, msgSz) != msgSz)
{
/*err_sys("SSL_write failed");*/
goto done2;
}
input = wolfSSL_read(ssl, reply, sizeof(reply)-1);
if (input > 0)
{
reply[input] = 0;
printf("Server response: %s\n", reply);
}
done2:
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
CloseSocket(sockfd);
((func_args*)args)->return_code = TEST_SUCCESS;
#ifdef WOLFSSL_TIRTOS
fdCloseSession(Task_self());
#endif
return;
}
/* SNI / ALPN / session export helper functions */
#if defined(HAVE_SNI) || defined(HAVE_ALPN) || defined(WOLFSSL_SESSION_EXPORT)
static THREAD_RETURN WOLFSSL_THREAD run_wolfssl_server(void* args)
{
callback_functions* callbacks = ((func_args*)args)->callbacks;
WOLFSSL_CTX* ctx = wolfSSL_CTX_new(callbacks->method());
WOLFSSL* ssl = NULL;
SOCKET_T sfd = 0;
SOCKET_T cfd = 0;
word16 port;
char msg[] = "I hear you fa shizzle!";
int len = (int) XSTRLEN(msg);
char input[1024];
int idx;
int ret, err = 0;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
((func_args*)args)->return_code = TEST_FAIL;
#if defined(USE_WINDOWS_API)
port = ((func_args*)args)->signal->port;
#elif defined(NO_MAIN_DRIVER) && !defined(WOLFSSL_SNIFFER) && \
!defined(WOLFSSL_MDK_SHELL) && !defined(WOLFSSL_TIRTOS)
/* Let tcp_listen assign port */
port = 0;
#else
/* Use default port */
port = wolfSSLPort;
#endif
wolfSSL_CTX_set_verify(ctx,
WOLFSSL_VERIFY_PEER | WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0);
#ifdef OPENSSL_EXTRA
wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack);
#endif
#ifdef WOLFSSL_SESSION_EXPORT
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_dtls_set_export(ctx, test_export));
#endif
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, cliCertFile, 0));
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
if (callbacks->ctx_ready)
callbacks->ctx_ready(ctx);
ssl = wolfSSL_new(ctx);
if (wolfSSL_dtls(ssl)) {
SOCKADDR_IN_T cliAddr;
socklen_t cliLen;
cliLen = sizeof(cliAddr);
tcp_accept(&sfd, &cfd, (func_args*)args, port, 0, 1, 0, 0, 0);
idx = (int)recvfrom(sfd, input, sizeof(input), MSG_PEEK,
(struct sockaddr*)&cliAddr, &cliLen);
AssertIntGT(idx, 0);
wolfSSL_dtls_set_peer(ssl, &cliAddr, cliLen);
}
else {
tcp_accept(&sfd, &cfd, (func_args*)args, port, 0, 0, 0, 0, 1);
CloseSocket(sfd);
}
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_set_fd(ssl, cfd));
#ifdef NO_PSK
#if !defined(NO_FILESYSTEM) && !defined(NO_DH)
wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM);
#elif !defined(NO_DH)
SetDH(ssl); /* will repick suites with DHE, higher priority than PSK */
#endif
#endif
if (callbacks->ssl_ready)
callbacks->ssl_ready(ssl);
do {
#ifdef WOLFSSL_ASYNC_CRYPT
if (err == WC_PENDING_E) {
ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW);
if (ret < 0) { break; } else if (ret == 0) { continue; }
}
#endif
err = 0; /* Reset error */
ret = wolfSSL_accept(ssl);
if (ret != WOLFSSL_SUCCESS) {
err = wolfSSL_get_error(ssl, 0);
}
} while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E);
if (ret != WOLFSSL_SUCCESS) {
char buffer[WOLFSSL_MAX_ERROR_SZ];
printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buffer));
/*err_sys("SSL_accept failed");*/
}
else {
if (0 < (idx = wolfSSL_read(ssl, input, sizeof(input)-1))) {
input[idx] = 0;
printf("Client message: %s\n", input);
}
AssertIntEQ(len, wolfSSL_write(ssl, msg, len));
#if defined(WOLFSSL_SESSION_EXPORT) && !defined(HAVE_IO_POOL)
if (wolfSSL_dtls(ssl)) {
byte* import;
word32 sz;
wolfSSL_dtls_export(ssl, NULL, &sz);
import = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
AssertNotNull(import);
idx = wolfSSL_dtls_export(ssl, import, &sz);
AssertIntGE(idx, 0);
AssertIntGE(wolfSSL_dtls_import(ssl, import, idx), 0);
XFREE(import, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
#ifdef WOLFSSL_TIRTOS
Task_yield();
#endif
((func_args*)args)->return_code = TEST_SUCCESS;
}
if (callbacks->on_result)
callbacks->on_result(ssl);
wolfSSL_shutdown(ssl);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
CloseSocket(cfd);
#ifdef WOLFSSL_TIRTOS
fdCloseSession(Task_self());
#endif
#if defined(NO_MAIN_DRIVER) && defined(HAVE_ECC) && defined(FP_ECC) \
&& defined(HAVE_THREAD_LS)
wc_ecc_fp_free(); /* free per thread cache */
#endif
#ifndef WOLFSSL_TIRTOS
return 0;
#endif
}
static void run_wolfssl_client(void* args)
{
callback_functions* callbacks = ((func_args*)args)->callbacks;
WOLFSSL_CTX* ctx = wolfSSL_CTX_new(callbacks->method());
WOLFSSL* ssl = NULL;
SOCKET_T sfd = 0;
char msg[] = "hello wolfssl server!";
int len = (int) XSTRLEN(msg);
char input[1024];
int idx;
int ret, err = 0;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
((func_args*)args)->return_code = TEST_FAIL;
#ifdef OPENSSL_EXTRA
wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack);
#endif
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0));
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM));
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, WOLFSSL_FILETYPE_PEM));
if (callbacks->ctx_ready)
callbacks->ctx_ready(ctx);
ssl = wolfSSL_new(ctx);
if (wolfSSL_dtls(ssl)) {
tcp_connect(&sfd, wolfSSLIP, ((func_args*)args)->signal->port,
1, 0, ssl);
}
else {
tcp_connect(&sfd, wolfSSLIP, ((func_args*)args)->signal->port,
0, 0, ssl);
}
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_set_fd(ssl, sfd));
if (callbacks->ssl_ready)
callbacks->ssl_ready(ssl);
do {
#ifdef WOLFSSL_ASYNC_CRYPT
if (err == WC_PENDING_E) {
ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW);
if (ret < 0) { break; } else if (ret == 0) { continue; }
}
#endif
err = 0; /* Reset error */
ret = wolfSSL_connect(ssl);
if (ret != WOLFSSL_SUCCESS) {
err = wolfSSL_get_error(ssl, 0);
}
} while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E);
if (ret != WOLFSSL_SUCCESS) {
char buffer[WOLFSSL_MAX_ERROR_SZ];
printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buffer));
/*err_sys("SSL_connect failed");*/
}
else {
AssertIntEQ(len, wolfSSL_write(ssl, msg, len));
if (0 < (idx = wolfSSL_read(ssl, input, sizeof(input)-1))) {
input[idx] = 0;
printf("Server response: %s\n", input);
}
((func_args*)args)->return_code = TEST_SUCCESS;
}
if (callbacks->on_result)
callbacks->on_result(ssl);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
CloseSocket(sfd);
#ifdef WOLFSSL_TIRTOS
fdCloseSession(Task_self());
#endif
}
#endif /* defined(HAVE_SNI) || defined(HAVE_ALPN) ||
defined(WOLFSSL_SESSION_EXPORT) */
#endif /* io tests dependencies */
static void test_wolfSSL_read_write(void)
{
#ifdef HAVE_IO_TESTS_DEPENDENCIES
/* The unit testing for read and write shall happen simutaneously, since
* one can't do anything with one without the other. (Except for a failure
* test case.) This function will call all the others that will set up,
* execute, and report their test findings.
*
* Set up the success case first. This function will become the template
* for the other tests. This should eventually be renamed
*
* The success case isn't interesting, how can this fail?
* - Do not give the client context a CA certificate. The connect should
* fail. Do not need server for this?
* - Using NULL for the ssl object on server. Do not need client for this.
* - Using NULL for the ssl object on client. Do not need server for this.
* - Good ssl objects for client and server. Client write() without server
* read().
* - Good ssl objects for client and server. Server write() without client
* read().
* - Forgetting the password callback?
*/
tcp_ready ready;
func_args client_args;
func_args server_args;
THREAD_TYPE serverThread;
XMEMSET(&client_args, 0, sizeof(func_args));
XMEMSET(&server_args, 0, sizeof(func_args));
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
StartTCP();
InitTcpReady(&ready);
#if defined(USE_WINDOWS_API)
/* use RNG to get random port if using windows */
ready.port = GetRandomPort();
#endif
server_args.signal = &ready;
client_args.signal = &ready;
start_thread(test_server_nofail, &server_args, &serverThread);
wait_tcp_ready(&server_args);
test_client_nofail(&client_args);
join_thread(serverThread);
AssertTrue(client_args.return_code);
AssertTrue(server_args.return_code);
FreeTcpReady(&ready);
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
#endif
}
#if defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \
defined(WOLFSSL_SESSION_EXPORT)
/* canned export of a session using older version 3 */
static unsigned char version_3[] = {
0xA5, 0xA3, 0x01, 0x87, 0x00, 0x39, 0x00, 0x01,
0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,
0x00, 0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xC0, 0x30, 0x05, 0x09, 0x0A,
0x01, 0x01, 0x00, 0x0D, 0x05, 0xFE, 0xFD, 0x01,
0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00,
0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00,
0x01, 0x00, 0x07, 0x00, 0x00, 0x00, 0x30, 0x00,
0x00, 0x00, 0x10, 0x01, 0x01, 0x00, 0x02, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00,
0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x20, 0x05, 0x12, 0xCF, 0x22,
0xA1, 0x9F, 0x1C, 0x39, 0x1D, 0x31, 0x11, 0x12,
0x1D, 0x11, 0x18, 0x0D, 0x0B, 0xF3, 0xE1, 0x4D,
0xDC, 0xB1, 0xF1, 0x39, 0x98, 0x91, 0x6C, 0x48,
0xE5, 0xED, 0x11, 0x12, 0xA0, 0x00, 0xF2, 0x25,
0x4C, 0x09, 0x26, 0xD1, 0x74, 0xDF, 0x23, 0x40,
0x15, 0x6A, 0x42, 0x2A, 0x26, 0xA5, 0xAC, 0x56,
0xD5, 0x4A, 0x20, 0xB7, 0xE9, 0xEF, 0xEB, 0xAF,
0xA8, 0x1E, 0x23, 0x7C, 0x04, 0xAA, 0xA1, 0x6D,
0x92, 0x79, 0x7B, 0xFA, 0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x0C, 0x79, 0x7B,
0xFA, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xAA, 0xA1, 0x6D, 0x92, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x00, 0x20, 0x00, 0x04, 0x00, 0x10, 0x00, 0x10,
0x08, 0x02, 0x05, 0x08, 0x01, 0x30, 0x28, 0x00,
0x00, 0x0F, 0x00, 0x02, 0x00, 0x09, 0x31, 0x32,
0x37, 0x2E, 0x30, 0x2E, 0x30, 0x2E, 0x31, 0xED,
0x4F
};
#endif /* defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \
defined(WOLFSSL_SESSION_EXPORT) */
static void test_wolfSSL_dtls_export(void)
{
#if defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \
defined(WOLFSSL_SESSION_EXPORT)
tcp_ready ready;
func_args client_args;
func_args server_args;
THREAD_TYPE serverThread;
callback_functions server_cbf;
callback_functions client_cbf;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
InitTcpReady(&ready);
#if defined(USE_WINDOWS_API)
/* use RNG to get random port if using windows */
ready.port = GetRandomPort();
#endif
/* set using dtls */
XMEMSET(&client_args, 0, sizeof(func_args));
XMEMSET(&server_args, 0, sizeof(func_args));
XMEMSET(&server_cbf, 0, sizeof(callback_functions));
XMEMSET(&client_cbf, 0, sizeof(callback_functions));
server_cbf.method = wolfDTLSv1_2_server_method;
client_cbf.method = wolfDTLSv1_2_client_method;
server_args.callbacks = &server_cbf;
client_args.callbacks = &client_cbf;
server_args.signal = &ready;
client_args.signal = &ready;
start_thread(run_wolfssl_server, &server_args, &serverThread);
wait_tcp_ready(&server_args);
run_wolfssl_client(&client_args);
join_thread(serverThread);
AssertTrue(client_args.return_code);
AssertTrue(server_args.return_code);
FreeTcpReady(&ready);
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
{
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
/* Set ctx to DTLS 1.2 */
AssertNotNull(ctx = wolfSSL_CTX_new(wolfDTLSv1_2_server_method()));
AssertNotNull(ssl = wolfSSL_new(ctx));
/* test importing version 3 */
AssertIntGE(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0);
/* test importing bad length and bad version */
version_3[2] += 1;
AssertIntLT(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0);
version_3[2] -= 1; version_3[1] = 0XA0;
AssertIntLT(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
}
printf(testingFmt, "wolfSSL_dtls_export()");
printf(resultFmt, passed);
#endif
}
/*----------------------------------------------------------------------------*
| TLS extensions tests
*----------------------------------------------------------------------------*/
#if defined(HAVE_SNI) || defined(HAVE_ALPN)
/* connection test runner */
static void test_wolfSSL_client_server(callback_functions* client_callbacks,
callback_functions* server_callbacks)
{
#ifdef HAVE_IO_TESTS_DEPENDENCIES
tcp_ready ready;
func_args client_args;
func_args server_args;
THREAD_TYPE serverThread;
XMEMSET(&client_args, 0, sizeof(func_args));
XMEMSET(&server_args, 0, sizeof(func_args));
StartTCP();
client_args.callbacks = client_callbacks;
server_args.callbacks = server_callbacks;
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
/* RUN Server side */
InitTcpReady(&ready);
#if defined(USE_WINDOWS_API)
/* use RNG to get random port if using windows */
ready.port = GetRandomPort();
#endif
server_args.signal = &ready;
client_args.signal = &ready;
start_thread(run_wolfssl_server, &server_args, &serverThread);
wait_tcp_ready(&server_args);
/* RUN Client side */
run_wolfssl_client(&client_args);
join_thread(serverThread);
FreeTcpReady(&ready);
#ifdef WOLFSSL_TIRTOS
fdCloseSession(Task_self());
#endif
#else
(void)client_callbacks;
(void)server_callbacks;
#endif
}
#endif /* defined(HAVE_SNI) || defined(HAVE_ALPN) */
#ifdef HAVE_SNI
static void test_wolfSSL_UseSNI_params(void)
{
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* invalid [ctx|ssl] */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(NULL, 0, "ctx", 3));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( NULL, 0, "ssl", 3));
/* invalid type */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, -1, "ctx", 3));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, -1, "ssl", 3));
/* invalid data */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, 0, NULL, 3));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, 0, NULL, 3));
/* success case */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, 0, "ctx", 3));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, 0, "ssl", 3));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
}
/* BEGIN of connection tests callbacks */
static void use_SNI_at_ctx(WOLFSSL_CTX* ctx)
{
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_UseSNI(ctx, WOLFSSL_SNI_HOST_NAME, "www.wolfssl.com", 15));
}
static void use_SNI_at_ssl(WOLFSSL* ssl)
{
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, "www.wolfssl.com", 15));
}
static void different_SNI_at_ssl(WOLFSSL* ssl)
{
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, "ww2.wolfssl.com", 15));
}
static void use_SNI_WITH_CONTINUE_at_ssl(WOLFSSL* ssl)
{
use_SNI_at_ssl(ssl);
wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_CONTINUE_ON_MISMATCH);
}
static void use_SNI_WITH_FAKE_ANSWER_at_ssl(WOLFSSL* ssl)
{
use_SNI_at_ssl(ssl);
wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_ANSWER_ON_MISMATCH);
}
static void use_MANDATORY_SNI_at_ctx(WOLFSSL_CTX* ctx)
{
use_SNI_at_ctx(ctx);
wolfSSL_CTX_SNI_SetOptions(ctx, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_ABORT_ON_ABSENCE);
}
static void use_MANDATORY_SNI_at_ssl(WOLFSSL* ssl)
{
use_SNI_at_ssl(ssl);
wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_ABORT_ON_ABSENCE);
}
static void use_PSEUDO_MANDATORY_SNI_at_ctx(WOLFSSL_CTX* ctx)
{
use_SNI_at_ctx(ctx);
wolfSSL_CTX_SNI_SetOptions(ctx, WOLFSSL_SNI_HOST_NAME,
WOLFSSL_SNI_ANSWER_ON_MISMATCH | WOLFSSL_SNI_ABORT_ON_ABSENCE);
}
static void verify_UNKNOWN_SNI_on_server(WOLFSSL* ssl)
{
AssertIntEQ(UNKNOWN_SNI_HOST_NAME_E, wolfSSL_get_error(ssl, 0));
}
static void verify_SNI_ABSENT_on_server(WOLFSSL* ssl)
{
AssertIntEQ(SNI_ABSENT_ERROR, wolfSSL_get_error(ssl, 0));
}
static void verify_SNI_no_matching(WOLFSSL* ssl)
{
byte type = WOLFSSL_SNI_HOST_NAME;
char* request = (char*) &type; /* to be overwriten */
AssertIntEQ(WOLFSSL_SNI_NO_MATCH, wolfSSL_SNI_Status(ssl, type));
AssertNotNull(request);
AssertIntEQ(0, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request));
AssertNull(request);
}
static void verify_SNI_real_matching(WOLFSSL* ssl)
{
byte type = WOLFSSL_SNI_HOST_NAME;
char* request = NULL;
AssertIntEQ(WOLFSSL_SNI_REAL_MATCH, wolfSSL_SNI_Status(ssl, type));
AssertIntEQ(15, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request));
AssertNotNull(request);
AssertStrEQ("www.wolfssl.com", request);
}
static void verify_SNI_fake_matching(WOLFSSL* ssl)
{
byte type = WOLFSSL_SNI_HOST_NAME;
char* request = NULL;
AssertIntEQ(WOLFSSL_SNI_FAKE_MATCH, wolfSSL_SNI_Status(ssl, type));
AssertIntEQ(15, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request));
AssertNotNull(request);
AssertStrEQ("ww2.wolfssl.com", request);
}
static void verify_FATAL_ERROR_on_client(WOLFSSL* ssl)
{
AssertIntEQ(FATAL_ERROR, wolfSSL_get_error(ssl, 0));
}
/* END of connection tests callbacks */
static void test_wolfSSL_UseSNI_connection(void)
{
unsigned long i;
callback_functions callbacks[] = {
/* success case at ctx */
{0, use_SNI_at_ctx, 0, 0},
{0, use_SNI_at_ctx, 0, verify_SNI_real_matching},
/* success case at ssl */
{0, 0, use_SNI_at_ssl, verify_SNI_real_matching},
{0, 0, use_SNI_at_ssl, verify_SNI_real_matching},
/* default missmatch behavior */
{0, 0, different_SNI_at_ssl, verify_FATAL_ERROR_on_client},
{0, 0, use_SNI_at_ssl, verify_UNKNOWN_SNI_on_server},
/* continue on missmatch */
{0, 0, different_SNI_at_ssl, 0},
{0, 0, use_SNI_WITH_CONTINUE_at_ssl, verify_SNI_no_matching},
/* fake answer on missmatch */
{0, 0, different_SNI_at_ssl, 0},
{0, 0, use_SNI_WITH_FAKE_ANSWER_at_ssl, verify_SNI_fake_matching},
/* sni abort - success */
{0, use_SNI_at_ctx, 0, 0},
{0, use_MANDATORY_SNI_at_ctx, 0, verify_SNI_real_matching},
/* sni abort - abort when absent (ctx) */
{0, 0, 0, verify_FATAL_ERROR_on_client},
{0, use_MANDATORY_SNI_at_ctx, 0, verify_SNI_ABSENT_on_server},
/* sni abort - abort when absent (ssl) */
{0, 0, 0, verify_FATAL_ERROR_on_client},
{0, 0, use_MANDATORY_SNI_at_ssl, verify_SNI_ABSENT_on_server},
/* sni abort - success when overwriten */
{0, 0, 0, 0},
{0, use_MANDATORY_SNI_at_ctx, use_SNI_at_ssl, verify_SNI_no_matching},
/* sni abort - success when allowing missmatches */
{0, 0, different_SNI_at_ssl, 0},
{0, use_PSEUDO_MANDATORY_SNI_at_ctx, 0, verify_SNI_fake_matching},
};
for (i = 0; i < sizeof(callbacks) / sizeof(callback_functions); i += 2) {
callbacks[i ].method = wolfSSLv23_client_method;
callbacks[i + 1].method = wolfSSLv23_server_method;
test_wolfSSL_client_server(&callbacks[i], &callbacks[i + 1]);
}
}
static void test_wolfSSL_SNI_GetFromBuffer(void)
{
byte buffer[] = { /* www.paypal.com */
0x00, 0x00, 0x00, 0x00, 0xff, 0x01, 0x00, 0x00, 0x60, 0x03, 0x03, 0x5c,
0xc4, 0xb3, 0x8c, 0x87, 0xef, 0xa4, 0x09, 0xe0, 0x02, 0xab, 0x86, 0xca,
0x76, 0xf0, 0x9e, 0x01, 0x65, 0xf6, 0xa6, 0x06, 0x13, 0x1d, 0x0f, 0xa5,
0x79, 0xb0, 0xd4, 0x77, 0x22, 0xeb, 0x1a, 0x00, 0x00, 0x16, 0x00, 0x6b,
0x00, 0x67, 0x00, 0x39, 0x00, 0x33, 0x00, 0x3d, 0x00, 0x3c, 0x00, 0x35,
0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x13, 0x00, 0x11, 0x00, 0x00, 0x0e, 0x77, 0x77, 0x77,
0x2e, 0x70, 0x61, 0x79, 0x70, 0x61, 0x6c, 0x2e, 0x63, 0x6f, 0x6d, 0x00,
0x0d, 0x00, 0x06, 0x00, 0x04, 0x04, 0x01, 0x02, 0x01
};
byte buffer2[] = { /* api.textmate.org */
0x16, 0x03, 0x01, 0x00, 0xc6, 0x01, 0x00, 0x00, 0xc2, 0x03, 0x03, 0x52,
0x8b, 0x7b, 0xca, 0x69, 0xec, 0x97, 0xd5, 0x08, 0x03, 0x50, 0xfe, 0x3b,
0x99, 0xc3, 0x20, 0xce, 0xa5, 0xf6, 0x99, 0xa5, 0x71, 0xf9, 0x57, 0x7f,
0x04, 0x38, 0xf6, 0x11, 0x0b, 0xb8, 0xd3, 0x00, 0x00, 0x5e, 0x00, 0xff,
0xc0, 0x24, 0xc0, 0x23, 0xc0, 0x0a, 0xc0, 0x09, 0xc0, 0x07, 0xc0, 0x08,
0xc0, 0x28, 0xc0, 0x27, 0xc0, 0x14, 0xc0, 0x13, 0xc0, 0x11, 0xc0, 0x12,
0xc0, 0x26, 0xc0, 0x25, 0xc0, 0x2a, 0xc0, 0x29, 0xc0, 0x05, 0xc0, 0x04,
0xc0, 0x02, 0xc0, 0x03, 0xc0, 0x0f, 0xc0, 0x0e, 0xc0, 0x0c, 0xc0, 0x0d,
0x00, 0x3d, 0x00, 0x3c, 0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x35,
0x00, 0x0a, 0x00, 0x67, 0x00, 0x6b, 0x00, 0x33, 0x00, 0x39, 0x00, 0x16,
0x00, 0xaf, 0x00, 0xae, 0x00, 0x8d, 0x00, 0x8c, 0x00, 0x8a, 0x00, 0x8b,
0x00, 0xb1, 0x00, 0xb0, 0x00, 0x2c, 0x00, 0x3b, 0x01, 0x00, 0x00, 0x3b,
0x00, 0x00, 0x00, 0x15, 0x00, 0x13, 0x00, 0x00, 0x10, 0x61, 0x70, 0x69,
0x2e, 0x74, 0x65, 0x78, 0x74, 0x6d, 0x61, 0x74, 0x65, 0x2e, 0x6f, 0x72,
0x67, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x17, 0x00, 0x18, 0x00,
0x19, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x0c, 0x00,
0x0a, 0x05, 0x01, 0x04, 0x01, 0x02, 0x01, 0x04, 0x03, 0x02, 0x03
};
byte buffer3[] = { /* no sni extension */
0x16, 0x03, 0x03, 0x00, 0x4d, 0x01, 0x00, 0x00, 0x49, 0x03, 0x03, 0xea,
0xa1, 0x9f, 0x60, 0xdd, 0x52, 0x12, 0x13, 0xbd, 0x84, 0x34, 0xd5, 0x1c,
0x38, 0x25, 0xa8, 0x97, 0xd2, 0xd5, 0xc6, 0x45, 0xaf, 0x1b, 0x08, 0xe4,
0x1e, 0xbb, 0xdf, 0x9d, 0x39, 0xf0, 0x65, 0x00, 0x00, 0x16, 0x00, 0x6b,
0x00, 0x67, 0x00, 0x39, 0x00, 0x33, 0x00, 0x3d, 0x00, 0x3c, 0x00, 0x35,
0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x0a,
0x00, 0x0d, 0x00, 0x06, 0x00, 0x04, 0x04, 0x01, 0x02, 0x01
};
byte buffer4[] = { /* last extension has zero size */
0x16, 0x03, 0x01, 0x00, 0xba, 0x01, 0x00, 0x00,
0xb6, 0x03, 0x03, 0x83, 0xa3, 0xe6, 0xdc, 0x16, 0xa1, 0x43, 0xe9, 0x45,
0x15, 0xbd, 0x64, 0xa9, 0xb6, 0x07, 0xb4, 0x50, 0xc6, 0xdd, 0xff, 0xc2,
0xd3, 0x0d, 0x4f, 0x36, 0xb4, 0x41, 0x51, 0x61, 0xc1, 0xa5, 0x9e, 0x00,
0x00, 0x28, 0xcc, 0x14, 0xcc, 0x13, 0xc0, 0x2b, 0xc0, 0x2f, 0x00, 0x9e,
0xc0, 0x0a, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x07, 0xc0, 0x11,
0x00, 0x33, 0x00, 0x32, 0x00, 0x39, 0x00, 0x9c, 0x00, 0x2f, 0x00, 0x35,
0x00, 0x0a, 0x00, 0x05, 0x00, 0x04, 0x01, 0x00, 0x00, 0x65, 0xff, 0x01,
0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x17, 0x00,
0x18, 0x00, 0x19, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00,
0x00, 0x33, 0x74, 0x00, 0x00, 0x00, 0x10, 0x00, 0x1b, 0x00, 0x19, 0x06,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x33, 0x08, 0x73, 0x70, 0x64, 0x79, 0x2f,
0x33, 0x2e, 0x31, 0x08, 0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31,
0x75, 0x50, 0x00, 0x00, 0x00, 0x05, 0x00, 0x05, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0d, 0x00, 0x12, 0x00, 0x10, 0x04, 0x01, 0x05, 0x01, 0x02,
0x01, 0x04, 0x03, 0x05, 0x03, 0x02, 0x03, 0x04, 0x02, 0x02, 0x02, 0x00,
0x12, 0x00, 0x00
};
byte buffer5[] = { /* SSL v2.0 client hello */
0x00, 0x2b, 0x01, 0x03, 0x01, 0x00, 0x09, 0x00, 0x00,
/* dummy bytes bellow, just to pass size check */
0xb6, 0x03, 0x03, 0x83, 0xa3, 0xe6, 0xdc, 0x16, 0xa1, 0x43, 0xe9, 0x45,
0x15, 0xbd, 0x64, 0xa9, 0xb6, 0x07, 0xb4, 0x50, 0xc6, 0xdd, 0xff, 0xc2,
0xd3, 0x0d, 0x4f, 0x36, 0xb4, 0x41, 0x51, 0x61, 0xc1, 0xa5, 0x9e, 0x00,
};
byte result[32] = {0};
word32 length = 32;
AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer4, sizeof(buffer4),
0, result, &length));
AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer3, sizeof(buffer3),
0, result, &length));
AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer2, sizeof(buffer2),
1, result, &length));
AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer),
0, result, &length));
buffer[0] = 0x16;
AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer),
0, result, &length));
buffer[1] = 0x03;
AssertIntEQ(SNI_UNSUPPORTED, wolfSSL_SNI_GetFromBuffer(buffer,
sizeof(buffer), 0, result, &length));
buffer[2] = 0x03;
AssertIntEQ(INCOMPLETE_DATA, wolfSSL_SNI_GetFromBuffer(buffer,
sizeof(buffer), 0, result, &length));
buffer[4] = 0x64;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer),
0, result, &length));
result[length] = 0;
AssertStrEQ("www.paypal.com", (const char*) result);
length = 32;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SNI_GetFromBuffer(buffer2, sizeof(buffer2),
0, result, &length));
result[length] = 0;
AssertStrEQ("api.textmate.org", (const char*) result);
/* SSL v2.0 tests */
AssertIntEQ(SNI_UNSUPPORTED, wolfSSL_SNI_GetFromBuffer(buffer5,
sizeof(buffer5), 0, result, &length));
buffer5[2] = 0x02;
AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5,
sizeof(buffer5), 0, result, &length));
buffer5[2] = 0x01; buffer5[6] = 0x08;
AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5,
sizeof(buffer5), 0, result, &length));
buffer5[6] = 0x09; buffer5[8] = 0x01;
AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5,
sizeof(buffer5), 0, result, &length));
}
#endif /* HAVE_SNI */
static void test_wolfSSL_UseSNI(void)
{
#ifdef HAVE_SNI
test_wolfSSL_UseSNI_params();
test_wolfSSL_UseSNI_connection();
test_wolfSSL_SNI_GetFromBuffer();
#endif
}
static void test_wolfSSL_UseMaxFragment(void)
{
#if defined(HAVE_MAX_FRAGMENT) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* error cases */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(NULL, WOLFSSL_MFL_2_9));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( NULL, WOLFSSL_MFL_2_9));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, 0));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, 6));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment(ssl, 0));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment(ssl, 6));
/* success case */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_9));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_10));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_11));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_12));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_13));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_9));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_10));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_11));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_12));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_13));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_UseTruncatedHMAC(void)
{
#if defined(HAVE_TRUNCATED_HMAC) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* error cases */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseTruncatedHMAC(NULL));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseTruncatedHMAC(NULL));
/* success case */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseTruncatedHMAC(ctx));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseTruncatedHMAC(ssl));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
static void test_wolfSSL_UseSupportedCurve(void)
{
#if defined(HAVE_SUPPORTED_CURVES) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* error cases */
AssertIntNE(WOLFSSL_SUCCESS,
wolfSSL_CTX_UseSupportedCurve(NULL, WOLFSSL_ECC_SECP256R1));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSupportedCurve(ctx, 0));
AssertIntNE(WOLFSSL_SUCCESS,
wolfSSL_UseSupportedCurve(NULL, WOLFSSL_ECC_SECP256R1));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSupportedCurve(ssl, 0));
/* success case */
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_CTX_UseSupportedCurve(ctx, WOLFSSL_ECC_SECP256R1));
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_UseSupportedCurve(ssl, WOLFSSL_ECC_SECP256R1));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
#ifdef HAVE_ALPN
static void verify_ALPN_FATAL_ERROR_on_client(WOLFSSL* ssl)
{
AssertIntEQ(UNKNOWN_ALPN_PROTOCOL_NAME_E, wolfSSL_get_error(ssl, 0));
}
static void use_ALPN_all(WOLFSSL* ssl)
{
/* http/1.1,spdy/1,spdy/2,spdy/3 */
char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x33};
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, alpn_list, sizeof(alpn_list),
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
}
static void use_ALPN_all_continue(WOLFSSL* ssl)
{
/* http/1.1,spdy/1,spdy/2,spdy/3 */
char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x33};
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, alpn_list, sizeof(alpn_list),
WOLFSSL_ALPN_CONTINUE_ON_MISMATCH));
}
static void use_ALPN_one(WOLFSSL* ssl)
{
/* spdy/2 */
char proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32};
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto),
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
}
static void use_ALPN_unknown(WOLFSSL* ssl)
{
/* http/2.0 */
char proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x32, 0x2e, 0x30};
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto),
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
}
static void use_ALPN_unknown_continue(WOLFSSL* ssl)
{
/* http/2.0 */
char proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x32, 0x2e, 0x30};
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto),
WOLFSSL_ALPN_CONTINUE_ON_MISMATCH));
}
static void verify_ALPN_not_matching_spdy3(WOLFSSL* ssl)
{
/* spdy/3 */
char nego_proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x33};
char *proto;
word16 protoSz = 0;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz));
/* check value */
AssertIntNE(1, sizeof(nego_proto) == protoSz);
AssertIntNE(0, XMEMCMP(nego_proto, proto, sizeof(nego_proto)));
}
static void verify_ALPN_not_matching_continue(WOLFSSL* ssl)
{
char *proto = NULL;
word16 protoSz = 0;
AssertIntEQ(WOLFSSL_ALPN_NOT_FOUND,
wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz));
/* check value */
AssertIntEQ(1, 0 == protoSz);
AssertIntEQ(1, NULL == proto);
}
static void verify_ALPN_matching_http1(WOLFSSL* ssl)
{
/* http/1.1 */
char nego_proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31};
char *proto;
word16 protoSz = 0;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz));
/* check value */
AssertIntEQ(1, sizeof(nego_proto) == protoSz);
AssertIntEQ(0, XMEMCMP(nego_proto, proto, protoSz));
}
static void verify_ALPN_matching_spdy2(WOLFSSL* ssl)
{
/* spdy/2 */
char nego_proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32};
char *proto;
word16 protoSz = 0;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz));
/* check value */
AssertIntEQ(1, sizeof(nego_proto) == protoSz);
AssertIntEQ(0, XMEMCMP(nego_proto, proto, protoSz));
}
static void verify_ALPN_client_list(WOLFSSL* ssl)
{
/* http/1.1,spdy/1,spdy/2,spdy/3 */
char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c,
0x73, 0x70, 0x64, 0x79, 0x2f, 0x33};
char *clist = NULL;
word16 clistSz = 0;
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetPeerProtocol(ssl, &clist,
&clistSz));
/* check value */
AssertIntEQ(1, sizeof(alpn_list) == clistSz);
AssertIntEQ(0, XMEMCMP(alpn_list, clist, clistSz));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_FreePeerProtocol(ssl, &clist));
}
static void test_wolfSSL_UseALPN_connection(void)
{
unsigned long i;
callback_functions callbacks[] = {
/* success case same list */
{0, 0, use_ALPN_all, 0},
{0, 0, use_ALPN_all, verify_ALPN_matching_http1},
/* success case only one for server */
{0, 0, use_ALPN_all, 0},
{0, 0, use_ALPN_one, verify_ALPN_matching_spdy2},
/* success case only one for client */
{0, 0, use_ALPN_one, 0},
{0, 0, use_ALPN_all, verify_ALPN_matching_spdy2},
/* success case none for client */
{0, 0, 0, 0},
{0, 0, use_ALPN_all, 0},
/* success case missmatch behavior but option 'continue' set */
{0, 0, use_ALPN_all_continue, verify_ALPN_not_matching_continue},
{0, 0, use_ALPN_unknown_continue, 0},
/* success case read protocol send by client */
{0, 0, use_ALPN_all, 0},
{0, 0, use_ALPN_one, verify_ALPN_client_list},
/* missmatch behavior with same list
* the first and only this one must be taken */
{0, 0, use_ALPN_all, 0},
{0, 0, use_ALPN_all, verify_ALPN_not_matching_spdy3},
/* default missmatch behavior */
{0, 0, use_ALPN_all, 0},
{0, 0, use_ALPN_unknown, verify_ALPN_FATAL_ERROR_on_client},
};
for (i = 0; i < sizeof(callbacks) / sizeof(callback_functions); i += 2) {
callbacks[i ].method = wolfSSLv23_client_method;
callbacks[i + 1].method = wolfSSLv23_server_method;
test_wolfSSL_client_server(&callbacks[i], &callbacks[i + 1]);
}
}
static void test_wolfSSL_UseALPN_params(void)
{
#ifndef NO_WOLFSSL_CLIENT
/* "http/1.1" */
char http1[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31};
/* "spdy/1" */
char spdy1[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x31};
/* "spdy/2" */
char spdy2[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32};
/* "spdy/3" */
char spdy3[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x33};
char buff[256];
word32 idx;
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* error cases */
AssertIntNE(WOLFSSL_SUCCESS,
wolfSSL_UseALPN(NULL, http1, sizeof(http1),
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, NULL, 0,
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
/* success case */
/* http1 only */
AssertIntEQ(WOLFSSL_SUCCESS,
wolfSSL_UseALPN(ssl, http1, sizeof(http1),
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
/* http1, spdy1 */
XMEMCPY(buff, http1, sizeof(http1));
idx = sizeof(http1);
buff[idx++] = ',';
XMEMCPY(buff+idx, spdy1, sizeof(spdy1));
idx += sizeof(spdy1);
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx,
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
/* http1, spdy2, spdy1 */
XMEMCPY(buff, http1, sizeof(http1));
idx = sizeof(http1);
buff[idx++] = ',';
XMEMCPY(buff+idx, spdy2, sizeof(spdy2));
idx += sizeof(spdy2);
buff[idx++] = ',';
XMEMCPY(buff+idx, spdy1, sizeof(spdy1));
idx += sizeof(spdy1);
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx,
WOLFSSL_ALPN_FAILED_ON_MISMATCH));
/* spdy3, http1, spdy2, spdy1 */
XMEMCPY(buff, spdy3, sizeof(spdy3));
idx = sizeof(spdy3);
buff[idx++] = ',';
XMEMCPY(buff+idx, http1, sizeof(http1));
idx += sizeof(http1);
buff[idx++] = ',';
XMEMCPY(buff+idx, spdy2, sizeof(spdy2));
idx += sizeof(spdy2);
buff[idx++] = ',';
XMEMCPY(buff+idx, spdy1, sizeof(spdy1));
idx += sizeof(spdy1);
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx,
WOLFSSL_ALPN_CONTINUE_ON_MISMATCH));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
#endif /* HAVE_ALPN */
static void test_wolfSSL_UseALPN(void)
{
#ifdef HAVE_ALPN
test_wolfSSL_UseALPN_connection();
test_wolfSSL_UseALPN_params();
#endif
}
static void test_wolfSSL_DisableExtendedMasterSecret(void)
{
#if defined(HAVE_EXTENDED_MASTER) && !defined(NO_WOLFSSL_CLIENT)
WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
WOLFSSL *ssl = wolfSSL_new(ctx);
AssertNotNull(ctx);
AssertNotNull(ssl);
/* error cases */
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_DisableExtendedMasterSecret(NULL));
AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_DisableExtendedMasterSecret(NULL));
/* success cases */
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_DisableExtendedMasterSecret(ctx));
AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_DisableExtendedMasterSecret(ssl));
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif
}
/*----------------------------------------------------------------------------*
| X509 Tests
*----------------------------------------------------------------------------*/
static void test_wolfSSL_X509_NAME_get_entry(void)
{
#if !defined(NO_CERTS) && !defined(NO_RSA)
#if defined(OPENSSL_EXTRA) && (defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)) \
&& (defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE)) || defined(WOLFSSL_HAPROXY)
printf(testingFmt, "wolfSSL_X509_NAME_get_entry()");
{
/* use openssl like name to test mapping */
X509_NAME_ENTRY* ne = NULL;
X509_NAME* name = NULL;
char* subCN = NULL;
X509* x509;
ASN1_STRING* asn;
int idx;
#ifndef NO_FILESYSTEM
x509 = wolfSSL_X509_load_certificate_file(cliCertFile, WOLFSSL_FILETYPE_PEM);
AssertNotNull(x509);
name = X509_get_subject_name(x509);
idx = X509_NAME_get_index_by_NID(name, NID_commonName, -1);
AssertIntGE(idx, 0);
ne = X509_NAME_get_entry(name, idx);
AssertNotNull(ne);
asn = X509_NAME_ENTRY_get_data(ne);
AssertNotNull(asn);
subCN = (char*)ASN1_STRING_data(asn);
AssertNotNull(subCN);
wolfSSL_FreeX509(x509);
#endif
}
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA */
#endif /* !NO_CERTS */
}
/* Testing functions dealing with PKCS12 parsing out X509 certs */
static void test_wolfSSL_PKCS12(void)
{
/* .p12 file is encrypted with DES3 */
#if defined(OPENSSL_EXTRA) && !defined(NO_DES3) && !defined(NO_FILESYSTEM) && \
!defined(NO_ASN) && !defined(NO_PWDBASED) && !defined(NO_RSA)
byte buffer[5300];
char file[] = "./certs/test-servercert.p12";
FILE *f;
int bytes, ret;
WOLFSSL_BIO *bio;
WOLFSSL_EVP_PKEY *pkey;
WC_PKCS12 *pkcs12;
WOLFSSL_X509 *cert;
WOLFSSL_X509 *tmp;
WOLF_STACK_OF(WOLFSSL_X509) *ca;
printf(testingFmt, "wolfSSL_PKCS12()");
f = fopen(file, "rb");
AssertNotNull(f);
bytes = (int)fread(buffer, 1, sizeof(buffer), f);
fclose(f);
bio = BIO_new_mem_buf((void*)buffer, bytes);
AssertNotNull(bio);
pkcs12 = d2i_PKCS12_bio(bio, NULL);
AssertNotNull(pkcs12);
PKCS12_free(pkcs12);
d2i_PKCS12_bio(bio, &pkcs12);
AssertNotNull(pkcs12);
/* check verify MAC fail case */
ret = PKCS12_parse(pkcs12, "bad", &pkey, &cert, NULL);
AssertIntEQ(ret, 0);
AssertNull(pkey);
AssertNull(cert);
/* check parse with no extra certs kept */
ret = PKCS12_parse(pkcs12, "wolfSSL test", &pkey, &cert, NULL);
AssertIntEQ(ret, 1);
AssertNotNull(pkey);
AssertNotNull(cert);
wolfSSL_EVP_PKEY_free(pkey);
wolfSSL_X509_free(cert);
/* check parse with extra certs kept */
ret = PKCS12_parse(pkcs12, "wolfSSL test", &pkey, &cert, &ca);
AssertIntEQ(ret, 1);
AssertNotNull(pkey);
AssertNotNull(cert);
AssertNotNull(ca);
/* should be 2 other certs on stack */
tmp = sk_X509_pop(ca);
AssertNotNull(tmp);
X509_free(tmp);
tmp = sk_X509_pop(ca);
AssertNotNull(tmp);
X509_free(tmp);
AssertNull(sk_X509_pop(ca));
EVP_PKEY_free(pkey);
X509_free(cert);
BIO_free(bio);
PKCS12_free(pkcs12);
sk_X509_free(ca);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA */
}
/* Testing functions dealing with PKCS5 */
static void test_wolfSSL_PKCS5(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_SHA) && !defined(NO_PWDBASED)
const char *passwd = "pass1234";
const unsigned char *salt = (unsigned char *)"salt1234";
unsigned char *out = (unsigned char *)XMALLOC(WC_SHA_DIGEST_SIZE, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
int ret = 0;
AssertNotNull(out);
ret = PKCS5_PBKDF2_HMAC_SHA1(passwd,(int)XSTRLEN(passwd), salt,
(int)XSTRLEN((const char *) salt), 10,
WC_SHA_DIGEST_SIZE,out);
AssertIntEQ(ret, SSL_SUCCESS);
XFREE(out, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_SHA) */
}
/* Testing function wolfSSL_CTX_SetMinVersion; sets the minimum downgrade
* version allowed.
* POST: 1 on success.
*/
static int test_wolfSSL_CTX_SetMinVersion(void)
{
int failFlag = WOLFSSL_SUCCESS;
#ifndef NO_WOLFSSL_CLIENT
WOLFSSL_CTX* ctx;
int itr;
#ifndef NO_OLD_TLS
const int versions[] = { WOLFSSL_TLSV1, WOLFSSL_TLSV1_1,
WOLFSSL_TLSV1_2 };
#else
const int versions[] = { WOLFSSL_TLSV1_2 };
#endif
failFlag = WOLFSSL_SUCCESS;
AssertTrue(wolfSSL_Init());
ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method());
printf(testingFmt, "wolfSSL_CTX_SetMinVersion()");
for (itr = 0; itr < (int)(sizeof(versions)/sizeof(int)); itr++){
if(wolfSSL_CTX_SetMinVersion(ctx, *(versions + itr)) != WOLFSSL_SUCCESS){
failFlag = WOLFSSL_FAILURE;
}
}
printf(resultFmt, failFlag == WOLFSSL_SUCCESS ? passed : failed);
wolfSSL_CTX_free(ctx);
AssertTrue(wolfSSL_Cleanup());
#endif
return failFlag;
} /* END test_wolfSSL_CTX_SetMinVersion */
/*----------------------------------------------------------------------------*
| OCSP Stapling
*----------------------------------------------------------------------------*/
/* Testing wolfSSL_UseOCSPStapling function. OCSP stapling eliminates the need
* need to contact the CA, lowering the cost of cert revocation checking.
* PRE: HAVE_OCSP and HAVE_CERTIFICATE_STATUS_REQUEST
* POST: 1 returned for success.
*/
static int test_wolfSSL_UseOCSPStapling(void)
{
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) && defined(HAVE_OCSP) && \
!defined(NO_WOLFSSL_CLIENT)
int ret;
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
wolfSSL_Init();
ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method());
ssl = wolfSSL_new(ctx);
printf(testingFmt, "wolfSSL_UseOCSPStapling()");
ret = wolfSSL_UseOCSPStapling(ssl, WOLFSSL_CSR2_OCSP,
WOLFSSL_CSR2_OCSP_USE_NONCE);
printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
if(ret != WOLFSSL_SUCCESS){
wolfSSL_Cleanup();
return WOLFSSL_FAILURE;
}
return wolfSSL_Cleanup();
#else
return WOLFSSL_SUCCESS;
#endif
} /*END test_wolfSSL_UseOCSPStapling */
/* Testing OCSP stapling version 2, wolfSSL_UseOCSPStaplingV2 funciton. OCSP
* stapling eliminates the need ot contact the CA and lowers cert revocation
* check.
* PRE: HAVE_CERTIFICATE_STATUS_REQUEST_V2 and HAVE_OCSP defined.
*/
static int test_wolfSSL_UseOCSPStaplingV2 (void)
{
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) && defined(HAVE_OCSP) && \
!defined(NO_WOLFSSL_CLIENT)
int ret;
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
wolfSSL_Init();
ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method());
ssl = wolfSSL_new(ctx);
printf(testingFmt, "wolfSSL_UseOCSPStaplingV2()");
ret = wolfSSL_UseOCSPStaplingV2(ssl, WOLFSSL_CSR2_OCSP,
WOLFSSL_CSR2_OCSP_USE_NONCE );
printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
if (ret != WOLFSSL_SUCCESS){
wolfSSL_Cleanup();
return WOLFSSL_FAILURE;
}
return wolfSSL_Cleanup();
#else
return WOLFSSL_SUCCESS;
#endif
} /*END test_wolfSSL_UseOCSPStaplingV2*/
/*----------------------------------------------------------------------------*
| Multicast Tests
*----------------------------------------------------------------------------*/
static void test_wolfSSL_mcast(void)
{
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_MULTICAST)
WOLFSSL_CTX* ctx;
WOLFSSL* ssl;
int result;
byte preMasterSecret[512];
byte clientRandom[32];
byte serverRandom[32];
byte suite[2] = {0, 0xfe}; /* WDM_WITH_NULL_SHA256 */
byte buf[256];
word16 newId;
ctx = wolfSSL_CTX_new(wolfDTLSv1_2_client_method());
AssertNotNull(ctx);
result = wolfSSL_CTX_mcast_set_member_id(ctx, 0);
AssertIntEQ(result, WOLFSSL_SUCCESS);
ssl = wolfSSL_new(ctx);
AssertNotNull(ssl);
XMEMSET(preMasterSecret, 0x23, sizeof(preMasterSecret));
XMEMSET(clientRandom, 0xA5, sizeof(clientRandom));
XMEMSET(serverRandom, 0x5A, sizeof(serverRandom));
result = wolfSSL_set_secret(ssl, 23,
preMasterSecret, sizeof(preMasterSecret),
clientRandom, serverRandom, suite);
AssertIntEQ(result, WOLFSSL_SUCCESS);
result = wolfSSL_mcast_read(ssl, &newId, buf, sizeof(buf));
AssertIntLE(result, 0);
AssertIntLE(newId, 100);
wolfSSL_free(ssl);
wolfSSL_CTX_free(ctx);
#endif /* WOLFSSL_DTLS && WOLFSSL_MULTICAST */
}
/*----------------------------------------------------------------------------*
| Wolfcrypt
*----------------------------------------------------------------------------*/
/*
* Unit test for the wc_InitMd5()
*/
static int test_wc_InitMd5 (void)
{
int flag = 0;
#ifndef NO_MD5
wc_Md5 md5;
int ret;
printf(testingFmt, "wc_InitMd5()");
/* Test good arg. */
ret = wc_InitMd5(&md5);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitMd5(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Md5Free(&md5);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitMd5 */
/*
* Testing wc_UpdateMd5()
*/
static int test_wc_Md5Update (void)
{
int flag = 0;
#ifndef NO_MD5
wc_Md5 md5;
byte hash[WC_MD5_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitMd5(&md5);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_Md5Update()");
/* Input */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag){
ret = wc_Md5Update(&md5, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Md5Final(&md5, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\x90\x01\x50\x98\x3c\xd2\x4f\xb0\xd6\x96\x3f\x7d\x28\xe1\x7f"
"\x72";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_Md5Update(&md5, (byte*) a.input, (word32) a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Md5Final(&md5, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_MD5_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/*Pass in bad values. */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_Md5Update(&md5, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_MD5_DIGEST_SIZE;
ret = wc_Md5Update(&md5, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Md5Update(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Md5Free(&md5);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Md5Update() */
/*
* Unit test on wc_Md5Final() in wolfcrypt/src/md5.c
*/
static int test_wc_Md5Final (void)
{
int flag = 0;
#ifndef NO_MD5
/* Instantiate */
wc_Md5 md5;
byte* hash_test[3];
byte hash1[WC_MD5_DIGEST_SIZE];
byte hash2[2*WC_MD5_DIGEST_SIZE];
byte hash3[5*WC_MD5_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitMd5(&md5);
if (ret != 0) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test)/sizeof(byte*);
/* Test good args. */
printf(testingFmt, "wc_Md5Final()");
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_Md5Final(&md5, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_Md5Final(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Md5Final(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Md5Final(&md5, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Md5Free(&md5);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
}
/*
* Unit test for the wc_InitSha()
*/
static int test_wc_InitSha(void)
{
int flag = 0;
#ifndef NO_SHA
wc_Sha sha;
int ret;
printf(testingFmt, "wc_InitSha()");
/* Test good arg. */
ret = wc_InitSha(&sha);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitSha(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_ShaFree(&sha);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitSha */
/*
* Tesing wc_ShaUpdate()
*/
static int test_wc_ShaUpdate (void)
{
int flag = 0;
#ifndef NO_SHA
wc_Sha sha;
byte hash[WC_SHA_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitSha(&sha);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_ShaUpdate()");
/* Input. */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_ShaUpdate(&sha, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_ShaFinal(&sha, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E\x25\x71\x78\x50\xC2"
"\x6C\x9C\xD0\xD8\x9D";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_ShaUpdate(&sha, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_ShaFinal(&sha, hash);
if (ret !=0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try passing in bad values. */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_ShaUpdate(&sha, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_SHA_DIGEST_SIZE;
ret = wc_ShaUpdate(&sha, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_ShaUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_ShaFree(&sha);
/* If not returned then the unit test passed test vectors. */
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_ShaUpdate() */
/*
* Unit test on wc_ShaFinal
*/
static int test_wc_ShaFinal (void)
{
int flag = 0;
#ifndef NO_SHA
wc_Sha sha;
byte* hash_test[3];
byte hash1[WC_SHA_DIGEST_SIZE];
byte hash2[2*WC_SHA_DIGEST_SIZE];
byte hash3[5*WC_SHA_DIGEST_SIZE];
int times, i, ret;
/*Initialize*/
ret = wc_InitSha(&sha);
if (ret) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test)/sizeof(byte*);
/* Good test args. */
printf(testingFmt, "wc_ShaFinal()");
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_ShaFinal(&sha, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_ShaFinal(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_ShaFinal(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_ShaFinal(&sha, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_ShaFree(&sha);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_ShaFinal */
/*
* Unit test for wc_InitSha256()
*/
static int test_wc_InitSha256 (void)
{
int flag = 0;
#ifndef NO_SHA256
wc_Sha256 sha256;
int ret;
printf(testingFmt, "wc_InitSha256()");
/* Test good arg. */
ret = wc_InitSha256(&sha256);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitSha256(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha256Free(&sha256);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitSha256 */
/*
* Unit test for wc_Sha256Update()
*/
static int test_wc_Sha256Update (void)
{
int flag = 0;
#ifndef NO_SHA256
wc_Sha256 sha256;
byte hash[WC_SHA256_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitSha256(&sha256);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_Sha256Update()");
/* Input. */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_Sha256Update(&sha256, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha256Final(&sha256, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\xBA\x78\x16\xBF\x8F\x01\xCF\xEA\x41\x41\x40\xDE\x5D\xAE\x22"
"\x23\xB0\x03\x61\xA3\x96\x17\x7A\x9C\xB4\x10\xFF\x61\xF2\x00"
"\x15\xAD";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_Sha256Update(&sha256, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha256Final(&sha256, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA256_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try passing in bad values */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_Sha256Update(&sha256, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_SHA256_DIGEST_SIZE;
ret = wc_Sha256Update(&sha256, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha256Update(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha256Free(&sha256);
/* If not returned then the unit test passed. */
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha256Update */
/*
* Unit test function for wc_Sha256Final()
*/
static int test_wc_Sha256Final (void)
{
int flag = 0;
#ifndef NO_SHA256
wc_Sha256 sha256;
byte* hash_test[3];
byte hash1[WC_SHA256_DIGEST_SIZE];
byte hash2[2*WC_SHA256_DIGEST_SIZE];
byte hash3[5*WC_SHA256_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitSha256(&sha256);
if (ret != 0) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test) / sizeof(byte*);
/* Good test args. */
printf(testingFmt, "wc_Sha256Final()");
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_Sha256Final(&sha256, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag ) {
ret = wc_Sha256Final(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha256Final(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha256Final(&sha256, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha256Free(&sha256);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha256Final */
/*
* Testing wc_InitSha512()
*/
static int test_wc_InitSha512 (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA512
wc_Sha512 sha512;
int ret;
printf(testingFmt, "wc_InitSha512()");
/* Test good arg. */
ret = wc_InitSha512(&sha512);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitSha512(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha512Free(&sha512);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitSha512 */
/*
* wc_Sha512Update() test.
*/
static int test_wc_Sha512Update (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA512
wc_Sha512 sha512;
byte hash[WC_SHA512_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitSha512(&sha512);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_Sha512Update()");
/* Input. */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_Sha512Update(&sha512, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha512Final(&sha512, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41"
"\x31\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b"
"\x55\xd3\x9a\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c"
"\x23\xa3\xfe\xeb\xbd\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a"
"\x9a\xc9\x4f\xa5\x4c\xa4\x9f";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_Sha512Update(&sha512, (byte*) a.input, (word32) a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha512Final(&sha512, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA512_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try passing in bad values */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_Sha512Update(&sha512, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_SHA512_DIGEST_SIZE;
ret = wc_Sha512Update(&sha512, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha512Update(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha512Free(&sha512);
/* If not returned then the unit test passed test vectors. */
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha512Update */
/*
* Unit test function for wc_Sha512Final()
*/
static int test_wc_Sha512Final (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA512
wc_Sha512 sha512;
byte* hash_test[3];
byte hash1[WC_SHA512_DIGEST_SIZE];
byte hash2[2*WC_SHA512_DIGEST_SIZE];
byte hash3[5*WC_SHA512_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitSha512(&sha512);
if (ret != 0) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test) / sizeof(byte *);
/* Good test args. */
printf(testingFmt, "wc_Sha512Final()");
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_Sha512Final(&sha512, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_Sha512Final(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
if (!flag) {}
ret = wc_Sha512Final(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha512Final(&sha512, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha512Free(&sha512);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha512Final */
/*
* Testing wc_InitSha384()
*/
static int test_wc_InitSha384 (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA384
wc_Sha384 sha384;
int ret;
printf(testingFmt, "wc_InitSha384()");
/* Test good arg. */
ret = wc_InitSha384(&sha384);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitSha384(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha384Free(&sha384);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitSha384 */
/*
* test wc_Sha384Update()
*/
static int test_wc_Sha384Update (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA384
wc_Sha384 sha384;
byte hash[WC_SHA384_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitSha384(&sha384);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_Sha384Update()");
/* Input */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_Sha384Update(&sha384, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha384Final(&sha384, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\xcb\x00\x75\x3f\x45\xa3\x5e\x8b\xb5\xa0\x3d\x69\x9a\xc6\x50"
"\x07\x27\x2c\x32\xab\x0e\xde\xd1\x63\x1a\x8b\x60\x5a\x43\xff"
"\x5b\xed\x80\x86\x07\x2b\xa1\xe7\xcc\x23\x58\xba\xec\xa1\x34"
"\xc8\x25\xa7";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_Sha384Update(&sha384, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha384Final(&sha384, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA384_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Pass in bad values. */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_Sha384Update(&sha384, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_SHA384_DIGEST_SIZE;
ret = wc_Sha384Update(&sha384, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha384Update(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha384Free(&sha384);
/* If not returned then the unit test passed test vectors. */
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha384Update */
/*
* Unit test function for wc_Sha384Final();
*/
static int test_wc_Sha384Final (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA384
wc_Sha384 sha384;
byte* hash_test[3];
byte hash1[WC_SHA384_DIGEST_SIZE];
byte hash2[2*WC_SHA384_DIGEST_SIZE];
byte hash3[5*WC_SHA384_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitSha384(&sha384);
if (ret) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test) / sizeof(byte*);
/* Good test args. */
printf(testingFmt, "wc_Sha384Final()");
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_Sha384Final(&sha384, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_Sha384Final(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha384Final(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha384Final(&sha384, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha384Free(&sha384);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha384Final */
/*
* Testing wc_InitSha224();
*/
static int test_wc_InitSha224 (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA224
wc_Sha224 sha224;
int ret;
printf(testingFmt, "wc_InitSha224()");
/* Test good arg. */
ret = wc_InitSha224(&sha224);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitSha224(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha224Free(&sha224);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitSha224 */
/*
* Unit test on wc_Sha224Update
*/
static int test_wc_Sha224Update (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA224
wc_Sha224 sha224;
byte hash[WC_SHA224_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitSha224(&sha224);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_Sha224Update()");
/* Input. */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_Sha224Update(&sha224, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha224Final(&sha224, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2"
"\x55\xb3\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_Sha224Update(&sha224, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_Sha224Final(&sha224, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA224_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Pass in bad values. */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_Sha224Update(&sha224, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = WC_SHA224_DIGEST_SIZE;
ret = wc_Sha224Update(&sha224, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha224Update(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha224Free(&sha224);
/* If not returned then the unit test passed test vectors. */
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha224Update */
/*
* Unit test for wc_Sha224Final();
*/
static int test_wc_Sha224Final (void)
{
int flag = 0;
#ifdef WOLFSSL_SHA224
wc_Sha224 sha224;
byte* hash_test[3];
byte hash1[WC_SHA224_DIGEST_SIZE];
byte hash2[2*WC_SHA224_DIGEST_SIZE];
byte hash3[5*WC_SHA224_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitSha224(&sha224);
if (ret) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test) / sizeof(byte*);
/* Good test args. */
printf(testingFmt, "wc_sha224Final()");
/* Testing oversized buffers. */
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_Sha224Final(&sha224, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_Sha224Final(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha224Final(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_Sha224Final(&sha224, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
wc_Sha224Free(&sha224);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha224Final */
/*
* Testing wc_InitRipeMd()
*/
static int test_wc_InitRipeMd (void)
{
int flag = 0;
#ifdef WOLFSSL_RIPEMD
RipeMd ripemd;
int ret;
printf(testingFmt, "wc_InitRipeMd()");
/* Test good arg. */
ret = wc_InitRipeMd(&ripemd);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
/* Test bad arg. */
if (!flag) {
ret = wc_InitRipeMd(NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_InitRipeMd */
/*
* Testing wc_RipeMdUpdate()
*/
static int test_wc_RipeMdUpdate (void)
{
int flag = 0;
#ifdef WOLFSSL_RIPEMD
RipeMd ripemd;
byte hash[RIPEMD_DIGEST_SIZE];
testVector a, b, c;
int ret;
ret = wc_InitRipeMd(&ripemd);
if (ret != 0) {
flag = ret;
}
printf(testingFmt, "wc_RipeMdUpdate()");
/* Input */
if (!flag) {
a.input = "a";
a.inLen = XSTRLEN(a.input);
}
if (!flag) {
ret = wc_RipeMdUpdate(&ripemd, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_RipeMdFinal(&ripemd, hash);
if (ret != 0) {
flag = ret;
}
}
/* Update input. */
if (!flag) {
a.input = "abc";
a.output = "\x8e\xb2\x08\xf7\xe0\x5d\x98\x7a\x9b\x04\x4a\x8e\x98\xc6"
"\xb0\x87\xf1\x5a\x0b\xfc";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
ret = wc_RipeMdUpdate(&ripemd, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_RipeMdFinal(&ripemd, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, RIPEMD_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Pass in bad values. */
if (!flag) {
b.input = NULL;
b.inLen = 0;
ret = wc_RipeMdUpdate(&ripemd, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
c.input = NULL;
c.inLen = RIPEMD_DIGEST_SIZE;
ret = wc_RipeMdUpdate(&ripemd, (byte*)c.input, (word32)c.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_RipeMdUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_RipeMdUdpate */
/*
* Unit test function for wc_RipeMdFinal()
*/
static int test_wc_RipeMdFinal (void)
{
int flag = 0;
#ifdef WOLFSSL_RIPEMD
RipeMd ripemd;
byte* hash_test[3];
byte hash1[RIPEMD_DIGEST_SIZE];
byte hash2[2*RIPEMD_DIGEST_SIZE];
byte hash3[5*RIPEMD_DIGEST_SIZE];
int times, i, ret;
/* Initialize */
ret = wc_InitRipeMd(&ripemd);
if (ret != 0) {
flag = ret;
}
if (!flag) {
hash_test[0] = hash1;
hash_test[1] = hash2;
hash_test[2] = hash3;
}
times = sizeof(hash_test) / sizeof(byte*);
/* Good test args. */
printf(testingFmt, "wc_RipeMdFinal()");
/* Testing oversized buffers. */
for (i = 0; i < times; i++) {
if (!flag) {
ret = wc_RipeMdFinal(&ripemd, hash_test[i]);
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (!flag) {
ret = wc_RipeMdFinal(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_RipeMdFinal(NULL, hash1);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_RipeMdFinal(&ripemd, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_RipeMdFinal */
/*
* unit test for wc_IdeaSetKey()
*/
static int test_wc_IdeaSetKey (void)
{
int ret = 0;
#ifdef HAVE_IDEA
Idea idea;
const byte key[] =
{
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37,
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37
};
int flag = 0;
printf(testingFmt, "wc_IdeaSetKey()");
/*IV can be NULL, default value is 0*/
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION);
if (ret == 0) {
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_DECRYPTION);
}
/* Bad args. */
if (ret == 0) {
ret = wc_IdeaSetKey(NULL, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION);
if (ret != BAD_FUNC_ARG) {
flag = 1;
}
ret = wc_IdeaSetKey(&idea, NULL, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION);
if (ret != BAD_FUNC_ARG) {
flag = 1;
}
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE - 1,
NULL, IDEA_ENCRYPTION);
if (ret != BAD_FUNC_ARG) {
flag = 1;
}
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, -1);
if (ret != BAD_FUNC_ARG) {
flag = 1;
}
if (flag == 1) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
} /* END Test Bad Args. */
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_IdeaSetKey */
/*
* Unit test for wc_IdeaSetIV()
*/
static int test_wc_IdeaSetIV (void)
{
int ret = 0;
#ifdef HAVE_IDEA
Idea idea;
printf(testingFmt, "wc_IdeaSetIV()");
ret = wc_IdeaSetIV(&idea, NULL);
/* Test bad args. */
if (ret == 0) {
ret = wc_IdeaSetIV(NULL, NULL);
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_IdeaSetIV */
/*
* Unit test for wc_IdeaCipher()
*/
static int test_wc_IdeaCipher (void)
{
int ret = 0;
#ifdef HAVE_IDEA
Idea idea;
const byte key[] =
{
0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00,
0x95, 0x2C, 0x49, 0x10, 0x48, 0x81, 0xFF, 0x48
};
const byte plain[] =
{
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37
};
byte enc[sizeof(plain)];
byte dec[sizeof(enc)];
printf(testingFmt, "wc_IdeaCipher()");
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION);
if (ret == 0) {
ret = wc_IdeaCipher(&idea, enc, plain);
if (ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (ret == 0) {
ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_DECRYPTION);
if (ret == 0) {
ret = wc_IdeaCipher(&idea, dec, enc);
}
if (ret == 0) {
ret = XMEMCMP(plain, dec, IDEA_BLOCK_SIZE);
}
if (ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Pass Bad Args. */
if (ret == 0) {
ret = wc_IdeaCipher(NULL, enc, dec);
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCipher(&idea, NULL, dec);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCipher(&idea, enc, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_IdeaCipher */
/*
* Unit test for functions wc_IdeaCbcEncrypt and wc_IdeaCbcDecrypt
*/
static int test_wc_IdeaCbcEncyptDecrypt (void)
{
int ret = 0;
#ifdef HAVE_IDEA
Idea idea;
const byte key[] =
{
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37,
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37
};
const char* message = "International Data Encryption Algorithm";
byte msg_enc[40];
byte msg_dec[40];
printf(testingFmt, "wc_IdeaCbcEncrypt()");
ret = wc_IdeaSetKey(&idea, key, sizeof(key), NULL, IDEA_ENCRYPTION);
if (ret == 0) {
ret = wc_IdeaCbcEncrypt(&idea, msg_enc, (byte *)message,
(word32)XSTRLEN(message) + 1);
}
if (ret == 0) {
ret = wc_IdeaSetKey(&idea, key, sizeof(key), NULL, IDEA_DECRYPTION);
}
if (ret == 0) {
ret = wc_IdeaCbcDecrypt(&idea, msg_dec, msg_enc,
(word32)XSTRLEN(message) + 1);
if (XMEMCMP(message, msg_dec, (word32)XSTRLEN(message))) {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Test bad args. Enc */
if (ret == 0) {
ret = wc_IdeaCbcEncrypt(NULL, msg_enc, (byte*)message,
(word32)XSTRLEN(message) + 1);
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCbcEncrypt(&idea, NULL, (byte*)message,
(word32)XSTRLEN(message) + 1);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCbcEncrypt(&idea, msg_enc, NULL,
(word32)XSTRLEN(message) + 1);
}
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
} /* END test bad args ENC */
/* Test bad args DEC */
if (ret == 0) {
ret = wc_IdeaCbcDecrypt(NULL, msg_dec, msg_enc,
(word32)XSTRLEN(message) + 1);
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCbcDecrypt(&idea, NULL, msg_enc,
(word32)XSTRLEN(message) + 1);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_IdeaCbcDecrypt(&idea, msg_dec, NULL,
(word32)XSTRLEN(message) + 1);
}
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_IdeaCbcEncryptDecrypt */
/*
* Test function for wc_HmacSetKey
*/
static int test_wc_Md5HmacSetKey (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_MD5)
Hmac hmac;
int ret, times, itr;
const char* keys[]=
{
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
#ifndef HAVE_FIPS
"Jefe", /* smaller than minumum FIPS key size */
#endif
"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
};
times = sizeof(keys) / sizeof(char*);
flag = 0;
printf(testingFmt, "wc_HmacSetKey() with MD5");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
for (itr = 0; itr < times; itr++) {
ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys[itr],
(word32)XSTRLEN(keys[itr]));
if (ret != 0) {
flag = ret;
}
}
/* Bad args. */
if (!flag) {
ret = wc_HmacSetKey(NULL, WC_MD5, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_MD5, NULL, (word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys[0], 0);
#ifdef HAVE_FIPS
if (ret != HMAC_MIN_KEYLEN_E) {
flag = WOLFSSL_FATAL_ERROR;
}
#else
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
#endif
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Md5HmacSetKey */
/*
* testing wc_HmacSetKey() on wc_Sha hash.
*/
static int test_wc_ShaHmacSetKey (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA)
Hmac hmac;
int ret, times, itr;
const char* keys[]=
{
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b",
#ifndef HAVE_FIPS
"Jefe", /* smaller than minumum FIPS key size */
#endif
"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
"\xAA\xAA\xAA"
};
times = sizeof(keys) / sizeof(char*);
flag = 0;
printf(testingFmt, "wc_HmacSetKey() with SHA");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
for (itr = 0; itr < times; itr++) {
ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys[itr],
(word32)XSTRLEN(keys[itr]));
if (ret != 0) {
flag = ret;
}
}
/* Bad args. */
if (!flag) {
ret = wc_HmacSetKey(NULL, WC_SHA, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA, NULL, (word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys[0], 0);
#ifdef HAVE_FIPS
if (ret != HMAC_MIN_KEYLEN_E) {
flag = WOLFSSL_FATAL_ERROR;
}
#else
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
#endif
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_ShaHmacSetKey() */
/*
* testing wc_HmacSetKey() on Sha224 hash.
*/
static int test_wc_Sha224HmacSetKey (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA224)
Hmac hmac;
int ret, times, itr;
const char* keys[]=
{
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b",
#ifndef HAVE_FIPS
"Jefe", /* smaller than minumum FIPS key size */
#endif
"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
"\xAA\xAA\xAA"
};
times = sizeof(keys) / sizeof(char*);
flag = 0;
printf(testingFmt, "wc_HmacSetKey() with SHA 224");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
for (itr = 0; itr < times; itr++) {
ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys[itr],
(word32)XSTRLEN(keys[itr]));
if (ret != 0) {
flag = ret;
}
}
/* Bad args. */
if (!flag) {
ret = wc_HmacSetKey(NULL, WC_SHA224, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA224, NULL, (word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys[0], 0);
#ifdef HAVE_FIPS
if (ret != HMAC_MIN_KEYLEN_E) {
flag = WOLFSSL_FATAL_ERROR;
}
#else
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
#endif
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha224HmacSetKey() */
/*
* testing wc_HmacSetKey() on Sha256 hash
*/
static int test_wc_Sha256HmacSetKey (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA256)
Hmac hmac;
int ret, times, itr;
const char* keys[]=
{
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b",
#ifndef HAVE_FIPS
"Jefe", /* smaller than minumum FIPS key size */
#endif
"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
"\xAA\xAA\xAA"
};
times = sizeof(keys) / sizeof(char*);
flag = 0;
printf(testingFmt, "wc_HmacSetKey() with SHA256");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
for (itr = 0; itr < times; itr++) {
ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys[itr],
(word32)XSTRLEN(keys[itr]));
if (ret != 0) {
flag = ret;
}
}
/* Bad args. */
if (!flag) {
ret = wc_HmacSetKey(NULL, WC_SHA256, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA256, NULL, (word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys[0], 0);
#ifdef HAVE_FIPS
if (ret != HMAC_MIN_KEYLEN_E) {
flag = WOLFSSL_FATAL_ERROR;
}
#else
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
#endif
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha256HmacSetKey() */
/*
* testing wc_HmacSetKey on Sha384 hash.
*/
static int test_wc_Sha384HmacSetKey (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA384)
Hmac hmac;
int ret, times, itr;
const char* keys[]=
{
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b",
#ifndef HAVE_FIPS
"Jefe", /* smaller than minumum FIPS key size */
#endif
"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
"\xAA\xAA\xAA"
};
times = sizeof(keys) / sizeof(char*);
flag = 0;
printf(testingFmt, "wc_HmacSetKey() with SHA384");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
for (itr = 0; itr < times; itr++) {
ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys[itr],
(word32)XSTRLEN(keys[itr]));
if (ret != 0) {
flag = ret;
}
}
/* Bad args. */
if (!flag) {
ret = wc_HmacSetKey(NULL, WC_SHA384, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA384, NULL, (word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0],
(word32)XSTRLEN(keys[0]));
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys[0], 0);
#ifdef HAVE_FIPS
if (ret != HMAC_MIN_KEYLEN_E) {
flag = WOLFSSL_FATAL_ERROR;
}
#else
if (ret != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
#endif
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha384HmacSetKey() */
/*
* testing wc_HmacUpdate on wc_Md5 hash.
*/
static int test_wc_Md5HmacUpdate (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_MD5)
Hmac hmac;
testVector a, b;
int ret;
#ifdef HAVE_FIPS
const char* keys =
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
#else
const char* keys = "Jefe";
#endif
a.input = "what do ya want for nothing?";
a.inLen = XSTRLEN(a.input);
b.input = "Hi There";
b.inLen = XSTRLEN(b.input);
flag = 0;
printf(testingFmt, "wc_HmacUpdate() with MD5");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys, (word32)XSTRLEN(keys));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Update Hmac. */
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Test bad args. */
if (!flag) {
ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0);
if (ret != 0) {
flag = ret;
}
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Md5HmacUpdate */
/*
* testing wc_HmacUpdate on SHA hash.
*/
static int test_wc_ShaHmacUpdate (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA)
Hmac hmac;
testVector a, b;
int ret;
#ifdef HAVE_FIPS
const char* keys =
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
#else
const char* keys = "Jefe";
#endif
a.input = "what do ya want for nothing?";
a.inLen = XSTRLEN(a.input);
b.input = "Hi There";
b.inLen = XSTRLEN(b.input);
flag = 0;
printf(testingFmt, "wc_HmacUpdate() with SHA");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys, (word32)XSTRLEN(keys));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Update Hmac. */
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Test bad args. */
if (!flag) {
ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0);
if (ret != 0) {
flag = ret;
}
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_ShaHmacUpdate */
/*
* testing wc_HmacUpdate on SHA224 hash.
*/
static int test_wc_Sha224HmacUpdate (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA224)
Hmac hmac;
testVector a, b;
int ret;
#ifdef HAVE_FIPS
const char* keys =
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
#else
const char* keys = "Jefe";
#endif
a.input = "what do ya want for nothing?";
a.inLen = XSTRLEN(a.input);
b.input = "Hi There";
b.inLen = XSTRLEN(b.input);
flag = 0;
printf(testingFmt, "wc_HmacUpdate() with SHA224");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys, (word32)XSTRLEN(keys));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Update Hmac. */
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Test bad args. */
if (!flag) {
ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0);
if (ret != 0) {
flag = ret;
}
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha224HmacUpdate */
/*
* testing wc_HmacUpdate on SHA256 hash.
*/
static int test_wc_Sha256HmacUpdate (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA256)
Hmac hmac;
testVector a, b;
int ret;
#ifdef HAVE_FIPS
const char* keys =
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
#else
const char* keys = "Jefe";
#endif
a.input = "what do ya want for nothing?";
a.inLen = XSTRLEN(a.input);
b.input = "Hi There";
b.inLen = XSTRLEN(b.input);
flag = 0;
printf(testingFmt, "wc_HmacUpdate() with WC_SHA256");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys, (word32)XSTRLEN(keys));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Update Hmac. */
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Test bad args. */
if (!flag) {
ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0);
if (ret != 0) {
flag = ret;
}
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha256HmacUpdate */
/*
* testing wc_HmacUpdate on SHA384 hash.
*/
static int test_wc_Sha384HmacUpdate (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA384)
Hmac hmac;
testVector a, b;
int ret;
#ifdef HAVE_FIPS
const char* keys =
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
#else
const char* keys = "Jefe";
#endif
a.input = "what do ya want for nothing?";
a.inLen = XSTRLEN(a.input);
b.input = "Hi There";
b.inLen = XSTRLEN(b.input);
flag = 0;
printf(testingFmt, "wc_HmacUpdate() with SHA384");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys, (word32)XSTRLEN(keys));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Update Hmac. */
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
/* Test bad args. */
if (!flag) {
ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0);
if (ret != 0) {
flag = ret;
}
}
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha384HmacUpdate */
/*
* Testing wc_HmacFinal() with MD5
*/
static int test_wc_Md5HmacFinal (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_MD5)
Hmac hmac;
byte hash[WC_MD5_DIGEST_SIZE];
testVector a;
int ret;
const char* key;
key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b";
a.input = "Hi There";
a.output = "\x92\x94\x72\x7a\x36\x38\xbb\x1c\x13\xf4\x8e\xf8\x15\x8b\xfc"
"\x9d";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
flag = 0;
printf(testingFmt, "wc_HmacFinal() with MD5");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)key, (word32)XSTRLEN(key));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_HmacFinal(&hmac, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_MD5_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try bad parameters. */
if (!flag) {
ret = wc_HmacFinal(NULL, hash);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS
if (!flag) {
ret = wc_HmacFinal(&hmac, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Md5HmacFinal */
/*
* Testing wc_HmacFinal() with SHA
*/
static int test_wc_ShaHmacFinal (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA)
Hmac hmac;
byte hash[WC_SHA_DIGEST_SIZE];
testVector a;
int ret;
const char* key;
key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b";
a.input = "Hi There";
a.output = "\xb6\x17\x31\x86\x55\x05\x72\x64\xe2\x8b\xc0\xb6\xfb\x37\x8c"
"\x8e\xf1\x46\xbe\x00";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
flag = 0;
printf(testingFmt, "wc_HmacFinal() with SHA");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)key, (word32)XSTRLEN(key));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_HmacFinal(&hmac, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try bad parameters. */
if (!flag) {
ret = wc_HmacFinal(NULL, hash);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS
if (!flag) {
ret = wc_HmacFinal(&hmac, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_ShaHmacFinal */
/*
* Testing wc_HmacFinal() with SHA224
*/
static int test_wc_Sha224HmacFinal (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA224)
Hmac hmac;
byte hash[WC_SHA224_DIGEST_SIZE];
testVector a;
int ret;
const char* key;
key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b";
a.input = "Hi There";
a.output = "\x89\x6f\xb1\x12\x8a\xbb\xdf\x19\x68\x32\x10\x7c\xd4\x9d\xf3"
"\x3f\x47\xb4\xb1\x16\x99\x12\xba\x4f\x53\x68\x4b\x22";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
flag = 0;
printf(testingFmt, "wc_HmacFinal() with SHA224");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)key, (word32)XSTRLEN(key));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_HmacFinal(&hmac, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA224_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try bad parameters. */
if (!flag) {
ret = wc_HmacFinal(NULL, hash);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS
if (!flag) {
ret = wc_HmacFinal(&hmac, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha224HmacFinal */
/*
* Testing wc_HmacFinal() with SHA256
*/
static int test_wc_Sha256HmacFinal (void)
{
int flag = 0;
#if !defined(NO_HMAC) && !defined(NO_SHA256)
Hmac hmac;
byte hash[WC_SHA256_DIGEST_SIZE];
testVector a;
int ret;
const char* key;
key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b";
a.input = "Hi There";
a.output = "\xb0\x34\x4c\x61\xd8\xdb\x38\x53\x5c\xa8\xaf\xce\xaf\x0b\xf1"
"\x2b\x88\x1d\xc2\x00\xc9\x83\x3d\xa7\x26\xe9\x37\x6c\x2e\x32"
"\xcf\xf7";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
flag = 0;
printf(testingFmt, "wc_HmacFinal() with WC_SHA256");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)key, (word32)XSTRLEN(key));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_HmacFinal(&hmac, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA256_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try bad parameters. */
if (!flag) {
ret = wc_HmacFinal(NULL, hash);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS
if (!flag) {
ret = wc_HmacFinal(&hmac, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha256HmacFinal */
/*
* Testing wc_HmacFinal() with SHA384
*/
static int test_wc_Sha384HmacFinal (void)
{
int flag = 0;
#if !defined(NO_HMAC) && defined(WOLFSSL_SHA384)
Hmac hmac;
byte hash[WC_SHA384_DIGEST_SIZE];
testVector a;
int ret;
const char* key;
key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b";
a.input = "Hi There";
a.output = "\xaf\xd0\x39\x44\xd8\x48\x95\x62\x6b\x08\x25\xf4\xab\x46\x90"
"\x7f\x15\xf9\xda\xdb\xe4\x10\x1e\xc6\x82\xaa\x03\x4c\x7c\xeb"
"\xc5\x9c\xfa\xea\x9e\xa9\x07\x6e\xde\x7f\x4a\xf1\x52\xe8\xb2"
"\xfa\x9c\xb6";
a.inLen = XSTRLEN(a.input);
a.outLen = XSTRLEN(a.output);
flag = 0;
printf(testingFmt, "wc_HmacFinal() with SHA384");
ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)key, (word32)XSTRLEN(key));
if (ret != 0) {
flag = ret;
}
if (!flag) {
ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
ret = wc_HmacFinal(&hmac, hash);
if (ret != 0) {
flag = ret;
}
}
if (!flag) {
if (XMEMCMP(hash, a.output, WC_SHA384_DIGEST_SIZE) != 0) {
flag = WOLFSSL_FATAL_ERROR;
}
}
/* Try bad parameters. */
if (!flag) {
ret = wc_HmacFinal(NULL, hash);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS
if (!flag) {
ret = wc_HmacFinal(&hmac, NULL);
if (ret != BAD_FUNC_ARG) {
flag = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_HmacFree(&hmac);
printf(resultFmt, flag == 0 ? passed : failed);
#endif
return flag;
} /* END test_wc_Sha384HmacFinal */
/*
* unit test for wc_Des3_SetIV()
*/
static int test_wc_Des3_SetIV (void)
{
int ret = 0;
#ifndef NO_DES3
Des3 des;
const byte key[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67
};
const byte iv[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
printf(testingFmt, "wc_Des3_SetIV()");
ret = wc_Des3Init(&des, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
/* DES_ENCRYPTION or DES_DECRYPTION */
ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION);
if (ret == 0) {
if (XMEMCMP(iv, des.reg, DES_BLOCK_SIZE) != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_FIPS /* no sanity checks with FIPS wrapper */
/* Test explicitly wc_Des3_SetIV() */
if (ret == 0) {
ret = wc_Des3_SetIV(NULL, iv);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_SetIV(&des, NULL);
} else if (ret == 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
wc_Des3Free(&des);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Des3_SetIV */
/*
* unit test for wc_Des3_SetKey()
*/
static int test_wc_Des3_SetKey (void)
{
int ret = 0;
#ifndef NO_DES3
Des3 des;
const byte key[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67
};
const byte iv[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
printf(testingFmt, "wc_Des3_SetKey()");
ret = wc_Des3Init(&des, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
/* DES_ENCRYPTION or DES_DECRYPTION */
ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION);
if (ret == 0) {
if (XMEMCMP(iv, des.reg, DES_BLOCK_SIZE) != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_Des3_SetKey(NULL, key, iv, DES_ENCRYPTION);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_SetKey(&des, NULL, iv, DES_ENCRYPTION);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_SetKey(&des, key, iv, -1);
}
if (ret == BAD_FUNC_ARG) {
/* Default case. Should return 0. */
ret = wc_Des3_SetKey(&des, key, NULL, DES_ENCRYPTION);
}
} /* END if ret != 0 */
wc_Des3Free(&des);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Des3_SetKey */
/*
* Test function for wc_Des3_CbcEncrypt and wc_Des3_CbcDecrypt
*/
static int test_wc_Des3_CbcEncryptDecrypt (void)
{
int ret = 0;
#ifndef NO_DES3
Des3 des;
byte cipher[24];
byte plain[24];
const byte key[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67
};
const byte iv[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
const byte vector[] = { /* "Now is the time for all " w/o trailing 0 */
0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,
0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20,
0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20
};
printf(testingFmt, "wc_Des3_CbcEncrypt()");
ret = wc_Des3Init(&des, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION);
if (ret == 0) {
ret = wc_Des3_CbcEncrypt(&des, cipher, vector, 24);
if (ret == 0) {
ret = wc_Des3_SetKey(&des, key, iv, DES_DECRYPTION);
}
if (ret == 0) {
ret = wc_Des3_CbcDecrypt(&des, plain, cipher, 24);
}
}
if (ret == 0) {
if (XMEMCMP(plain, vector, 24) != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Pass in bad args. */
if (ret == 0) {
ret = wc_Des3_CbcEncrypt(NULL, cipher, vector, 24);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcEncrypt(&des, NULL, vector, 24);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcEncrypt(&des, cipher, NULL, sizeof(vector));
}
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;;
} else {
ret = 0;
}
}
if (ret == 0) {
ret = wc_Des3_CbcDecrypt(NULL, plain, cipher, 24);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcDecrypt(&des, NULL, cipher, 24);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcDecrypt(&des, plain, NULL, 24);
}
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
wc_Des3Free(&des);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END wc_Des3_CbcEncrypt */
/*
* Unit test for wc_Des3_CbcEncryptWithKey and wc_Des3_CbcDecryptWithKey
*/
static int test_wc_Des3_CbcEncryptDecryptWithKey (void)
{
int ret = 0;
#ifndef NO_DES3
word32 vectorSz, cipherSz;
byte cipher[24];
byte plain[24];
byte vector[] = /* Now is the time for all w/o trailing 0 */
{
0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,
0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20,
0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20
};
byte key[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67
};
byte iv[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
vectorSz = sizeof(byte) * 24;
cipherSz = sizeof(byte) * 24;
printf(testingFmt, "wc_Des3_CbcEncryptWithKey()");
ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz, key, iv);
if (ret == 0) {
ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, key, iv);
if (ret == 0) {
if (XMEMCMP(plain, vector, 24) != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
/* pass in bad args. */
if (ret == 0) {
ret = wc_Des3_CbcEncryptWithKey(NULL, vector, vectorSz, key, iv);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcEncryptWithKey(cipher, NULL, vectorSz, key, iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz, NULL, iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz,
key, NULL);
} else {
/* Return code catch. */
ret = WOLFSSL_FAILURE;
}
}
if (ret == 0) {
ret = wc_Des3_CbcDecryptWithKey(NULL, cipher, cipherSz, key, iv);
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcDecryptWithKey(plain, NULL, cipherSz, key, iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, NULL, iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, key, NULL);
} else {
ret = WOLFSSL_FAILURE;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Des3_CbcEncryptDecryptWithKey */
/*
* Testing wc_Chacha_SetKey() and wc_Chacha_SetIV()
*/
static int test_wc_Chacha_SetKey (void)
{
int ret = 0;
#ifdef HAVE_CHACHA
ChaCha ctx;
const byte key[] =
{
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01
};
byte cipher[128];
printf(testingFmt, "wc_Chacha_SetKey()");
ret = wc_Chacha_SetKey(&ctx, key, (word32)(sizeof(key)/sizeof(byte)));
/* Test bad args. */
if (ret == 0) {
ret = wc_Chacha_SetKey(NULL, key, (word32)(sizeof(key)/sizeof(byte)));
if (ret == BAD_FUNC_ARG) {
ret = wc_Chacha_SetKey(&ctx, key, 18);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
printf(testingFmt, "wc_Chacha_SetIV");
ret = wc_Chacha_SetIV(&ctx, cipher, 0);
if (ret == 0) {
/* Test bad args. */
ret = wc_Chacha_SetIV(NULL, cipher, 0);
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FAILURE;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Chacha_SetKey */
/*
* Testing wc_Chacha_Process()
*/
static int test_wc_Chacha_Process (void)
{
int ret = 0;
#ifdef HAVE_CHACHA
ChaCha enc, dec;
byte cipher[128];
byte plain[128];
const byte key[] =
{
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01
};
const char* input = "Everybody gets Friday off.";
word32 keySz = sizeof(key)/sizeof(byte);
unsigned long int inlen = XSTRLEN(input);
/*Initialize stack varialbes.*/
XMEMSET(cipher, 0, 128);
XMEMSET(plain, 0, 128);
printf(testingFmt, "wc_Chacha_Process()");
ret = wc_Chacha_SetKey(&enc, key, keySz);
if (ret == 0) {
ret = wc_Chacha_SetKey(&dec, key, keySz);
if (ret == 0) {
ret = wc_Chacha_SetIV(&enc, cipher, 0);
}
if (ret == 0) {
ret = wc_Chacha_SetIV(&dec, cipher, 0);
}
}
if (ret == 0) {
ret = wc_Chacha_Process(&enc, cipher, (byte*)input, (word32)inlen);
if (ret == 0) {
ret = wc_Chacha_Process(&dec, plain, cipher, (word32)inlen);
if (ret == 0) {
ret = XMEMCMP(input, plain, (int)inlen);
}
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_Chacha_Process(NULL, cipher, (byte*)input, (word32)inlen);
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Chacha_Process */
/*
* Testing wc_ChaCha20Poly1305_Encrypt() and wc_ChaCha20Poly1305_Decrypt()
*/
static int test_wc_ChaCha20Poly1305_aead (void)
{
int ret = 0;
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
const byte key[] = {
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f
};
const byte plaintext[] = {
0x4c, 0x61, 0x64, 0x69, 0x65, 0x73, 0x20, 0x61,
0x6e, 0x64, 0x20, 0x47, 0x65, 0x6e, 0x74, 0x6c,
0x65, 0x6d, 0x65, 0x6e, 0x20, 0x6f, 0x66, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x61, 0x73,
0x73, 0x20, 0x6f, 0x66, 0x20, 0x27, 0x39, 0x39,
0x3a, 0x20, 0x49, 0x66, 0x20, 0x49, 0x20, 0x63,
0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6f, 0x66, 0x66,
0x65, 0x72, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x6f,
0x6e, 0x6c, 0x79, 0x20, 0x6f, 0x6e, 0x65, 0x20,
0x74, 0x69, 0x70, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x74, 0x68, 0x65, 0x20, 0x66, 0x75, 0x74, 0x75,
0x72, 0x65, 0x2c, 0x20, 0x73, 0x75, 0x6e, 0x73,
0x63, 0x72, 0x65, 0x65, 0x6e, 0x20, 0x77, 0x6f,
0x75, 0x6c, 0x64, 0x20, 0x62, 0x65, 0x20, 0x69,
0x74, 0x2e
};
const byte iv[] = {
0x07, 0x00, 0x00, 0x00, 0x40, 0x41, 0x42, 0x43,
0x44, 0x45, 0x46, 0x47
};
const byte aad[] = { /* additional data */
0x50, 0x51, 0x52, 0x53, 0xc0, 0xc1, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7
};
const byte cipher[] = { /* expected output from operation */
0xd3, 0x1a, 0x8d, 0x34, 0x64, 0x8e, 0x60, 0xdb,
0x7b, 0x86, 0xaf, 0xbc, 0x53, 0xef, 0x7e, 0xc2,
0xa4, 0xad, 0xed, 0x51, 0x29, 0x6e, 0x08, 0xfe,
0xa9, 0xe2, 0xb5, 0xa7, 0x36, 0xee, 0x62, 0xd6,
0x3d, 0xbe, 0xa4, 0x5e, 0x8c, 0xa9, 0x67, 0x12,
0x82, 0xfa, 0xfb, 0x69, 0xda, 0x92, 0x72, 0x8b,
0x1a, 0x71, 0xde, 0x0a, 0x9e, 0x06, 0x0b, 0x29,
0x05, 0xd6, 0xa5, 0xb6, 0x7e, 0xcd, 0x3b, 0x36,
0x92, 0xdd, 0xbd, 0x7f, 0x2d, 0x77, 0x8b, 0x8c,
0x98, 0x03, 0xae, 0xe3, 0x28, 0x09, 0x1b, 0x58,
0xfa, 0xb3, 0x24, 0xe4, 0xfa, 0xd6, 0x75, 0x94,
0x55, 0x85, 0x80, 0x8b, 0x48, 0x31, 0xd7, 0xbc,
0x3f, 0xf4, 0xde, 0xf0, 0x8e, 0x4b, 0x7a, 0x9d,
0xe5, 0x76, 0xd2, 0x65, 0x86, 0xce, 0xc6, 0x4b,
0x61, 0x16
};
const byte authTag[] = { /* expected output from operation */
0x1a, 0xe1, 0x0b, 0x59, 0x4f, 0x09, 0xe2, 0x6a,
0x7e, 0x90, 0x2e, 0xcb, 0xd0, 0x60, 0x06, 0x91
};
byte generatedCiphertext[272];
byte generatedPlaintext[272];
byte generatedAuthTag[CHACHA20_POLY1305_AEAD_AUTHTAG_SIZE];
/* Initialize stack variables. */
XMEMSET(generatedCiphertext, 0, 272);
XMEMSET(generatedPlaintext, 0, 272);
/* Test Encrypt */
printf(testingFmt, "wc_ChaCha20Poly1305_Encrypt()");
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), plaintext,
sizeof(plaintext), generatedCiphertext, generatedAuthTag);
if (ret == 0) {
ret = XMEMCMP(generatedCiphertext, cipher, sizeof(cipher)/sizeof(byte));
}
/* Test bad args. */
if (ret == 0) {
ret = wc_ChaCha20Poly1305_Encrypt(NULL, iv, aad, sizeof(aad), plaintext,
sizeof(plaintext), generatedCiphertext, generatedAuthTag);
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Encrypt(key, NULL, aad, sizeof(aad),
plaintext, sizeof(plaintext),
generatedCiphertext, generatedAuthTag);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), NULL,
sizeof(plaintext), generatedCiphertext, generatedAuthTag);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad),
plaintext, 0, generatedCiphertext, generatedAuthTag);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad),
plaintext, sizeof(plaintext), NULL, generatedAuthTag);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad),
plaintext, sizeof(plaintext), generatedCiphertext, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
printf(testingFmt, "wc_ChaCha20Poly1305_Decrypt()");
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher,
sizeof(cipher), authTag, generatedPlaintext);
if (ret == 0) {
ret = XMEMCMP(generatedPlaintext, plaintext,
sizeof(plaintext)/sizeof(byte));
}
/* Test bad args. */
if (ret == 0) {
ret = wc_ChaCha20Poly1305_Decrypt(NULL, iv, aad, sizeof(aad), cipher,
sizeof(cipher), authTag, generatedPlaintext);
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Decrypt(key, NULL, aad, sizeof(aad),
cipher, sizeof(cipher), authTag, generatedPlaintext);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), NULL,
sizeof(cipher), authTag, generatedPlaintext);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher,
sizeof(cipher), NULL, generatedPlaintext);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher,
sizeof(cipher), authTag, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher,
0, authTag, generatedPlaintext);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test-wc_ChaCha20Poly1305_EncryptDecrypt */
/*
* Testing function for wc_AesSetIV
*/
static int test_wc_AesSetIV (void)
{
int ret = 0;
#ifndef NO_AES
Aes aes;
byte key16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte iv1[] = "1234567890abcdef";
byte iv2[] = "0987654321fedcba";
printf(testingFmt, "wc_AesSetIV()");
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesSetKey(&aes, key16, (word32) sizeof(key16) / sizeof(byte),
iv1, AES_ENCRYPTION);
if(ret == 0) {
ret = wc_AesSetIV(&aes, iv2);
}
/* Test bad args. */
if(ret == 0) {
ret = wc_AesSetIV(NULL, iv1);
if(ret == BAD_FUNC_ARG) {
/* NULL iv should return 0. */
ret = wc_AesSetIV(&aes, NULL);
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* test_wc_AesSetIV */
/*
* Testing function for wc_AesSetKey().
*/
static int test_wc_AesSetKey (void)
{
int ret = 0;
#ifndef NO_AES
Aes aes;
byte key16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte key24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
};
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte badKey16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65
};
byte iv[] = "1234567890abcdef";
printf(testingFmt, "wc_AesSetKey()");
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesSetKey(&aes, key16, (word32) sizeof(key16) / sizeof(byte),
iv, AES_ENCRYPTION);
if (ret == 0) {
ret = wc_AesSetKey (&aes, key24, (word32) sizeof(key24) / sizeof(byte),
iv, AES_ENCRYPTION);
}
if (ret == 0) {
ret = wc_AesSetKey (&aes, key32, (word32) sizeof(key32) / sizeof(byte),
iv, AES_ENCRYPTION);
}
/* Pass in bad args. */
if (ret == 0) {
ret = wc_AesSetKey (NULL, key16, (word32) sizeof(key16) / sizeof(byte),
iv, AES_ENCRYPTION);
if (ret == BAD_FUNC_ARG) {
ret = wc_AesSetKey(&aes, badKey16,
(word32) sizeof(badKey16) / sizeof(byte),
iv, AES_ENCRYPTION);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_AesSetKey */
/*
* test function for wc_AesCbcEncrypt(), wc_AesCbcDecrypt(),
* and wc_AesCbcDecryptWithKey()
*/
static int test_wc_AesCbcEncryptDecrypt (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(HAVE_AES_DECRYPT)
Aes aes;
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte vector[] = /* Now is the time for all w/o trailing 0 */
{
0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,
0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20,
0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20
};
byte iv[] = "1234567890abcdef";
byte enc[sizeof(vector)];
byte dec[sizeof(vector)];
int cbcE = WOLFSSL_FATAL_ERROR;
int cbcD = WOLFSSL_FATAL_ERROR;
int cbcDWK = WOLFSSL_FATAL_ERROR;
byte dec2[sizeof(vector)];
/* Init stack variables. */
XMEMSET(enc, 0, sizeof(enc));
XMEMSET(dec, 0, sizeof(vector));
XMEMSET(dec2, 0, sizeof(vector));
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesSetKey(&aes, key32, AES_BLOCK_SIZE * 2, iv, AES_ENCRYPTION);
if (ret == 0) {
ret = wc_AesCbcEncrypt(&aes, enc, vector, sizeof(vector));
if (ret == 0) {
/* Re init for decrypt and set flag. */
cbcE = 0;
ret = wc_AesSetKey(&aes, key32, AES_BLOCK_SIZE * 2,
iv, AES_DECRYPTION);
}
if (ret == 0) {
ret = wc_AesCbcDecrypt(&aes, dec, enc, AES_BLOCK_SIZE);
if (ret != 0 || XMEMCMP(vector, dec, AES_BLOCK_SIZE) != 0) {
ret = WOLFSSL_FATAL_ERROR;
} else {
/* Set flag. */
cbcD = 0;
}
}
}
/* If encrypt succeeds but cbc decrypt fails, we can still test. */
if (ret == 0 || (ret != 0 && cbcE == 0)) {
ret = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE,
key32, sizeof(key32)/sizeof(byte), iv);
if (ret == 0 || XMEMCMP(vector, dec2, AES_BLOCK_SIZE) == 0) {
cbcDWK = 0;
}
}
printf(testingFmt, "wc_AesCbcEncrypt()");
/* Pass in bad args */
if (cbcE == 0) {
cbcE = wc_AesCbcEncrypt(NULL, enc, vector, sizeof(vector));
if (cbcE == BAD_FUNC_ARG) {
cbcE = wc_AesCbcEncrypt(&aes, NULL, vector, sizeof(vector));
}
if (cbcE == BAD_FUNC_ARG) {
cbcE = wc_AesCbcEncrypt(&aes, enc, NULL, sizeof(vector));
}
if (cbcE == BAD_FUNC_ARG) {
cbcE = 0;
} else {
cbcE = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, cbcE == 0 ? passed : failed);
if (cbcE != 0) {
wc_AesFree(&aes);
return cbcE;
}
printf(testingFmt, "wc_AesCbcDecrypt()");
if (cbcD == 0) {
cbcD = wc_AesCbcDecrypt(NULL, dec, enc, AES_BLOCK_SIZE);
if (cbcD == BAD_FUNC_ARG) {
cbcD = wc_AesCbcDecrypt(&aes, NULL, enc, AES_BLOCK_SIZE);
}
if (cbcD == BAD_FUNC_ARG) {
cbcD = wc_AesCbcDecrypt(&aes, dec, NULL, AES_BLOCK_SIZE);
}
if (cbcD == BAD_FUNC_ARG) {
cbcD = wc_AesCbcDecrypt(&aes, dec, enc, AES_BLOCK_SIZE * 2 - 1);
}
if (cbcD == BAD_FUNC_ARG) {
cbcD = 0;
} else {
cbcD = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, cbcD == 0 ? passed : failed);
if (cbcD != 0) {
wc_AesFree(&aes);
return cbcD;
}
printf(testingFmt, "wc_AesCbcDecryptWithKey()");
if (cbcDWK == 0) {
cbcDWK = wc_AesCbcDecryptWithKey(NULL, enc, AES_BLOCK_SIZE,
key32, sizeof(key32)/sizeof(byte), iv);
if (cbcDWK == BAD_FUNC_ARG) {
cbcDWK = wc_AesCbcDecryptWithKey(dec2, NULL, AES_BLOCK_SIZE,
key32, sizeof(key32)/sizeof(byte), iv);
}
if (cbcDWK == BAD_FUNC_ARG) {
cbcDWK = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE,
NULL, sizeof(key32)/sizeof(byte), iv);
}
if (cbcDWK == BAD_FUNC_ARG) {
cbcDWK = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE,
key32, sizeof(key32)/sizeof(byte), NULL);
}
if (cbcDWK == BAD_FUNC_ARG) {
cbcDWK = 0;
} else {
cbcDWK = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&aes);
printf(resultFmt, cbcDWK == 0 ? passed : failed);
if (cbcDWK != 0) {
return cbcDWK;
}
#endif
return ret;
} /* END test_wc_AesCbcEncryptDecrypt */
/*
* Testing wc_AesCtrEncrypt and wc_AesCtrDecrypt
*/
static int test_wc_AesCtrEncryptDecrypt (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(WOLFSSL_AES_COUNTER)
Aes aesEnc, aesDec;
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte vector[] = /* Now is the time for all w/o trailing 0 */
{
0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,
0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20,
0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20
};
byte iv[] = "1234567890abcdef";
byte enc[AES_BLOCK_SIZE * 2];
byte dec[AES_BLOCK_SIZE * 2];
/* Init stack variables. */
XMEMSET(enc, 0, AES_BLOCK_SIZE * 2);
XMEMSET(dec, 0, AES_BLOCK_SIZE * 2);
printf(testingFmt, "wc_AesCtrEncrypt()");
ret = wc_AesInit(&aesEnc, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesInit(&aesDec, NULL, INVALID_DEVID);
if (ret != 0) {
wc_AesFree(&aesEnc);
return ret;
}
ret = wc_AesSetKey(&aesEnc, key32, AES_BLOCK_SIZE * 2,
iv, AES_ENCRYPTION);
if (ret == 0) {
ret = wc_AesCtrEncrypt(&aesEnc, enc, vector,
sizeof(vector)/sizeof(byte));
if (ret == 0) {
/* Decrypt with wc_AesCtrEncrypt() */
ret = wc_AesSetKey(&aesDec, key32, AES_BLOCK_SIZE * 2,
iv, AES_ENCRYPTION);
}
if (ret == 0) {
ret = wc_AesCtrEncrypt(&aesDec, dec, enc, sizeof(enc)/sizeof(byte));
if (ret != 0 || XMEMCMP(vector, dec, sizeof(vector))) {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_AesCtrEncrypt(NULL, dec, enc, sizeof(enc)/sizeof(byte));
if (ret == BAD_FUNC_ARG) {
ret = wc_AesCtrEncrypt(&aesDec, NULL, enc, sizeof(enc)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_AesCtrEncrypt(&aesDec, dec, NULL, sizeof(enc)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&aesEnc);
wc_AesFree(&aesDec);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_AesCtrEncryptDecrypt */
/*
* test function for wc_AesGcmSetKey()
*/
static int test_wc_AesGcmSetKey (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(HAVE_AESGCM)
Aes aes;
byte key16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte key24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
};
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte badKey16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65
};
byte badKey24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36
};
byte badKey32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x37, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65
};
printf(testingFmt, "wc_AesGcmSetKey()");
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesGcmSetKey(&aes, key16, sizeof(key16)/sizeof(byte));
if (ret == 0) {
ret = wc_AesGcmSetKey(&aes, key24, sizeof(key24)/sizeof(byte));
}
if (ret == 0) {
ret = wc_AesGcmSetKey(&aes, key32, sizeof(key32)/sizeof(byte));
}
/* Pass in bad args. */
if (ret == 0) {
ret = wc_AesGcmSetKey(&aes, badKey16, sizeof(badKey16)/sizeof(byte));
if (ret == BAD_FUNC_ARG) {
ret = wc_AesGcmSetKey(&aes, badKey24, sizeof(badKey24)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_AesGcmSetKey(&aes, badKey32, sizeof(badKey32)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_AesGcmSetKey */
/*
* test function for wc_AesGcmEncrypt and wc_AesGcmDecrypt
*/
static int test_wc_AesGcmEncryptDecrypt (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(HAVE_AESGCM)
Aes aes;
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte vector[] = /* Now is the time for all w/o trailing 0 */
{
0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,
0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20,
0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20
};
const byte a[] =
{
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xab, 0xad, 0xda, 0xd2
};
byte iv[] = "1234567890a";
byte longIV[] = "1234567890abcdefghij";
byte enc[sizeof(vector)];
byte resultT[AES_BLOCK_SIZE];
byte dec[sizeof(vector)];
int gcmD = WOLFSSL_FATAL_ERROR;
int gcmE = WOLFSSL_FATAL_ERROR;
/* Init stack variables. */
XMEMSET(enc, 0, sizeof(vector));
XMEMSET(dec, 0, sizeof(vector));
XMEMSET(resultT, 0, AES_BLOCK_SIZE);
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesGcmSetKey(&aes, key32, sizeof(key32)/sizeof(byte));
if (ret == 0) {
gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
}
if (gcmE == 0) { /* If encrypt fails, no decrypt. */
gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(vector),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
if(gcmD == 0 && (XMEMCMP(vector, dec, sizeof(vector)) != 0)) {
gcmD = WOLFSSL_FATAL_ERROR;
}
}
printf(testingFmt, "wc_AesGcmEncrypt()");
/*Test bad args for wc_AesGcmEncrypt and wc_AesGcmDecrypt */
if (gcmE == 0) {
gcmE = wc_AesGcmEncrypt(NULL, enc, vector, sizeof(vector),
iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT),
a, sizeof(a));
if (gcmE == BAD_FUNC_ARG) {
gcmE = wc_AesGcmEncrypt(&aes, enc, vector,
sizeof(vector), iv, sizeof(iv)/sizeof(byte),
resultT, sizeof(resultT) + 1, a, sizeof(a));
}
if (gcmE == BAD_FUNC_ARG) {
gcmE = wc_AesGcmEncrypt(&aes, enc, vector,
sizeof(vector), iv, sizeof(iv)/sizeof(byte),
resultT, sizeof(resultT) - 5, a, sizeof(a));
}
if (gcmE == BAD_FUNC_ARG) {
gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector), longIV,
sizeof(longIV)/sizeof(byte), resultT, sizeof(resultT),
a, sizeof(a));
}
#ifdef HAVE_FIPS
if (gcmE == BAD_FUNC_ARG) {
gcmE = 0;
} else {
gcmE = WOLFSSL_FATAL_ERROR;
}
#endif
} /* END wc_AesGcmEncrypt */
printf(resultFmt, gcmE == 0 ? passed : failed);
if (gcmE != 0) {
wc_AesFree(&aes);
return gcmE;
}
#ifdef HAVE_AES_DECRYPT
printf(testingFmt, "wc_AesGcmDecrypt()");
if (gcmD == 0) {
gcmD = wc_AesGcmDecrypt(NULL, dec, enc, sizeof(enc)/sizeof(byte),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
if (gcmD == BAD_FUNC_ARG) {
gcmD = wc_AesGcmDecrypt(&aes, NULL, enc, sizeof(enc)/sizeof(byte),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
}
if (gcmD == BAD_FUNC_ARG) {
gcmD = wc_AesGcmDecrypt(&aes, dec, NULL, sizeof(enc)/sizeof(byte),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
}
if (gcmD == BAD_FUNC_ARG) {
gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte),
NULL, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT), a, sizeof(a));
}
if (gcmD == BAD_FUNC_ARG) {
gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte),
iv, sizeof(iv)/sizeof(byte), NULL,
sizeof(resultT), a, sizeof(a));
}
if (gcmD == BAD_FUNC_ARG) {
gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte),
iv, sizeof(iv)/sizeof(byte), resultT,
sizeof(resultT) + 1, a, sizeof(a));
}
if (gcmD == BAD_FUNC_ARG) {
gcmD = 0;
} else {
gcmD = WOLFSSL_FATAL_ERROR;
}
} /* END wc_AesGcmDecrypt */
printf(resultFmt, gcmD == 0 ? passed : failed);
#endif /* HAVE_AES_DECRYPT */
wc_AesFree(&aes);
#endif
return ret;
} /* END test_wc_AesGcmEncryptDecrypt */
/*
* unit test for wc_GmacSetKey()
*/
static int test_wc_GmacSetKey (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(HAVE_AESGCM)
Gmac gmac;
byte key16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte key24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
};
byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
byte badKey16[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x66
};
byte badKey24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
};
byte badKey32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
printf(testingFmt, "wc_GmacSetKey()");
ret = wc_AesInit(&gmac.aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_GmacSetKey(&gmac, key16, sizeof(key16)/sizeof(byte));
if (ret == 0) {
ret = wc_GmacSetKey(&gmac, key24, sizeof(key24)/sizeof(byte));
}
if (ret == 0) {
ret = wc_GmacSetKey(&gmac, key32, sizeof(key32)/sizeof(byte));
}
/* Pass in bad args. */
if (ret == 0) {
ret = wc_GmacSetKey(NULL, key16, sizeof(key16)/sizeof(byte));
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacSetKey(&gmac, NULL, sizeof(key16)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacSetKey(&gmac, badKey16, sizeof(badKey16)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacSetKey(&gmac, badKey24, sizeof(badKey24)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacSetKey(&gmac, badKey32, sizeof(badKey32)/sizeof(byte));
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&gmac.aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_GmacSetKey */
/*
* unit test for wc_GmacUpdate
*/
static int test_wc_GmacUpdate (void)
{
int ret = 0;
#if !defined(NO_AES) && defined(HAVE_AESGCM)
Gmac gmac;
const byte key16[] =
{
0x89, 0xc9, 0x49, 0xe9, 0xc8, 0x04, 0xaf, 0x01,
0x4d, 0x56, 0x04, 0xb3, 0x94, 0x59, 0xf2, 0xc8
};
byte key24[] =
{
0x41, 0xc5, 0xda, 0x86, 0x67, 0xef, 0x72, 0x52,
0x20, 0xff, 0xe3, 0x9a, 0xe0, 0xac, 0x59, 0x0a,
0xc9, 0xfc, 0xa7, 0x29, 0xab, 0x60, 0xad, 0xa0
};
byte key32[] =
{
0x78, 0xdc, 0x4e, 0x0a, 0xaf, 0x52, 0xd9, 0x35,
0xc3, 0xc0, 0x1e, 0xea, 0x57, 0x42, 0x8f, 0x00,
0xca, 0x1f, 0xd4, 0x75, 0xf5, 0xda, 0x86, 0xa4,
0x9c, 0x8d, 0xd7, 0x3d, 0x68, 0xc8, 0xe2, 0x23
};
const byte authIn[] =
{
0x82, 0xad, 0xcd, 0x63, 0x8d, 0x3f, 0xa9, 0xd9,
0xf3, 0xe8, 0x41, 0x00, 0xd6, 0x1e, 0x07, 0x77
};
const byte authIn2[] =
{
0x8b, 0x5c, 0x12, 0x4b, 0xef, 0x6e, 0x2f, 0x0f,
0xe4, 0xd8, 0xc9, 0x5c, 0xd5, 0xfa, 0x4c, 0xf1
};
const byte authIn3[] =
{
0xb9, 0x6b, 0xaa, 0x8c, 0x1c, 0x75, 0xa6, 0x71,
0xbf, 0xb2, 0xd0, 0x8d, 0x06, 0xbe, 0x5f, 0x36
};
const byte tag1[] = /* Known. */
{
0x88, 0xdb, 0x9d, 0x62, 0x17, 0x2e, 0xd0, 0x43,
0xaa, 0x10, 0xf1, 0x6d, 0x22, 0x7d, 0xc4, 0x1b
};
const byte tag2[] = /* Known */
{
0x20, 0x4b, 0xdb, 0x1b, 0xd6, 0x21, 0x54, 0xbf,
0x08, 0x92, 0x2a, 0xaa, 0x54, 0xee, 0xd7, 0x05
};
const byte tag3[] = /* Known */
{
0x3e, 0x5d, 0x48, 0x6a, 0xa2, 0xe3, 0x0b, 0x22,
0xe0, 0x40, 0xb8, 0x57, 0x23, 0xa0, 0x6e, 0x76
};
const byte iv[] =
{
0xd1, 0xb1, 0x04, 0xc8, 0x15, 0xbf, 0x1e, 0x94,
0xe2, 0x8c, 0x8f, 0x16
};
const byte iv2[] =
{
0x05, 0xad, 0x13, 0xa5, 0xe2, 0xc2, 0xab, 0x66,
0x7e, 0x1a, 0x6f, 0xbc
};
const byte iv3[] =
{
0xd7, 0x9c, 0xf2, 0x2d, 0x50, 0x4c, 0xc7, 0x93,
0xc3, 0xfb, 0x6c, 0x8a
};
byte tagOut[16];
byte tagOut2[24];
byte tagOut3[32];
/* Init stack varaibles. */
XMEMSET(tagOut, 0, sizeof(tagOut));
XMEMSET(tagOut2, 0, sizeof(tagOut2));
XMEMSET(tagOut3, 0, sizeof(tagOut3));
printf(testingFmt, "wc_GmacUpdate()");
ret = wc_AesInit(&gmac.aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_GmacSetKey(&gmac, key16, sizeof(key16));
if (ret == 0) {
ret = wc_GmacUpdate(&gmac, iv, sizeof(iv), authIn, sizeof(authIn),
tagOut, sizeof(tag1));
if (ret == 0) {
ret = XMEMCMP(tag1, tagOut, sizeof(tag1));
}
if (ret == 0) {
XMEMSET(&gmac, 0, sizeof(Gmac));
ret = wc_GmacSetKey(&gmac, key24, sizeof(key24)/sizeof(byte));
}
if (ret == 0) {
ret = wc_GmacUpdate(&gmac, iv2, sizeof(iv2), authIn2,
sizeof(authIn2), tagOut2, sizeof(tag2));
}
if (ret == 0) {
ret = XMEMCMP(tagOut2, tag2, sizeof(tag2));
}
if (ret == 0) {
XMEMSET(&gmac, 0, sizeof(Gmac));
ret = wc_GmacSetKey(&gmac, key32, sizeof(key32)/sizeof(byte));
}
if (ret == 0) {
ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3,
sizeof(authIn3), tagOut3, sizeof(tag3));
}
if (ret == 0) {
ret = XMEMCMP(tag3, tagOut3, sizeof(tag3));
}
}
/*Pass bad args. */
if (ret == 0) {
ret = wc_GmacUpdate(NULL, iv3, sizeof(iv3), authIn3,
sizeof(authIn3), tagOut3, sizeof(tag3));
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3,
sizeof(authIn3), tagOut3, sizeof(tag3) - 5);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3,
sizeof(authIn3), tagOut3, sizeof(tag3) + 1);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
wc_AesFree(&gmac.aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_GmacUpdate */
/*
* testing wc_CamelliaSetKey
*/
static int test_wc_CamelliaSetKey (void)
{
int ret = 0;
#ifdef HAVE_CAMELLIA
Camellia camellia;
/*128-bit key*/
static const byte key16[] =
{
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10
};
/* 192-bit key */
static const byte key24[] =
{
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
/* 256-bit key */
static const byte key32[] =
{
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff
};
static const byte iv[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
printf(testingFmt, "wc_CamelliaSetKey()");
ret = wc_CamelliaSetKey(&camellia, key16, (word32)sizeof(key16), iv);
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key16,
(word32)sizeof(key16), NULL);
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key24,
(word32)sizeof(key24), iv);
}
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key24,
(word32)sizeof(key24), NULL);
}
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key32,
(word32)sizeof(key32), iv);
}
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key32,
(word32)sizeof(key32), NULL);
}
}
/* Bad args. */
if (ret == 0) {
ret = wc_CamelliaSetKey(NULL, key32, (word32)sizeof(key32), iv);
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
} /* END bad args. */
#endif
return ret;
} /* END test_wc_CammeliaSetKey */
/*
* Testing wc_CamelliaSetIV()
*/
static int test_wc_CamelliaSetIV (void)
{
int ret = 0;
#ifdef HAVE_CAMELLIA
Camellia camellia;
static const byte iv[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
printf(testingFmt, "wc_CamelliaSetIV()");
ret = wc_CamelliaSetIV(&camellia, iv);
if (ret == 0) {
ret = wc_CamelliaSetIV(&camellia, NULL);
}
/* Bad args. */
if (ret == 0) {
ret = wc_CamelliaSetIV(NULL, NULL);
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /*END test_wc_CamelliaSetIV*/
/*
* Test wc_CamelliaEncryptDirect and wc_CamelliaDecryptDirect
*/
static int test_wc_CamelliaEncryptDecryptDirect (void)
{
int ret = 0;
#ifdef HAVE_CAMELLIA
Camellia camellia;
static const byte key24[] =
{
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
static const byte iv[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
static const byte plainT[] =
{
0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A
};
byte enc[sizeof(plainT)];
byte dec[sizeof(enc)];
int camE = WOLFSSL_FATAL_ERROR;
int camD = WOLFSSL_FATAL_ERROR;
/*Init stack variables.*/
XMEMSET(enc, 0, 16);
XMEMSET(enc, 0, 16);
ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), iv);
if (ret == 0) {
ret = wc_CamelliaEncryptDirect(&camellia, enc, plainT);
if (ret == 0) {
ret = wc_CamelliaDecryptDirect(&camellia, dec, enc);
if (XMEMCMP(plainT, dec, CAMELLIA_BLOCK_SIZE)) {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
printf(testingFmt, "wc_CamelliaEncryptDirect()");
/* Pass bad args. */
if (ret == 0) {
camE = wc_CamelliaEncryptDirect(NULL, enc, plainT);
if (camE == BAD_FUNC_ARG) {
camE = wc_CamelliaEncryptDirect(&camellia, NULL, plainT);
}
if (camE == BAD_FUNC_ARG) {
camE = wc_CamelliaEncryptDirect(&camellia, enc, NULL);
}
if (camE == BAD_FUNC_ARG) {
camE = 0;
} else {
camE = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, camE == 0 ? passed : failed);
if (camE != 0) {
return camE;
}
printf(testingFmt, "wc_CamelliaDecryptDirect()");
if (ret == 0) {
camD = wc_CamelliaDecryptDirect(NULL, dec, enc);
if (camD == BAD_FUNC_ARG) {
camD = wc_CamelliaDecryptDirect(&camellia, NULL, enc);
}
if (camD == BAD_FUNC_ARG) {
camD = wc_CamelliaDecryptDirect(&camellia, dec, NULL);
}
if (camD == BAD_FUNC_ARG) {
camD = 0;
} else {
camD = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, camD == 0 ? passed : failed);
if (camD != 0) {
return camD;
}
#endif
return ret;
} /* END test-wc_CamelliaEncryptDecryptDirect */
/*
* Testing wc_CamelliaCbcEncrypt and wc_CamelliaCbcDecrypt
*/
static int test_wc_CamelliaCbcEncryptDecrypt (void)
{
int ret = 0;
#ifdef HAVE_CAMELLIA
Camellia camellia;
static const byte key24[] =
{
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
static const byte plainT[] =
{
0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A
};
byte enc[CAMELLIA_BLOCK_SIZE];
byte dec[CAMELLIA_BLOCK_SIZE];
int camCbcE = WOLFSSL_FATAL_ERROR;
int camCbcD = WOLFSSL_FATAL_ERROR;
/* Init stack variables. */
XMEMSET(enc, 0, CAMELLIA_BLOCK_SIZE);
XMEMSET(enc, 0, CAMELLIA_BLOCK_SIZE);
ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), NULL);
if (ret == 0) {
ret = wc_CamelliaCbcEncrypt(&camellia, enc, plainT, CAMELLIA_BLOCK_SIZE);
if (ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (ret == 0) {
ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), NULL);
if (ret == 0) {
ret = wc_CamelliaCbcDecrypt(&camellia, dec, enc, CAMELLIA_BLOCK_SIZE);
if (XMEMCMP(plainT, dec, CAMELLIA_BLOCK_SIZE)) {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
printf(testingFmt, "wc_CamelliaCbcEncrypt");
/* Pass in bad args. */
if (ret == 0) {
camCbcE = wc_CamelliaCbcEncrypt(NULL, enc, plainT, CAMELLIA_BLOCK_SIZE);
if (camCbcE == BAD_FUNC_ARG) {
camCbcE = wc_CamelliaCbcEncrypt(&camellia, NULL, plainT,
CAMELLIA_BLOCK_SIZE);
}
if (camCbcE == BAD_FUNC_ARG) {
camCbcE = wc_CamelliaCbcEncrypt(&camellia, enc, NULL,
CAMELLIA_BLOCK_SIZE);
}
if (camCbcE == BAD_FUNC_ARG) {
camCbcE = 0;
} else {
camCbcE = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, camCbcE == 0 ? passed : failed);
if (camCbcE != 0) {
return camCbcE;
}
printf(testingFmt, "wc_CamelliaCbcDecrypt()");
if (ret == 0) {
camCbcD = wc_CamelliaCbcDecrypt(NULL, dec, enc, CAMELLIA_BLOCK_SIZE);
if (camCbcD == BAD_FUNC_ARG) {
camCbcD = wc_CamelliaCbcDecrypt(&camellia, NULL, enc,
CAMELLIA_BLOCK_SIZE);
}
if (camCbcD == BAD_FUNC_ARG) {
camCbcD = wc_CamelliaCbcDecrypt(&camellia, dec, NULL,
CAMELLIA_BLOCK_SIZE);
}
if (camCbcD == BAD_FUNC_ARG) {
camCbcD = 0;
} else {
camCbcD = WOLFSSL_FATAL_ERROR;
}
} /* END bad args. */
printf(resultFmt, camCbcD == 0 ? passed : failed);
if (camCbcD != 0) {
return camCbcD;
}
#endif
return ret;
} /* END test_wc_CamelliaCbcEncryptDecrypt */
/*
* Testing wc_RabbitSetKey()
*/
static int test_wc_RabbitSetKey (void)
{
int ret = 0;
#ifndef NO_RABBIT
Rabbit rabbit;
const char* key = "\xAC\xC3\x51\xDC\xF1\x62\xFC\x3B"
"\xFE\x36\x3D\x2E\x29\x13\x28\x91";
const char* iv = "\x59\x7E\x26\xC1\x75\xF5\x73\xC3";
printf(testingFmt, "wc_RabbitSetKey()");
ret = wc_RabbitSetKey(&rabbit, (byte*)key, (byte*)iv);
/* Test bad args. */
if (ret == 0) {
ret = wc_RabbitSetKey(NULL, (byte*)key, (byte*)iv);
if (ret == BAD_FUNC_ARG) {
ret = wc_RabbitSetKey(&rabbit, NULL, (byte*)iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RabbitSetKey(&rabbit, (byte*)key, NULL);
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RabbitSetKey */
/*
* Test wc_RabbitProcess()
*/
static int test_wc_RabbitProcess (void)
{
int ret = 0;
#ifndef NO_RABBIT
Rabbit enc, dec;
byte cipher[25];
byte plain[25];
const char* key = "\xAC\xC3\x51\xDC\xF1\x62\xFC\x3B"
"\xFE\x36\x3D\x2E\x29\x13\x28\x91";
const char* iv = "\x59\x7E\x26\xC1\x75\xF5\x73\xC3";
const char* input = "Everyone gets Friday off.";
unsigned long int inlen = XSTRLEN(input);
/* Initialize stack variables. */
XMEMSET(cipher, 0, sizeof(cipher));
XMEMSET(plain, 0, sizeof(plain));
printf(testingFmt, "wc_RabbitProcess()");
ret = wc_RabbitSetKey(&enc, (byte*)key, (byte*)iv);
if (ret == 0) {
ret = wc_RabbitSetKey(&dec, (byte*)key, (byte*)iv);
}
if (ret == 0) {
ret = wc_RabbitProcess(&enc, cipher, (byte*)input, (word32)inlen);
}
if (ret == 0) {
ret = wc_RabbitProcess(&dec, plain, cipher, (word32)inlen);
if (ret != 0 || XMEMCMP(input, plain, inlen)) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_RabbitProcess(NULL, plain, cipher, (word32)inlen);
if (ret == BAD_FUNC_ARG) {
ret = wc_RabbitProcess(&dec, NULL, cipher, (word32)inlen);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RabbitProcess(&dec, plain, NULL, (word32)inlen);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RabbitProcess */
/*
* Testing wc_Arc4SetKey()
*/
static int test_wc_Arc4SetKey (void)
{
int ret = 0;
#ifndef NO_RC4
Arc4 arc;
const char* key[] =
{
"\x01\x23\x45\x67\x89\xab\xcd\xef"
};
int keyLen = 8;
printf(testingFmt, "wc_Arch4SetKey()");
ret = wc_Arc4SetKey(&arc, (byte*)key, keyLen);
/* Test bad args. */
if (ret == 0) {
ret = wc_Arc4SetKey(NULL, (byte*)key, keyLen);
if (ret == BAD_FUNC_ARG) {
ret = wc_Arc4SetKey(&arc, NULL, keyLen);
}
if (ret == BAD_FUNC_ARG) {
/* Exits normally if keyLen is incorrect. */
ret = wc_Arc4SetKey(&arc, (byte*)key, 0);
} else {
ret = WOLFSSL_FATAL_ERROR;
}
} /* END test bad args. */
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Arc4SetKey */
/*
* Testing wc_Arc4Process for ENC/DEC.
*/
static int test_wc_Arc4Process (void)
{
int ret = 0;
#ifndef NO_RC4
Arc4 enc, dec;
const char* key = "\x01\x23\x45\x67\x89\xab\xcd\xef";
const char* input = "\x01\x23\x45\x67\x89\xab\xcd\xef";
byte cipher[8];
byte plain[8];
/* Init stack variables */
XMEMSET(cipher, 0, sizeof(cipher));
XMEMSET(plain, 0, sizeof(plain));
/* Use for async. */
ret = wc_Arc4Init(&enc, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_Arc4Init(&dec, NULL, INVALID_DEVID);
}
printf(testingFmt, "wc_Arc4Process()");
if (ret == 0) {
ret = wc_Arc4SetKey(&enc, (byte*)key, sizeof(key)/sizeof(char));
}
if (ret == 0) {
ret = wc_Arc4SetKey(&dec, (byte*)key, sizeof(key)/sizeof(char));
}
if (ret == 0) {
ret = wc_Arc4Process(&enc, cipher, (byte*)input,
(word32)(sizeof(input)/sizeof(char)));
}
if (ret == 0) {
ret = wc_Arc4Process(&dec, plain, cipher,
(word32)(sizeof(input)/sizeof(char)));
if (ret != 0 || XMEMCMP(plain, input,
(unsigned int)(sizeof(input)/sizeof(char)))) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
/* Bad args. */
if (ret == 0) {
ret = wc_Arc4Process(NULL, plain, cipher,
(word32)(sizeof(input)/sizeof(char)));
if (ret == BAD_FUNC_ARG) {
ret = wc_Arc4Process(&dec, NULL, cipher,
(word32)(sizeof(input)/sizeof(char)));
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Arc4Process(&dec, plain, NULL,
(word32)(sizeof(input)/sizeof(char)));
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
wc_Arc4Free(&enc);
wc_Arc4Free(&dec);
#endif
return ret;
}/* END test_wc_Arc4Process */
/*
* Testing wc_Init RsaKey()
*/
static int test_wc_InitRsaKey (void)
{
int ret = 0;
#ifndef NO_RSA
RsaKey key;
printf(testingFmt, "wc_InitRsaKey()");
ret = wc_InitRsaKey(&key, NULL);
/* Test bad args. */
if (ret == 0) {
ret = wc_InitRsaKey(NULL, NULL);
#ifndef HAVE_USER_RSA
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
#else
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
#endif
ret = WOLFSSL_FATAL_ERROR;
}
} /* end if */
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_InitRsaKey */
/*
* Testing wc_RsaPrivateKeyDecode()
*/
static int test_wc_RsaPrivateKeyDecode (void)
{
int ret = 0;
#if !defined(NO_RSA) && (defined(USE_CERT_BUFFERS_1024)\
|| defined(USE_CERT_BUFFERS_2048)) && !defined(HAVE_FIPS)
RsaKey key;
byte* tmp;
word32 idx = 0;
int bytes = 0;
printf(testingFmt, "wc_RsaPrivateKeyDecode()");
tmp = (byte*)XMALLOC(FOURK_BUF, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
ret = WOLFSSL_FATAL_ERROR;
}
if (ret == 0) {
ret = wc_InitRsaKey(&key, NULL);
}
if (ret == 0) {
#ifdef USE_CERT_BUFFERS_1024
XMEMCPY(tmp, client_key_der_1024, sizeof_client_key_der_1024);
bytes = sizeof_client_key_der_1024;
#else
XMEMCPY(tmp, client_key_der_2048, sizeof_client_key_der_2048);
bytes = sizeof_client_key_der_2048;
#endif /* Use cert buffers. */
ret = wc_RsaPrivateKeyDecode(tmp, &idx, &key, (word32)bytes);
}
#ifndef HAVE_USER_RSA
/* Test bad args. */
if (ret == 0) {
ret = wc_RsaPrivateKeyDecode(NULL, &idx, &key, (word32)bytes);
if (ret == ASN_PARSE_E) {
ret = wc_RsaPrivateKeyDecode(tmp, NULL, &key, (word32)bytes);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaPrivateKeyDecode(tmp, &idx, NULL, (word32)bytes);
}
if (ret == ASN_PARSE_E) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Test bad args. User RSA. */
if (ret == 0) {
ret = wc_RsaPrivateKeyDecode(NULL, &idx, &key, (word32)bytes);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPrivateKeyDecode(tmp, NULL, &key, (word32)bytes);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPrivateKeyDecode(tmp, &idx, NULL, (word32)bytes);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaPrivateKeyDecode */
/*
* Testing wc_RsaPublicKeyDecode()
*/
static int test_wc_RsaPublicKeyDecode (void)
{
int ret = 0;
#if !defined(NO_RSA) && (defined(USE_CERT_BUFFERS_1024)\
|| defined(USE_CERT_BUFFERS_2048)) && !defined(HAVE_FIPS)
RsaKey keyPub;
byte* tmp;
word32 idx = 0;
int bytes = 0;
tmp = (byte*)XMALLOC(GEN_BUF, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
ret = WOLFSSL_FATAL_ERROR;
}
if (ret == 0) {
ret = wc_InitRsaKey(&keyPub, NULL);
}
if (ret == 0) {
#ifdef USE_CERT_BUFFERS_1024
XMEMCPY(tmp, client_keypub_der_1024, sizeof_client_keypub_der_1024);
bytes = sizeof_client_keypub_der_1024;
#else
XMEMCPY(tmp, client_keypub_der_2048, sizeof_client_keypub_der_2048);
bytes = sizeof_client_keypub_der_2048;
#endif
printf(testingFmt, "wc_RsaPublicKeyDecode()");
ret = wc_RsaPublicKeyDecode(tmp, &idx, &keyPub, (word32)bytes);
}
#ifndef HAVE_USER_RSA
/* Pass in bad args. */
if (ret == 0) {
ret = wc_RsaPublicKeyDecode(NULL, &idx, &keyPub, (word32)bytes);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaPublicKeyDecode(tmp, NULL, &keyPub, (word32)bytes);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaPublicKeyDecode(tmp, &idx, NULL, (word32)bytes);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass in bad args. */
if (ret == 0) {
ret = wc_RsaPublicKeyDecode(NULL, &idx, &keyPub, (word32)bytes);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPublicKeyDecode(tmp, NULL, &keyPub, (word32)bytes);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPublicKeyDecode(tmp, &idx, NULL, (word32)bytes);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (tmp != NULL) {
XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
if (wc_FreeRsaKey(&keyPub) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaPublicKeyDecode */
/*
* Testing wc_RsaPublicKeyDecodeRaw()
*/
static int test_wc_RsaPublicKeyDecodeRaw (void)
{
int ret = 0;
#if !defined(NO_RSA)
RsaKey key;
const byte n = 0x23;
const byte e = 0x03;
int nSz = sizeof(n);
int eSz = sizeof(e);
printf(testingFmt, "wc_RsaPublicKeyDecodeRaw()");
ret = wc_InitRsaKey(&key, NULL);
if (ret == 0) {
ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, &key);
}
#ifndef HAVE_USER_RSA
/* Pass in bad args. */
if (ret == 0) {
ret = wc_RsaPublicKeyDecodeRaw(NULL, nSz, &e, eSz, &key);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, NULL, eSz, &key);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass in bad args. User RSA. */
if (ret == 0) {
ret = wc_RsaPublicKeyDecodeRaw(NULL, nSz, &e, eSz, &key);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, NULL, eSz, &key);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, NULL);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaPublicKeyDecodeRaw */
/*
* Testing wc_MakeRsaKey()
*/
static int test_wc_MakeRsaKey (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey genKey;
WC_RNG rng;
printf(testingFmt, "wc_MakeRsaKey()");
ret = wc_InitRsaKey(&genKey, NULL);
if (ret == 0) {
ret = wc_InitRng(&rng);
if (ret == 0) {
ret = wc_MakeRsaKey(&genKey, 1024, WC_RSA_EXPONENT, &rng);
if (ret == 0 && wc_FreeRsaKey(&genKey) != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
#ifndef HAVE_USER_RSA
/* Test bad args. */
if (ret == 0) {
ret = wc_MakeRsaKey(NULL, 1024, WC_RSA_EXPONENT, &rng);
if (ret == BAD_FUNC_ARG) {
ret = wc_MakeRsaKey(&genKey, 1024, WC_RSA_EXPONENT, NULL);
}
if (ret == BAD_FUNC_ARG) {
/* e < 3 */
ret = wc_MakeRsaKey(&genKey, 1024, 2, &rng);
}
if (ret == BAD_FUNC_ARG) {
/* e & 1 == 0 */
ret = wc_MakeRsaKey(&genKey, 1024, 6, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Test bad args. */
if (ret == 0) {
ret = wc_MakeRsaKey(NULL, 1024, WC_RSA_EXPONENT, &rng);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_MakeRsaKey(&genKey, 1024, WC_RSA_EXPONENT, NULL);
}
if (ret == USER_CRYPTO_ERROR) {
/* e < 3 */
ret = wc_MakeRsaKey(&genKey, 1024, 2, &rng);
}
if (ret == USER_CRYPTO_ERROR) {
/* e & 1 == 0 */
ret = wc_MakeRsaKey(&genKey, 1024, 6, &rng);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_MakeRsaKey */
/*
* Testing wc_SetKeyUsage()
*/
static int test_wc_SetKeyUsage (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_CERT_EXT) && !defined(HAVE_FIPS)
Cert myCert;
ret = wc_InitCert(&myCert);
printf(testingFmt, "wc_SetKeyUsage()");
if (ret == 0) {
ret = wc_SetKeyUsage(&myCert, "keyEncipherment,keyAgreement");
if (ret == 0) {
ret = wc_SetKeyUsage(&myCert, "digitalSignature,nonRepudiation");
}
if (ret == 0) {
ret = wc_SetKeyUsage(&myCert, "contentCommitment,encipherOnly");
}
if (ret == 0) {
ret = wc_SetKeyUsage(&myCert, "decipherOnly");
}
if (ret == 0) {
ret = wc_SetKeyUsage(&myCert, "cRLSign,keyCertSign");
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_SetKeyUsage(NULL, "decipherOnly");
if (ret == BAD_FUNC_ARG) {
ret = wc_SetKeyUsage(&myCert, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_SetKeyUsage(&myCert, "");
}
if (ret == KEYUSAGE_E) {
ret = wc_SetKeyUsage(&myCert, ",");
}
if (ret == KEYUSAGE_E) {
ret = wc_SetKeyUsage(&myCert, "digitalSignature, cRLSign");
}
if (ret == KEYUSAGE_E) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_SetKeyUsage */
/*
* Testing wc_RsaKeyToDer()
*/
static int test_wc_RsaKeyToDer (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey genKey;
WC_RNG rng;
byte* der;
word32 derSz = 611;
/* (2 x 128) + 2 (possible leading 00) + (5 x 64) + 5 (possible leading 00)
+ 3 (e) + 8 (ASN tag) + 10 (ASN length) + 4 seqSz + 3 version */
der = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL) {
ret = WOLFSSL_FATAL_ERROR;
}
/* Init structures. */
if (ret == 0) {
ret = wc_InitRsaKey(&genKey, NULL);
}
if (ret == 0) {
ret = wc_InitRng(&rng);
}
/* Make key. */
if (ret == 0) {
ret = wc_MakeRsaKey(&genKey, 1024, WC_RSA_EXPONENT, &rng);
if (ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(testingFmt, "wc_RsaKeyToDer()");
if (ret == 0) {
ret = wc_RsaKeyToDer(&genKey, der, derSz);
if (ret > 0) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_USER_RSA
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaKeyToDer(NULL, der, FOURK_BUF);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaKeyToDer(&genKey, NULL, FOURK_BUF);
}
if (ret == BAD_FUNC_ARG) {
/* Try Public Key. */
genKey.type = 0;
ret = wc_RsaKeyToDer(&genKey, der, FOURK_BUF);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaKeyToDer(NULL, der, FOURK_BUF);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaKeyToDer(&genKey, NULL, FOURK_BUF);
}
if (ret == USER_CRYPTO_ERROR) {
/* Try Public Key. */
genKey.type = 0;
ret = wc_RsaKeyToDer(&genKey, der, FOURK_BUF);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (der != NULL) {
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
if (wc_FreeRsaKey(&genKey) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaKeyToDer */
/*
* Testing wc_RsaKeyToPublicDer()
*/
static int test_wc_RsaKeyToPublicDer (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey key;
WC_RNG rng;
byte* der;
word32 derLen = 162;
der = (byte*)XMALLOC(derLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL) {
ret = WOLFSSL_FATAL_ERROR;
}
if (ret == 0) {
ret = wc_InitRsaKey(&key, NULL);
}
if (ret == 0) {
ret = wc_InitRng(&rng);
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
}
printf(testingFmt, "wc_RsaKeyToPublicDer()");
if (ret == 0) {
ret = wc_RsaKeyToPublicDer(&key, der, derLen);
if (ret >= 0) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_USER_RSA
/* Pass in bad args. */
if (ret == 0) {
ret = wc_RsaKeyToPublicDer(NULL, der, derLen);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaKeyToPublicDer(&key, NULL, derLen);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaKeyToPublicDer(&key, der, -1);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass in bad args. */
if (ret == 0) {
ret = wc_RsaKeyToPublicDer(NULL, der, derLen);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaKeyToPublicDer(&key, NULL, derLen);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaKeyToPublicDer(&key, der, -1);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (der != NULL) {
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaKeyToPublicDer */
/*
* Testing wc_RsaPublicEncrypt() and wc_RsaPrivateDecrypt()
*/
static int test_wc_RsaPublicEncryptDecrypt (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey key;
WC_RNG rng;
const char* inStr = "Everyone gets Friday off.";
word32 cipherLen = 128;
word32 plainLen = 25;
word32 inLen = (word32)XSTRLEN(inStr);
DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL);
DECLARE_VAR(plain, byte, plainLen, NULL);
DECLARE_VAR(cipher, byte, cipherLen, NULL);
ret = wc_InitRsaKey(&key, NULL);
if (ret == 0) {
ret = wc_InitRng(&rng);
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
}
/* Encrypt. */
printf(testingFmt, "wc_RsaPublicEncrypt()");
if (ret == 0) {
ret = wc_RsaPublicEncrypt(in, inLen, cipher, cipherLen, &key, &rng);
if (ret >= 0) {
cipherLen = ret;
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Pass bad args. */
/* Tests PsaPublicEncryptEx() which, is tested by another fn. No need dup.*/
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
/* Decrypt */
printf(testingFmt, "wc_RsaPrivateDecrypt()");
#if defined(WC_RSA_BLINDING)
/* Bind rng */
if (ret == 0) {
ret = wc_RsaSetRNG(&key, &rng);
}
#endif
if (ret == 0) {
ret = wc_RsaPrivateDecrypt(cipher, cipherLen, plain, plainLen, &key);
}
if (ret >= 0) {
ret = XMEMCMP(plain, inStr, plainLen);
}
/* Pass in bad args. */
/* Tests RsaPrivateDecryptEx() which, is tested by another fn. No need dup.*/
FREE_VAR(in, NULL);
FREE_VAR(plain, NULL);
FREE_VAR(cipher, NULL);
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaPublicEncryptDecrypt */
/*
* Testing wc_RsaPrivateDecrypt_ex() and wc_RsaPrivateDecryptInline_ex()
*/
static int test_wc_RsaPublicEncryptDecrypt_ex (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && !defined(HAVE_FIPS)\
&& !defined(WC_NO_RSA_OAEP) && !defined(HAVE_USER_RSA)\
&& !defined(NO_SHA)
RsaKey key;
WC_RNG rng;
const char* inStr = "Everyone gets Friday off.";
word32 inLen = (word32)XSTRLEN(inStr);
const word32 cipherSz = 128;
const word32 plainSz = 25;
byte* res = NULL;
int idx = 0;
DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL);
DECLARE_VAR(plain, byte, plainSz, NULL);
DECLARE_VAR(cipher, byte, cipherSz, NULL);
/* Initialize stack structures. */
XMEMSET(&rng, 0, sizeof(rng));
XMEMSET(&key, 0, sizeof(key));
ret = wc_InitRsaKey_ex(&key, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_InitRng(&rng);
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
}
/* Encrypt */
printf(testingFmt, "wc_RsaPublicEncrypt_ex()");
if (ret == 0) {
ret = wc_RsaPublicEncrypt_ex(in, inLen, cipher, cipherSz, &key, &rng,
WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA, WC_MGF1SHA1, NULL, 0);
if (ret >= 0) {
idx = ret;
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
/*Pass bad args.*/
/* Tests RsaPublicEncryptEx again. No need duplicate. */
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
/* Decrypt */
printf(testingFmt, "wc_RsaPrivateDecrypt_ex()");
#if defined(WC_RSA_BLINDING)
if (ret == 0) {
ret = wc_RsaSetRNG(&key, &rng);
}
#endif
if (ret == 0) {
ret = wc_RsaPrivateDecrypt_ex(cipher, (word32)idx,
plain, plainSz, &key, WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA,
WC_MGF1SHA1, NULL, 0);
}
if (ret >= 0) {
if (!XMEMCMP(plain, inStr, plainSz)) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
/*Pass bad args.*/
/* Tests RsaPrivateDecryptEx() again. No need duplicate. */
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
printf(testingFmt, "wc_RsaPrivateDecryptInline_ex()");
if (ret == 0) {
ret = wc_RsaPrivateDecryptInline_ex(cipher, (word32)idx,
&res, &key, WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA,
WC_MGF1SHA1, NULL, 0);
if (ret >= 0) {
if (!XMEMCMP(inStr, res, plainSz)) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
}
FREE_VAR(in, NULL);
FREE_VAR(plain, NULL);
FREE_VAR(cipher, NULL);
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaPublicEncryptDecrypt_ex */
/*
* Tesing wc_RsaSSL_Sign() and wc_RsaSSL_Verify()
*/
static int test_wc_RsaSSL_SignVerify (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey key;
WC_RNG rng;
const char* inStr = "Everyone gets Friday off.";
const word32 outSz = 128;
const word32 plainSz = 25;
word32 inLen = (word32)XSTRLEN(inStr);
word32 idx = 0;
DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL);
DECLARE_VAR(out, byte, outSz, NULL);
DECLARE_VAR(plain, byte, plainSz, NULL);
ret = wc_InitRsaKey(&key, NULL);
if (ret == 0) {
ret = wc_InitRng(&rng);
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
}
/* Sign. */
printf(testingFmt, "wc_RsaSSL_Sign()");
if (ret == 0) {
ret = wc_RsaSSL_Sign(in, inLen, out, outSz, &key, &rng);
if (ret == (int)outSz) {
idx = ret;
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_USER_RSA
/* Test bad args. */
if (ret == 0) {
ret = wc_RsaSSL_Sign(NULL, inLen, out, outSz, &key, &rng);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Sign(in, 0, out, outSz, &key, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Sign(in, inLen, NULL, outSz, &key, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Sign(in, inLen, out, outSz, NULL, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Test bad args. */
if (ret == 0) {
ret = wc_RsaSSL_Sign(NULL, inLen, out, outSz, &key, &rng);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Sign(in, 0, out, outSz, &key, &rng);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Sign(in, inLen, NULL, outSz, &key, &rng);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Sign(in, inLen, out, outSz, NULL, &rng);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
/* Verify. */
printf(testingFmt, "wc_RsaSSL_Verify()");
if (ret == 0) {
ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, &key);
if (ret == (int)inLen) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#ifndef HAVE_USER_RSA
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaSSL_Verify(NULL, idx, plain, plainSz, &key);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Verify(out, 0, plain, plainSz, &key);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Verify(out, idx, NULL, plainSz, &key);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaSSL_Verify(NULL, idx, plain, plainSz, &key);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Verify(out, 0, plain, plainSz, &key);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Verify(out, idx, NULL, plainSz, &key);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, NULL);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
FREE_VAR(in, NULL);
FREE_VAR(out, NULL);
FREE_VAR(plain, NULL);
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaSSL_SignVerify */
/*
* Testing wc_RsaEncryptSize()
*/
static int test_wc_RsaEncryptSize (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey key;
WC_RNG rng;
int enc128 = 128;
int enc512 = 512;
ret = wc_InitRsaKey(&key, NULL);
if (ret == 0) {
ret = wc_InitRng(&rng);
}
printf(testingFmt, "wc_RsaEncryptSize()");
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
if (ret == 0) {
ret = wc_RsaEncryptSize(&key);
}
if (ret == enc128) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, FOURK_BUF, WC_RSA_EXPONENT, &rng);
if (ret == 0) {
ret = wc_RsaEncryptSize(&key);
}
if (ret == enc512) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
/* Pass in bad arg. */
if (ret == 0) {
ret = wc_RsaEncryptSize(NULL);
#ifndef HAVE_USER_RSA
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
#endif
}
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaEncryptSize*/
/*
* Testing wc_RsaFlattenPublicKey()
*/
static int test_wc_RsaFlattenPublicKey (void)
{
int ret = 0;
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
RsaKey key;
WC_RNG rng;
byte e[256];
byte n[256];
word32 eSz = sizeof(e);
word32 nSz = sizeof(n);
ret = wc_InitRsaKey(&key, NULL);
if (ret == 0) {
ret = wc_InitRng(&rng);
}
if (ret == 0) {
ret = wc_MakeRsaKey(&key, 1024, WC_RSA_EXPONENT, &rng);
if (ret >= 0) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(testingFmt, "wc_RsaFlattenPublicKey()");
if (ret == 0) {
ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, &nSz);
}
#ifndef HAVE_USER_RSA
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaFlattenPublicKey(NULL, e, &eSz, n, &nSz);
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaFlattenPublicKey(&key, NULL, &eSz, n, &nSz);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaFlattenPublicKey(&key, e, NULL, n, &nSz);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaFlattenPublicKey(&key, e, &eSz, NULL, &nSz);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#else
/* Pass bad args. */
if (ret == 0) {
ret = wc_RsaFlattenPublicKey(NULL, e, &eSz, n, &nSz);
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaFlattenPublicKey(&key, NULL, &eSz, n, &nSz);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaFlattenPublicKey(&key, e, NULL, n, &nSz);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaFlattenPublicKey(&key, e, &eSz, NULL, &nSz);
}
if (ret == USER_CRYPTO_ERROR) {
ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, NULL);
}
if (ret == USER_CRYPTO_ERROR) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
if (wc_FreeRsaKey(&key) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
if (wc_FreeRng(&rng) || ret != 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_RsaFlattenPublicKey */
/*
* unit test for wc_AesCcmSetKey
*/
static int test_wc_AesCcmSetKey (void)
{
int ret = 0;
#ifdef HAVE_AESCCM
Aes aes;
const byte key16[] =
{
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf
};
const byte key24[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
};
const byte key32[] =
{
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66
};
printf(testingFmt, "wc_AesCcmSetKey()");
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16));
if (ret == 0) {
ret = wc_AesCcmSetKey(&aes, key24, sizeof(key24));
if (ret == 0) {
ret = wc_AesCcmSetKey(&aes, key32, sizeof(key32));
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16) - 1);
if (ret == BAD_FUNC_ARG) {
ret = wc_AesCcmSetKey(&aes, key24, sizeof(key24) - 1);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_AesCcmSetKey(&aes, key32, sizeof(key32) - 1);
}
if (ret != BAD_FUNC_ARG) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
}
wc_AesFree(&aes);
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_AesCcmSetKey */
/*
* Unit test function for wc_AesCcmEncrypt and wc_AesCcmDecrypt
*/
static int test_wc_AesCcmEncryptDecrypt (void)
{
int ret = 0;
#ifdef HAVE_AESCCM
Aes aes;
const byte key16[] =
{
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf
};
/* plaintext */
const byte plainT[] =
{
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e
};
/* nonce */
const byte iv[] =
{
0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x00, 0xa0,
0xa1, 0xa2, 0xa3, 0xa4, 0xa5
};
const byte c[] = /* cipher text. */
{
0x58, 0x8c, 0x97, 0x9a, 0x61, 0xc6, 0x63, 0xd2,
0xf0, 0x66, 0xd0, 0xc2, 0xc0, 0xf9, 0x89, 0x80,
0x6d, 0x5f, 0x6b, 0x61, 0xda, 0xc3, 0x84
};
const byte t[] = /* Auth tag */
{
0x17, 0xe8, 0xd1, 0x2c, 0xfd, 0xf9, 0x26, 0xe0
};
const byte authIn[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
};
byte cipherOut[sizeof(plainT)];
byte authTag[sizeof(t)];
int ccmE = WOLFSSL_FATAL_ERROR;
#ifdef HAVE_AES_DECRYPT
int ccmD = WOLFSSL_FATAL_ERROR;
byte plainOut[sizeof(cipherOut)];
#endif
ret = wc_AesInit(&aes, NULL, INVALID_DEVID);
if (ret != 0)
return ret;
ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16));
if (ret == 0) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn , sizeof(authIn));
if ((XMEMCMP(cipherOut, c, sizeof(c)) && ccmE == 0) ||
XMEMCMP(t, authTag, sizeof(t))) {
ccmE = WOLFSSL_FATAL_ERROR;
ret = WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_AES_DECRYPT
if (ret == 0) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut,
sizeof(plainOut), iv, sizeof(iv),
authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (XMEMCMP(plainOut, plainT, sizeof(plainT)) && ccmD == 0) {
ccmD = WOLFSSL_FATAL_ERROR;
}
#endif
}
printf(testingFmt, "wc_AesCcmEncrypt()");
/* Pass in bad args. Encrypt*/
if (ret == 0 && ccmE == 0) {
ccmE = wc_AesCcmEncrypt(NULL, cipherOut, plainT, sizeof(cipherOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn , sizeof(authIn));
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, NULL, plainT, sizeof(cipherOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, NULL, sizeof(cipherOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut),
NULL, sizeof(iv), authTag, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut),
iv, sizeof(iv), NULL, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut),
iv, sizeof(iv) + 1, authTag, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE == BAD_FUNC_ARG) {
ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut),
iv, sizeof(iv) - 7, authTag, sizeof(authTag),
authIn , sizeof(authIn));
}
if (ccmE != BAD_FUNC_ARG) {
ccmE = WOLFSSL_FATAL_ERROR;
} else {
ccmE = 0;
}
} /* End Encrypt */
printf(resultFmt, ccmE == 0 ? passed : failed);
if (ccmE != 0) {
wc_AesFree(&aes);
return ccmE;
}
#ifdef HAVE_AES_DECRYPT
printf(testingFmt, "wc_AesCcmDecrypt()");
/* Pass in bad args. Decrypt*/
if (ret == 0 && ccmD == 0) {
ccmD = wc_AesCcmDecrypt(NULL, plainOut, cipherOut, sizeof(plainOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn, sizeof(authIn));
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, NULL, cipherOut, sizeof(plainOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, NULL, sizeof(plainOut),
iv, sizeof(iv), authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut,
sizeof(plainOut), NULL, sizeof(iv),
authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut,
sizeof(plainOut), iv, sizeof(iv), NULL,
sizeof(authTag), authIn, sizeof(authIn));
}
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut,
sizeof(plainOut), iv, sizeof(iv) + 1,
authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (ccmD == BAD_FUNC_ARG) {
ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut,
sizeof(plainOut), iv, sizeof(iv) - 7,
authTag, sizeof(authTag),
authIn, sizeof(authIn));
}
if (ccmD != BAD_FUNC_ARG) {
ccmD = WOLFSSL_FATAL_ERROR;
} else {
ccmD = 0;
}
} /* END Decrypt */
printf(resultFmt, ccmD == 0 ? passed : failed);
if (ccmD != 0) {
return ccmD;
}
#endif
wc_AesFree(&aes);
#endif /* HAVE_AESCCM */
return ret;
} /* END test_wc_AesCcmEncryptDecrypt */
/*
* Test wc_Hc128_SetKey()
*/
static int test_wc_Hc128_SetKey (void)
{
int ret = 0;
#ifdef HAVE_HC128
HC128 ctx;
const char* key = "\x80\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00";
const char* iv = "\x0D\x74\xDB\x42\xA9\x10\x77\xDE"
"\x45\xAC\x13\x7A\xE1\x48\xAF\x16";
printf(testingFmt, "wc_Hc128_SetKey()");
ret = wc_Hc128_SetKey(&ctx, (byte*)key, (byte*)iv);
/* Test bad args. */
if (ret == 0) {
ret = wc_Hc128_SetKey(NULL, (byte*)key, (byte*)iv);
if (ret == BAD_FUNC_ARG) {
ret = wc_Hc128_SetKey(&ctx, NULL, (byte*)iv);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Hc128_SetKey(&ctx, (byte*)key, NULL);
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Hc128_SetKey */
/*
* Testing wc_Hc128_Process()
*/
static int test_wc_Hc128_Process (void)
{
int ret = 0;
#ifdef HAVE_HC128
HC128 enc;
HC128 dec;
const char* key = "\x0F\x62\xB5\x08\x5B\xAE\x01\x54"
"\xA7\xFA\x4D\xA0\xF3\x46\x99\xEC";
const char* input = "Encrypt Hc128, and then Decrypt.";
size_t inlen = XSTRLEN(input);
byte cipher[inlen];
byte plain[inlen];
printf(testingFmt, "wc_Hc128_Process()");
ret = wc_Hc128_SetKey(&enc, (byte*)key, NULL);
if (ret == 0) {
ret = wc_Hc128_SetKey(&dec, (byte*)key, NULL);
}
if (ret == 0) {
ret = wc_Hc128_Process(&enc, cipher, (byte*)input, (word32)inlen);
if (ret == 0) {
ret = wc_Hc128_Process(&dec, plain, cipher, (word32)inlen);
}
}
/* Bad args. */
if (ret == 0) {
ret = wc_Hc128_Process(NULL, plain, cipher, (word32)inlen);
if (ret == BAD_FUNC_ARG) {
ret = wc_Hc128_Process(&dec, NULL, cipher, (word32)inlen);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_Hc128_Process(&dec, plain, NULL, (word32)inlen);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
#endif
return ret;
} /* END test_wc_Hc128_Process */
/*
* Testing wc_InitDsaKey()
*/
static int test_wc_InitDsaKey (void)
{
int ret = 0;
#ifndef NO_DSA
DsaKey key;
printf(testingFmt, "wc_InitDsaKey()");
ret = wc_InitDsaKey(&key);
/* Pass in bad args. */
if (ret == 0) {
ret = wc_InitDsaKey(NULL);
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
wc_FreeDsaKey(&key);
#endif
return ret;
} /* END test_wc_InitDsaKey */
/*
* Testing wc_DsaSign() and wc_DsaVerify()
*/
static int test_wc_DsaSignVerify (void)
{
int ret = 0;
#if !defined(NO_DSA)
DsaKey key;
WC_RNG rng;
wc_Sha sha;
byte signature[DSA_SIG_SIZE];
byte hash[WC_SHA_DIGEST_SIZE];
word32 idx = 0;
word32 bytes;
int answer;
#ifdef USE_CERT_BUFFERS_1024
byte tmp[ONEK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024);
bytes = sizeof_dsa_key_der_1024;
#elif defined(USE_CERT_BUFFERS_2048)
byte tmp[TWOK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048);
bytes = sizeof_dsa_key_der_2048;
#else
byte tmp[TWOK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
FILE* fp = fopen("./certs/dsa2048.der", "rb");
if (!fp) {
return WOLFSSL_BAD_FILE;
}
bytes = (word32) fread(tmp, 1, sizeof(tmp), fp);
fclose(fp);
#endif /* END USE_CERT_BUFFERS_1024 */
ret = wc_InitSha(&sha);
if (ret == 0) {
ret = wc_ShaUpdate(&sha, tmp, bytes);
if (ret == 0) {
ret = wc_ShaFinal(&sha, hash);
}
if (ret == 0) {
ret = wc_InitDsaKey(&key);
}
if (ret == 0) {
ret = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes);
}
if (ret == 0) {
ret = wc_InitRng(&rng);
}
}
printf(testingFmt, "wc_DsaSign()");
/* Sign. */
if (ret == 0) {
ret = wc_DsaSign(hash, signature, &key, &rng);
}
/* Test bad args. */
if (ret == 0) {
ret = wc_DsaSign(NULL, signature, &key, &rng);
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaSign(hash, NULL, &key, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaSign(hash, signature, NULL, &rng);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaSign(hash, signature, &key, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
if (ret != 0) {
return ret;
}
/* Verify. */
printf(testingFmt, "wc_DsaVerify()");
ret = wc_DsaVerify(hash, signature, &key, &answer);
if (ret != 0 || answer != 1) {
ret = WOLFSSL_FATAL_ERROR;
} else {
ret = 0;
}
/* Pass in bad args. */
if (ret == 0) {
ret = wc_DsaVerify(NULL, signature, &key, &answer);
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaVerify(hash, NULL, &key, &answer);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaVerify(hash, signature, NULL, &answer);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaVerify(hash, signature, &key, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (wc_FreeRng(&rng) && ret == 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
wc_FreeDsaKey(&key);
wc_ShaFree(&sha);
#endif
return ret;
} /* END test_wc_DsaSign */
/*
* Testing wc_DsaPrivateKeyDecode() and wc_DsaPublicKeyDecode()
*/
static int test_wc_DsaPublicPrivateKeyDecode (void)
{
int ret = 0;
#if !defined(NO_DSA)
DsaKey key;
word32 bytes;
word32 idx = 0;
int priv = WOLFSSL_FATAL_ERROR;
int pub = WOLFSSL_FATAL_ERROR;
#ifdef USE_CERT_BUFFERS_1024
byte tmp[ONEK_BUF];
XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024);
bytes = sizeof_dsa_key_der_1024;
#elif defined(USE_CERT_BUFFERS_2048)
byte tmp[TWOK_BUF];
XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048);
bytes = sizeof_dsa_key_der_2048;
#else
byte tmp[TWOK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
FILE* fp = fopen("./certs/dsa2048.der", "rb");
if (!fp) {
return WOLFSSL_BAD_FILE;
}
bytes = (word32) fread(tmp, 1, sizeof(tmp), fp);
fclose(fp);
#endif /* END USE_CERT_BUFFERS_1024 */
ret = wc_InitDsaKey(&key);
printf(testingFmt, "wc_DsaPrivateKeyDecode()");
if (ret == 0) {
priv = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes);
/* Test bad args. */
if (priv == 0) {
priv = wc_DsaPrivateKeyDecode(NULL, &idx, &key, bytes);
if (priv == BAD_FUNC_ARG) {
priv = wc_DsaPrivateKeyDecode(tmp, NULL, &key, bytes);
}
if (priv == BAD_FUNC_ARG) {
priv = wc_DsaPrivateKeyDecode(tmp, &idx, NULL, bytes);
}
if (priv == BAD_FUNC_ARG) {
priv = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes);
}
if (priv == ASN_PARSE_E) {
priv = 0;
} else {
priv = WOLFSSL_FATAL_ERROR;
}
}
} /* END Private Key */
if (ret == 0) {
wc_FreeDsaKey(&key);
ret = wc_InitDsaKey(&key);
}
printf(resultFmt, priv == 0 ? passed : failed);
printf(testingFmt, "wc_DsaPublicKeyDecode()");
if (ret == 0) {
idx = 0; /* Reset */
pub = wc_DsaPublicKeyDecode(tmp, &idx, &key, bytes);
/* Test bad args. */
if (pub == 0) {
pub = wc_DsaPublicKeyDecode(NULL, &idx, &key, bytes);
if (pub == BAD_FUNC_ARG) {
pub = wc_DsaPublicKeyDecode(tmp, NULL, &key, bytes);
}
if (pub == BAD_FUNC_ARG) {
pub = wc_DsaPublicKeyDecode(tmp, &idx, NULL, bytes);
}
if (pub == BAD_FUNC_ARG) {
pub = wc_DsaPublicKeyDecode(tmp, &idx, &key, bytes);
}
if (pub == ASN_PARSE_E) {
pub = 0;
} else {
pub = WOLFSSL_FATAL_ERROR;
}
}
} /* END Public Key */
printf(resultFmt, pub == 0 ? passed : failed);
wc_FreeDsaKey(&key);
#endif
return ret;
} /* END test_wc_DsaPublicPrivateKeyDecode */
/*
* Testing wc_MakeDsaKey() and wc_MakeDsaParameters()
*/
static int test_wc_MakeDsaKey (void)
{
int ret = 0;
#if !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN)
DsaKey genKey;
WC_RNG rng;
ret = wc_InitRng(&rng);
if (ret == 0) {
ret = wc_InitDsaKey(&genKey);
}
printf(testingFmt, "wc_MakeDsaParameters()");
if (ret == 0) {
ret = wc_MakeDsaParameters(&rng, ONEK_BUF, &genKey);
}
/* Test bad args. */
if (ret == 0) {
ret = wc_MakeDsaParameters(NULL, ONEK_BUF, &genKey);
if (ret == BAD_FUNC_ARG) {
ret = wc_MakeDsaParameters(&rng, ONEK_BUF, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = wc_MakeDsaParameters(&rng, ONEK_BUF + 1, &genKey);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
printf(resultFmt, ret == 0 ? passed : failed);
printf(testingFmt, "wc_MakeDsaKey()");
if (ret == 0) {
ret = wc_MakeDsaKey(&rng, &genKey);
}
/* Test bad args. */
if (ret == 0) {
ret = wc_MakeDsaKey(NULL, &genKey);
if (ret == BAD_FUNC_ARG) {
ret = wc_MakeDsaKey(&rng, NULL);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (wc_FreeRng(&rng) && ret == 0) {
ret = WOLFSSL_FAILURE;
}
printf(resultFmt, ret == 0 ? passed : failed);
wc_FreeDsaKey(&genKey);
#endif
return ret;
} /* END test_wc_MakeDsaKey */
/*
* Testing wc_DsaKeyToDer()
*/
static int test_wc_DsaKeyToDer (void)
{
int ret = 0;
#if !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN)
DsaKey genKey;
WC_RNG rng;
word32 bytes;
word32 idx = 0;
#ifdef USE_CERT_BUFFERS_1024
byte tmp[ONEK_BUF];
byte der[ONEK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
XMEMSET(der, 0, sizeof(der));
XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024);
bytes = sizeof_dsa_key_der_1024;
#elif defined(USE_CERT_BUFFERS_2048)
byte tmp[TWOK_BUF];
byte der[TWOK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
XMEMSET(der, 0, sizeof(der));
XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048);
bytes = sizeof_dsa_key_der_2048;
#else
byte tmp[TWOK_BUF];
byte der[TWOK_BUF];
XMEMSET(tmp, 0, sizeof(tmp));
XMEMSET(der, 0, sizeof(der));
FILE* fp = fopen("./certs/dsa2048.der", "rb");
if (!fp) {
return WOLFSSL_BAD_FILE;
}
bytes = (word32) fread(tmp, 1, sizeof(tmp), fp);
fclose(fp);
#endif /* END USE_CERT_BUFFERS_1024 */
ret = wc_InitRng(&rng);
if (ret == 0) {
ret = wc_InitDsaKey(&genKey);
}
if (ret == 0) {
ret = wc_MakeDsaParameters(&rng, sizeof(tmp), &genKey);
if (ret == 0) {
wc_FreeDsaKey(&genKey);
ret = wc_InitDsaKey(&genKey);
}
}
if (ret == 0) {
ret = wc_DsaPrivateKeyDecode(tmp, &idx, &genKey, bytes);
}
printf(testingFmt, "wc_DsaKeyToDer()");
if (ret == 0) {
ret = wc_DsaKeyToDer(&genKey, der, bytes);
if ( ret >= 0 && ( ret = XMEMCMP(der, tmp, bytes) ) == 0 ) {
ret = 0;
}
}
/* Test bad args. */
if (ret == 0) {
ret = wc_DsaKeyToDer(NULL, der, FOURK_BUF);
if (ret == BAD_FUNC_ARG) {
ret = wc_DsaKeyToDer(&genKey, NULL, FOURK_BUF);
}
if (ret == BAD_FUNC_ARG) {
ret = 0;
} else {
ret = WOLFSSL_FATAL_ERROR;
}
}
if (wc_FreeRng(&rng) && ret == 0) {
ret = WOLFSSL_FATAL_ERROR;
}
printf(resultFmt, ret == 0 ? passed : failed);
wc_FreeDsaKey(&genKey);
#endif
return ret;
} /* END test_wc_DsaKeyToDer */
/*----------------------------------------------------------------------------*
| Compatibility Tests
*----------------------------------------------------------------------------*/
static void test_wolfSSL_DES(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_DES3)
const_DES_cblock myDes;
DES_key_schedule key;
word32 i;
printf(testingFmt, "wolfSSL_DES()");
DES_check_key(1);
DES_set_key(&myDes, &key);
/* check, check of odd parity */
XMEMSET(key, 4, sizeof(DES_key_schedule)); key[0] = 3; /*set even parity*/
XMEMSET(myDes, 5, sizeof(const_DES_cblock));
AssertIntEQ(DES_set_key_checked(&myDes, &key), -1);
AssertIntNE(key[0], myDes[0]); /* should not have copied over key */
/* set odd parity for success case */
key[0] = 4;
AssertIntEQ(DES_set_key_checked(&myDes, &key), 0);
for (i = 0; i < sizeof(DES_key_schedule); i++) {
AssertIntEQ(key[i], myDes[i]);
}
/* check weak key */
XMEMSET(key, 1, sizeof(DES_key_schedule));
XMEMSET(myDes, 5, sizeof(const_DES_cblock));
AssertIntEQ(DES_set_key_checked(&myDes, &key), -2);
AssertIntNE(key[0], myDes[0]); /* should not have copied over key */
/* now do unchecked copy of a weak key over */
DES_set_key_unchecked(&myDes, &key);
/* compare arrays, should be the same */
for (i = 0; i < sizeof(DES_key_schedule); i++) {
AssertIntEQ(key[i], myDes[i]);
}
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_DES3) */
}
static void test_wolfSSL_certs(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
X509* x509;
WOLFSSL* ssl;
WOLFSSL_CTX* ctx;
WOLF_STACK_OF(ASN1_OBJECT)* sk;
int crit;
printf(testingFmt, "wolfSSL_certs()");
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
AssertNotNull(ssl = SSL_new(ctx));
AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS);
#ifdef HAVE_PK_CALLBACKS
AssertIntEQ((int)SSL_set_tlsext_debug_arg(ssl, NULL), WOLFSSL_SUCCESS);
#endif /* HAVE_PK_CALLBACKS */
/* create and use x509 */
x509 = wolfSSL_X509_load_certificate_file(cliCertFile, WOLFSSL_FILETYPE_PEM);
AssertNotNull(x509);
AssertIntEQ(SSL_use_certificate(ssl, x509), WOLFSSL_SUCCESS);
#ifndef HAVE_USER_RSA
/* with loading in a new cert the check on private key should now fail */
AssertIntNE(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS);
#endif
#if defined(USE_CERT_BUFFERS_2048)
AssertIntEQ(SSL_use_certificate_ASN1(ssl,
(unsigned char*)server_cert_der_2048,
sizeof_server_cert_der_2048), WOLFSSL_SUCCESS);
#endif
#if !defined(NO_SHA) && !defined(NO_SHA256)
/************* Get Digest of Certificate ******************/
{
byte digest[64]; /* max digest size */
word32 digestSz;
XMEMSET(digest, 0, sizeof(digest));
AssertIntEQ(X509_digest(x509, wolfSSL_EVP_sha1(), digest, &digestSz),
WOLFSSL_SUCCESS);
AssertIntEQ(X509_digest(x509, wolfSSL_EVP_sha256(), digest, &digestSz),
WOLFSSL_SUCCESS);
AssertIntEQ(X509_digest(NULL, wolfSSL_EVP_sha1(), digest, &digestSz),
WOLFSSL_FAILURE);
}
#endif /* !NO_SHA && !NO_SHA256*/
/* test and checkout X509 extensions */
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_basic_constraints,
&crit, NULL);
AssertNotNull(sk);
AssertIntEQ(crit, 0);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_key_usage,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_ext_key_usage,
&crit, NULL);
/* AssertNotNull(sk); no extension set */
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509,
NID_authority_key_identifier, &crit, NULL);
AssertNotNull(sk);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509,
NID_private_key_usage_period, &crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_subject_alt_name,
&crit, NULL);
/* AssertNotNull(sk); no alt names set */
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_issuer_alt_name,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_info_access, &crit,
NULL);
/* AssertNotNull(sk); no auth info set */
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_sinfo_access,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_name_constraints,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509,
NID_certificate_policies, &crit, NULL);
#if !defined(WOLFSSL_SEP) && !defined(WOLFSSL_CERT_EXT)
AssertNull(sk);
#else
/* AssertNotNull(sk); no cert policy set */
#endif
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_policy_mappings,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_policy_constraints,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_inhibit_any_policy,
&crit, NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_tlsfeature, &crit,
NULL);
/* AssertNotNull(sk); NID not yet supported */
AssertIntEQ(crit, -1);
wolfSSL_sk_ASN1_OBJECT_free(sk);
/* test invalid cases */
crit = 0;
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, -1, &crit, NULL);
AssertNull(sk);
AssertIntEQ(crit, -1);
sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(NULL, NID_tlsfeature,
NULL, NULL);
AssertNull(sk);
AssertIntEQ(SSL_get_hit(ssl), 0);
X509_free(x509);
SSL_free(ssl);
SSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */
}
static void test_wolfSSL_ASN1_TIME_print()
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_RSA) \
&& (defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY)) && defined(USE_CERT_BUFFERS_2048)
BIO* bio;
X509* x509;
const unsigned char* der = client_cert_der_2048;
ASN1_TIME* t;
unsigned char buf[25];
printf(testingFmt, "wolfSSL_ASN1_TIME_print()");
AssertNotNull(bio = BIO_new(BIO_s_mem()));
AssertNotNull(x509 = wolfSSL_X509_load_certificate_buffer(der,
sizeof_client_cert_der_2048, WOLFSSL_FILETYPE_ASN1));
AssertIntEQ(ASN1_TIME_print(bio, X509_get_notBefore(x509)), 1);
AssertIntEQ(BIO_read(bio, buf, sizeof(buf)), 24);
AssertIntEQ(XMEMCMP(buf, "Aug 11 20:07:37 2016 GMT", sizeof(buf) - 1), 0);
/* create a bad time and test results */
AssertNotNull(t = X509_get_notAfter(x509));
t->data[10] = 0;
t->data[5] = 0;
AssertIntNE(ASN1_TIME_print(bio, t), 1);
AssertIntEQ(BIO_read(bio, buf, sizeof(buf)), 14);
AssertIntEQ(XMEMCMP(buf, "Bad time value", 14), 0);
BIO_free(bio);
X509_free(x509);
printf(resultFmt, passed);
#endif
}
static void test_wolfSSL_private_keys(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
WOLFSSL* ssl;
WOLFSSL_CTX* ctx;
EVP_PKEY* pkey = NULL;
printf(testingFmt, "wolfSSL_private_keys()");
OpenSSL_add_all_digests();
OpenSSL_add_all_algorithms();
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
AssertNotNull(ssl = SSL_new(ctx));
AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS);
#ifdef USE_CERT_BUFFERS_2048
{
const unsigned char* server_key = (const unsigned char*)server_key_der_2048;
AssertIntEQ(SSL_use_RSAPrivateKey_ASN1(ssl,
(unsigned char*)client_key_der_2048,
sizeof_client_key_der_2048), WOLFSSL_SUCCESS);
#ifndef HAVE_USER_RSA
/* Should missmatch now that a different private key loaded */
AssertIntNE(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS);
#endif
AssertIntEQ(SSL_use_PrivateKey_ASN1(0, ssl,
(unsigned char*)server_key,
sizeof_server_key_der_2048), WOLFSSL_SUCCESS);
/* After loading back in DER format of original key, should match */
AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS);
/* pkey not set yet, expecting to fail */
AssertIntEQ(SSL_use_PrivateKey(ssl, pkey), WOLFSSL_FAILURE);
/* set PKEY and test again */
AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey,
&server_key, (long)sizeof_server_key_der_2048));
AssertIntEQ(SSL_use_PrivateKey(ssl, pkey), WOLFSSL_SUCCESS);
}
#endif
EVP_PKEY_free(pkey);
SSL_free(ssl); /* frees x509 also since loaded into ssl */
SSL_CTX_free(ctx);
/* test existence of no-op macros in wolfssl/openssl/ssl.h */
CONF_modules_free();
ENGINE_cleanup();
CONF_modules_unload();
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */
}
static void test_wolfSSL_PEM_PrivateKey(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) && \
(defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN)) && \
defined(USE_CERT_BUFFERS_2048)
const unsigned char* server_key = (const unsigned char*)server_key_der_2048;
EVP_PKEY* pkey = NULL;
BIO* bio;
printf(testingFmt, "wolfSSL_PEM_PrivateKey()");
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
AssertNotNull(bio);
AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey,
&server_key, (long)sizeof_server_key_der_2048));
AssertIntEQ(PEM_write_bio_PrivateKey(bio, pkey, NULL, NULL, 0, NULL, NULL),
WOLFSSL_SUCCESS);
BIO_free(bio);
EVP_PKEY_free(pkey);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */
}
static void test_wolfSSL_tmp_dh(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_DSA) && !defined(NO_RSA) && \
!defined(NO_DH)
byte buffer[5300];
char file[] = "./certs/dsaparams.pem";
FILE *f;
int bytes;
DSA* dsa;
DH* dh;
BIO* bio;
SSL* ssl;
SSL_CTX* ctx;
printf(testingFmt, "wolfSSL_tmp_dh()");
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
AssertNotNull(ssl = SSL_new(ctx));
f = fopen(file, "rb");
AssertNotNull(f);
bytes = (int)fread(buffer, 1, sizeof(buffer), f);
fclose(f);
bio = BIO_new_mem_buf((void*)buffer, bytes);
AssertNotNull(bio);
dsa = wolfSSL_PEM_read_bio_DSAparams(bio, NULL, NULL, NULL);
AssertNotNull(dsa);
dh = wolfSSL_DSA_dup_DH(dsa);
AssertNotNull(dh);
AssertIntEQ((int)SSL_CTX_set_tmp_dh(ctx, dh), WOLFSSL_SUCCESS);
AssertIntEQ((int)SSL_set_tmp_dh(ssl, dh), WOLFSSL_SUCCESS);
BIO_free(bio);
DSA_free(dsa);
DH_free(dh);
SSL_free(ssl);
SSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */
}
static void test_wolfSSL_ctrl(void)
{
#if defined(OPENSSL_EXTRA)
byte buffer[5300];
BIO* bio;
int bytes;
BUF_MEM* ptr = NULL;
printf(testingFmt, "wolfSSL_crtl()");
bytes = sizeof(buffer);
bio = BIO_new_mem_buf((void*)buffer, bytes);
AssertNotNull(bio);
AssertNotNull(BIO_s_socket());
AssertIntEQ((int)wolfSSL_BIO_get_mem_ptr(bio, &ptr), WOLFSSL_SUCCESS);
/* needs tested after stubs filled out @TODO
SSL_ctrl
SSL_CTX_ctrl
*/
BIO_free(bio);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) */
}
static void test_wolfSSL_EVP_PKEY_new_mac_key(void)
{
#ifdef OPENSSL_EXTRA
static const unsigned char pw[] = "password";
static const int pwSz = sizeof(pw) - 1;
size_t checkPwSz = 0;
const unsigned char* checkPw = NULL;
WOLFSSL_EVP_PKEY* key = NULL;
printf(testingFmt, "wolfSSL_EVP_PKEY_new_mac_key()");
AssertNull(key = wolfSSL_EVP_PKEY_new_mac_key(0, NULL, pw, pwSz));
AssertNull(key = wolfSSL_EVP_PKEY_new_mac_key(0, NULL, NULL, pwSz));
AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, pw, pwSz));
AssertIntEQ(key->type, EVP_PKEY_HMAC);
AssertIntEQ(key->save_type, EVP_PKEY_HMAC);
AssertIntEQ(key->pkey_sz, pwSz);
AssertIntEQ(XMEMCMP(key->pkey.ptr, pw, pwSz), 0);
AssertNotNull(checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz));
AssertIntEQ((int)checkPwSz, pwSz);
AssertIntEQ(XMEMCMP(checkPw, pw, pwSz), 0);
wolfSSL_EVP_PKEY_free(key);
AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, pw, 0));
AssertIntEQ(key->pkey_sz, 0);
checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz);
(void)checkPw;
AssertIntEQ((int)checkPwSz, 0);
wolfSSL_EVP_PKEY_free(key);
AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, NULL, 0));
AssertIntEQ(key->pkey_sz, 0);
checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz);
(void)checkPw;
AssertIntEQ((int)checkPwSz, 0);
wolfSSL_EVP_PKEY_free(key);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA */
}
static void test_wolfSSL_EVP_MD_hmac_signing(void)
{
#ifdef OPENSSL_EXTRA
const unsigned char testKey[] =
{
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b
};
const char testData[] = "Hi There";
const unsigned char testResult[] =
{
0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53,
0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b,
0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7,
0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7
};
unsigned char check[sizeof(testResult)];
size_t checkSz = -1;
WOLFSSL_EVP_PKEY* key;
WOLFSSL_EVP_MD_CTX mdCtx;
printf(testingFmt, "wolfSSL_EVP_MD_hmac_signing()");
AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
testKey, (int)sizeof(testKey)));
wolfSSL_EVP_MD_CTX_init(&mdCtx);
AssertIntEQ(wolfSSL_EVP_DigestSignInit(&mdCtx, NULL, wolfSSL_EVP_sha256(),
NULL, key), 1);
AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData,
(unsigned int)XSTRLEN(testData)), 1);
AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, NULL, &checkSz), 1);
AssertIntEQ((int)checkSz, sizeof(testResult));
AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1);
AssertIntEQ((int)checkSz,(int)sizeof(testResult));
AssertIntEQ(XMEMCMP(testResult, check, sizeof(testResult)), 0);
AssertIntEQ(wolfSSL_EVP_MD_CTX_cleanup(&mdCtx), 1);
wolfSSL_EVP_MD_CTX_init(&mdCtx);
AssertIntEQ(wolfSSL_EVP_DigestSignInit(&mdCtx, NULL, wolfSSL_EVP_sha256(),
NULL, key), 1);
AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData, 4), 1);
AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, NULL, &checkSz), 1);
AssertIntEQ((int)checkSz, sizeof(testResult));
AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1);
AssertIntEQ((int)checkSz,(int)sizeof(testResult));
AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData + 4,
(unsigned int)XSTRLEN(testData) - 4), 1);
AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1);
AssertIntEQ((int)checkSz,(int)sizeof(testResult));
AssertIntEQ(XMEMCMP(testResult, check, sizeof(testResult)), 0);
AssertIntEQ(wolfSSL_EVP_MD_CTX_cleanup(&mdCtx), 1);
wolfSSL_EVP_PKEY_free(key);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA */
}
static void test_wolfSSL_CTX_add_extra_chain_cert(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
char caFile[] = "./certs/client-ca.pem";
char clientFile[] = "./certs/client-cert.pem";
SSL_CTX* ctx;
X509* x509 = NULL;
printf(testingFmt, "wolfSSL_CTX_add_extra_chain_cert()");
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
x509 = wolfSSL_X509_load_certificate_file(caFile, WOLFSSL_FILETYPE_PEM);
AssertNotNull(x509);
AssertIntEQ((int)SSL_CTX_add_extra_chain_cert(ctx, x509), WOLFSSL_SUCCESS);
x509 = wolfSSL_X509_load_certificate_file(clientFile, WOLFSSL_FILETYPE_PEM);
AssertNotNull(x509);
AssertIntEQ((int)SSL_CTX_add_extra_chain_cert(ctx, x509), WOLFSSL_SUCCESS);
AssertNull(SSL_CTX_get_default_passwd_cb(ctx));
AssertNull(SSL_CTX_get_default_passwd_cb_userdata(ctx));
SSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) */
}
static void test_wolfSSL_ERR_peek_last_error_line(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && defined(DEBUG_WOLFSSL) && \
!defined(NO_OLD_TLS) && defined(HAVE_IO_TESTS_DEPENDENCIES)
tcp_ready ready;
func_args client_args;
func_args server_args;
#ifndef SINGLE_THREADED
THREAD_TYPE serverThread;
#endif
callback_functions client_cb;
callback_functions server_cb;
int line = 0;
const char* file = NULL;
printf(testingFmt, "wolfSSL_ERR_peek_last_error_line()");
/* create a failed connection and inspect the error */
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
XMEMSET(&client_args, 0, sizeof(func_args));
XMEMSET(&server_args, 0, sizeof(func_args));
StartTCP();
InitTcpReady(&ready);
client_cb.method = wolfTLSv1_1_client_method;
server_cb.method = wolfTLSv1_2_server_method;
server_args.signal = &ready;
server_args.callbacks = &server_cb;
client_args.signal = &ready;
client_args.callbacks = &client_cb;
#ifndef SINGLE_THREADED
start_thread(test_server_nofail, &server_args, &serverThread);
wait_tcp_ready(&server_args);
test_client_nofail(&client_args);
join_thread(serverThread);
#endif
FreeTcpReady(&ready);
/* check that error code was stored */
AssertIntNE((int)ERR_peek_last_error_line(NULL, NULL), 0);
ERR_peek_last_error_line(NULL, &line);
AssertIntNE(line, 0);
ERR_peek_last_error_line(&file, NULL);
AssertNotNull(file);
#ifdef WOLFSSL_TIRTOS
fdOpenSession(Task_self());
#endif
printf(resultFmt, passed);
printf("\nTesting error print out\n");
ERR_print_errors_fp(stdout);
printf("Done testing print out\n\n");
fflush(stdout);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(DEBUG_WOLFSSL) */
}
static void test_wolfSSL_X509_STORE_set_flags(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
X509_STORE* store;
X509* x509;
printf(testingFmt, "wolfSSL_ERR_peek_last_error_line()");
AssertNotNull((store = wolfSSL_X509_STORE_new()));
AssertNotNull((x509 =
wolfSSL_X509_load_certificate_file(svrCertFile, WOLFSSL_FILETYPE_PEM)));
AssertIntEQ(X509_STORE_add_cert(store, x509), WOLFSSL_SUCCESS);
#ifdef HAVE_CRL
AssertIntEQ(X509_STORE_set_flags(store, WOLFSSL_CRL_CHECKALL), WOLFSSL_SUCCESS);
#else
AssertIntEQ(X509_STORE_set_flags(store, WOLFSSL_CRL_CHECKALL),
NOT_COMPILED_IN);
#endif
wolfSSL_X509_free(x509);
wolfSSL_X509_STORE_free(store);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) */
}
static void test_wolfSSL_X509_LOOKUP_load_file(void)
{
#if defined(OPENSSL_EXTRA) && defined(HAVE_CRL) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
WOLFSSL_X509_STORE* store;
WOLFSSL_X509_LOOKUP* lookup;
printf(testingFmt, "wolfSSL_X509_LOOKUP_load_file()");
AssertNotNull(store = wolfSSL_X509_STORE_new());
AssertNotNull(lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file()));
AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/client-ca.pem",
X509_FILETYPE_PEM), 1);
AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/crl/crl2.pem",
X509_FILETYPE_PEM), 1);
AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, cliCertFile,
WOLFSSL_FILETYPE_PEM), 1);
AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, svrCertFile,
WOLFSSL_FILETYPE_PEM), ASN_NO_SIGNER_E);
AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/ca-cert.pem",
X509_FILETYPE_PEM), 1);
AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, svrCertFile,
WOLFSSL_FILETYPE_PEM), 1);
wolfSSL_X509_STORE_free(store);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && defined(HAVE_CRL) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) */
}
static void test_wolfSSL_X509_STORE_CTX_set_time(void)
{
#if defined(OPENSSL_EXTRA)
WOLFSSL_X509_STORE_CTX* ctx;
time_t ctime;
printf(testingFmt, "wolfSSL_X509_set_time()");
AssertNotNull(ctx = wolfSSL_X509_STORE_CTX_new());
ctime = 365*24*60*60;
wolfSSL_X509_STORE_CTX_set_time(ctx, 0, ctime);
AssertTrue(
(ctx->param->flags & WOLFSSL_USE_CHECK_TIME) == WOLFSSL_USE_CHECK_TIME);
AssertTrue(ctx->param->check_time == ctime);
wolfSSL_X509_STORE_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA */
}
static void test_wolfSSL_CTX_set_client_CA_list(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_RSA) && !defined(NO_CERTS)
WOLFSSL_CTX* ctx;
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names = NULL;
WOLF_STACK_OF(WOLFSSL_X509_NAME)* ca_list = NULL;
printf(testingFmt, "wolfSSL_CTX_set_client_CA_list()");
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
names = wolfSSL_load_client_CA_file(cliCertFile);
AssertNotNull(names);
wolfSSL_CTX_set_client_CA_list(ctx,names);
AssertNotNull(ca_list = wolfSSL_SSL_CTX_get_client_CA_list(ctx));
wolfSSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA && !NO_RSA && !NO_CERTS */
}
static void test_wolfSSL_CTX_add_client_CA(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_RSA) && !defined(NO_CERTS)
WOLFSSL_CTX* ctx;
WOLFSSL_X509* x509;
WOLFSSL_X509* x509_a;
WOLF_STACK_OF(WOLFSSLX509_NAME)* ca_list;
int ret = 0;
printf(testingFmt, "wolfSSL_CTX_add_client_CA()");
AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()));
/* Add client cert */
AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(cliCertFile,
SSL_FILETYPE_PEM));
ret = wolfSSL_CTX_add_client_CA(ctx, x509);
AssertIntEQ(ret ,SSL_SUCCESS);
AssertNotNull(ca_list = wolfSSL_SSL_CTX_get_client_CA_list(ctx));
/* Add another client cert */
AssertNotNull(x509_a = wolfSSL_X509_load_certificate_file(cliCertFile,
SSL_FILETYPE_PEM));
AssertIntEQ(wolfSSL_CTX_add_client_CA(ctx, x509_a),SSL_SUCCESS);
wolfSSL_X509_free(x509);
wolfSSL_X509_free(x509_a);
wolfSSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA && !NO_RSA && !NO_CERTS */
}
static void test_wolfSSL_X509_NID(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_RSA)\
&& defined(USE_CERT_BUFFERS_2048) && !defined(NO_ASN)
int sigType;
int nameSz;
X509* cert;
EVP_PKEY* pubKeyTmp;
X509_NAME* name;
char commonName[80];
char countryName[80];
char localityName[80];
char stateName[80];
char orgName[80];
char orgUnit[80];
printf(testingFmt, "wolfSSL_X509_NID()");
/* ------ PARSE ORIGINAL SELF-SIGNED CERTIFICATE ------ */
/* convert cert from DER to internal WOLFSSL_X509 struct */
AssertNotNull(cert = wolfSSL_X509_d2i(&cert, client_cert_der_2048,
sizeof_client_cert_der_2048));
/* ------ EXTRACT CERTIFICATE ELEMENTS ------ */
/* extract PUBLIC KEY from cert */
AssertNotNull(pubKeyTmp = X509_get_pubkey(cert));
/* extract signatureType */
AssertIntNE((sigType = wolfSSL_X509_get_signature_type(cert)), 0);
/* extract subjectName info */
AssertNotNull(name = X509_get_subject_name(cert));
AssertIntEQ(X509_NAME_get_text_by_NID(name, -1, NULL, 0), -1);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME,
NULL, 0)), 0);
AssertIntEQ(nameSz, 15);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME,
commonName, sizeof(commonName))), 0);
AssertIntEQ(nameSz, 15);
AssertIntEQ(XMEMCMP(commonName, "www.wolfssl.com", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME,
commonName, 9)), 0);
AssertIntEQ(nameSz, 8);
AssertIntEQ(XMEMCMP(commonName, "www.wolf", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COUNTRY_NAME,
countryName, sizeof(countryName))), 0);
AssertIntEQ(XMEMCMP(countryName, "US", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_LOCALITY_NAME,
localityName, sizeof(localityName))), 0);
AssertIntEQ(XMEMCMP(localityName, "Bozeman", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_STATE_NAME,
stateName, sizeof(stateName))), 0);
AssertIntEQ(XMEMCMP(stateName, "Montana", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_ORG_NAME,
orgName, sizeof(orgName))), 0);
AssertIntEQ(XMEMCMP(orgName, "wolfSSL_2048", nameSz), 0);
AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_ORGUNIT_NAME,
orgUnit, sizeof(orgUnit))), 0);
AssertIntEQ(XMEMCMP(orgUnit, "Programming-2048", nameSz), 0);
EVP_PKEY_free(pubKeyTmp);
X509_free(cert);
printf(resultFmt, passed);
#endif
}
static void test_wolfSSL_CTX_set_srp_username(void)
{
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
WOLFSSL_CTX* ctx;
const char *username = "TESTUSER";
const char *password = "TESTPASSWORD";
int r;
printf(testingFmt, "wolfSSL_CTX_set_srp_username()");
ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
AssertNotNull(ctx);
r = wolfSSL_CTX_set_srp_username(ctx, (char *)username);
AssertIntEQ(r,SSL_SUCCESS);
wolfSSL_CTX_free(ctx);
ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
AssertNotNull(ctx);
r = wolfSSL_CTX_set_srp_password(ctx, (char *)password);
AssertIntEQ(r,SSL_SUCCESS);
r = wolfSSL_CTX_set_srp_username(ctx, (char *)username);
AssertIntEQ(r,SSL_SUCCESS);
wolfSSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA && WOLFCRYPT_HAVE_SRP */
/* && !NO_SHA256 && !WC_NO_RNG */
}
static void test_wolfSSL_CTX_set_srp_password(void)
{
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
WOLFSSL_CTX* ctx;
const char *username = "TESTUSER";
const char *password = "TESTPASSWORD";
int r;
printf(testingFmt, "wolfSSL_CTX_set_srp_password()");
ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
AssertNotNull(ctx);
r = wolfSSL_CTX_set_srp_password(ctx, (char *)password);
AssertIntEQ(r,SSL_SUCCESS);
wolfSSL_CTX_free(ctx);
ctx = wolfSSL_CTX_new(wolfSSLv23_client_method());
AssertNotNull(ctx);
r = wolfSSL_CTX_set_srp_username(ctx, (char *)username);
AssertIntEQ(r,SSL_SUCCESS);
r = wolfSSL_CTX_set_srp_password(ctx, (char *)password);
AssertIntEQ(r,SSL_SUCCESS);
wolfSSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* OPENSSL_EXTRA && WOLFCRYPT_HAVE_SRP */
/* && !NO_SHA256 && !WC_NO_RNG */
}
static void test_wolfSSL_BN(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_ASN)
BIGNUM* a;
BIGNUM* b;
BIGNUM* c;
BIGNUM* d;
ASN1_INTEGER ai;
unsigned char value[1];
printf(testingFmt, "wolfSSL_BN()");
AssertNotNull(b = BN_new());
AssertNotNull(c = BN_new());
AssertNotNull(d = BN_new());
value[0] = 0x03;
/* at the moment hard setting since no set function */
ai.data[0] = 0x02; /* tag for ASN_INTEGER */
ai.data[1] = 0x01; /* length of integer */
ai.data[2] = value[0];
AssertNotNull(a = ASN1_INTEGER_to_BN(&ai, NULL));
value[0] = 0x02;
AssertNotNull(BN_bin2bn(value, sizeof(value), b));
value[0] = 0x05;
AssertNotNull(BN_bin2bn(value, sizeof(value), c));
/* a^b mod c = */
AssertIntEQ(BN_mod_exp(d, NULL, b, c, NULL), WOLFSSL_FAILURE);
AssertIntEQ(BN_mod_exp(d, a, b, c, NULL), WOLFSSL_SUCCESS);
/* check result 3^2 mod 5 */
value[0] = 0;
AssertIntEQ(BN_bn2bin(d, value), WOLFSSL_SUCCESS);
AssertIntEQ((int)(value[0] & 0x04), 4);
/* BN_mod_inverse test */
value[0] = 0;
BIGNUM *r = BN_new();
BIGNUM *val = BN_mod_inverse(r,b,c,NULL);
AssertIntEQ(BN_bn2bin(r, value), 1);
AssertIntEQ((int)(value[0] & 0x03), 3);
BN_free(val);
BN_free(a);
BN_free(b);
BN_free(c);
BN_clear_free(d);
/* check that converting NULL and the null string returns an error */
a = NULL;
AssertIntLE(BN_hex2bn(&a, NULL), 0);
AssertIntLE(BN_hex2bn(&a, ""), 0);
AssertNull(a);
/* check that getting a string and a bin of the same number are equal,
* and that the comparison works EQ, LT and GT */
AssertIntGT(BN_hex2bn(&a, "03"), 0);
value[0] = 0x03;
AssertNotNull(b = BN_new());
AssertNotNull(BN_bin2bn(value, sizeof(value), b));
value[0] = 0x04;
AssertNotNull(c = BN_new());
AssertNotNull(BN_bin2bn(value, sizeof(value), c));
AssertIntEQ(BN_cmp(a, b), 0);
AssertIntLT(BN_cmp(a, c), 0);
AssertIntGT(BN_cmp(c, b), 0);
BN_free(a);
BN_free(b);
BN_free(c);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_ASN) */
}
static void test_wolfSSL_set_options(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
SSL* ssl;
SSL_CTX* ctx;
printf(testingFmt, "wolfSSL_set_options()");
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM));
AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM));
AssertNotNull(ssl = SSL_new(ctx));
AssertTrue(SSL_set_options(ssl, SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1);
AssertTrue(SSL_get_options(ssl) == SSL_OP_NO_TLSv1);
AssertIntGT((int)SSL_set_options(ssl, (SSL_OP_COOKIE_EXCHANGE |
WOLFSSL_OP_NO_SSLv2)), 0);
AssertTrue((SSL_set_options(ssl, SSL_OP_COOKIE_EXCHANGE) &
SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE);
AssertTrue((SSL_set_options(ssl, SSL_OP_NO_TLSv1_2) &
SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2);
AssertTrue((SSL_set_options(ssl, SSL_OP_NO_COMPRESSION) &
SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION);
SSL_free(ssl);
SSL_CTX_free(ctx);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) */
}
/* Testing wolfSSL_set_tlsext_status_type funciton.
* PRE: OPENSSL and HAVE_CERTIFICATE_STATUS_REQUEST defined.
*/
static void test_wolfSSL_set_tlsext_status_type(void){
#if defined(OPENSSL_EXTRA) && defined(HAVE_CERTIFICATE_STATUS_REQUEST)
SSL* ssl;
SSL_CTX* ctx;
printf(testingFmt, "wolfSSL_set_tlsext_status_type()");
AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method()));
AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, SSL_FILETYPE_PEM));
AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM));
AssertNotNull(ssl = SSL_new(ctx));
AssertTrue(SSL_set_tlsext_status_type(ssl,TLSEXT_STATUSTYPE_ocsp)
== SSL_SUCCESS);
SSL_free(ssl);
SSL_CTX_free(ctx);
#endif /* OPENSSL_EXTRA && HAVE_CERTIFICATE_STATUS_REQUEST */
}
static void test_wolfSSL_PEM_read_bio(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA)
byte buffer[5300];
FILE *f;
int bytes;
X509* x509;
BIO* bio = NULL;
printf(testingFmt, "wolfSSL_PEM_read_bio()");
AssertNotNull(f = fopen(cliCertFile, "rb"));
bytes = (int)fread(buffer, 1, sizeof(buffer), f);
fclose(f);
AssertNull(x509 = PEM_read_bio_X509_AUX(bio, NULL, NULL, NULL));
AssertNotNull(bio = BIO_new_mem_buf((void*)buffer, bytes));
AssertNotNull(x509 = PEM_read_bio_X509_AUX(bio, NULL, NULL, NULL));
AssertIntEQ((int)BIO_set_fd(bio, 0, BIO_NOCLOSE), 1);
BIO_free(bio);
X509_free(x509);
printf(resultFmt, passed);
#endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_RSA) */
}
static void test_wolfSSL_BIO(void)
{
#if defined(OPENSSL_EXTRA)
byte buffer[20];
BIO* bio1;
BIO* bio2;
BIO* bio3;
char* bufPt;
int i;
printf(testingFmt, "wolfSSL_BIO()");
for (i = 0; i < 20; i++) {
buffer[i] = i;
}
/* Creating and testing type BIO_s_bio */
AssertNotNull(bio1 = BIO_new(BIO_s_bio()));
AssertNotNull(bio2 = BIO_new(BIO_s_bio()));
AssertNotNull(bio3 = BIO_new(BIO_s_bio()));
/* read/write before set up */
AssertIntEQ(BIO_read(bio1, buffer, 2), WOLFSSL_BIO_UNSET);
AssertIntEQ(BIO_write(bio1, buffer, 2), WOLFSSL_BIO_UNSET);
AssertIntEQ(BIO_set_write_buf_size(bio1, 20), WOLFSSL_SUCCESS);
AssertIntEQ(BIO_set_write_buf_size(bio2, 8), WOLFSSL_SUCCESS);
AssertIntEQ(BIO_make_bio_pair(bio1, bio2), WOLFSSL_SUCCESS);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 10), 10);
XMEMCPY(bufPt, buffer, 10);
AssertIntEQ(BIO_write(bio1, buffer + 10, 10), 10);
/* write buffer full */
AssertIntEQ(BIO_write(bio1, buffer, 10), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_flush(bio1), WOLFSSL_SUCCESS);
AssertIntEQ((int)BIO_ctrl_pending(bio1), 0);
/* write the other direction with pair */
AssertIntEQ((int)BIO_nwrite(bio2, &bufPt, 10), 8);
XMEMCPY(bufPt, buffer, 8);
AssertIntEQ(BIO_write(bio2, buffer, 10), WOLFSSL_BIO_ERROR);
/* try read */
AssertIntEQ((int)BIO_ctrl_pending(bio1), 8);
AssertIntEQ((int)BIO_ctrl_pending(bio2), 20);
AssertIntEQ(BIO_nread(bio2, &bufPt, (int)BIO_ctrl_pending(bio2)), 20);
for (i = 0; i < 20; i++) {
AssertIntEQ((int)bufPt[i], i);
}
AssertIntEQ(BIO_nread(bio2, &bufPt, 1), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_nread(bio1, &bufPt, (int)BIO_ctrl_pending(bio1)), 8);
for (i = 0; i < 8; i++) {
AssertIntEQ((int)bufPt[i], i);
}
AssertIntEQ(BIO_nread(bio1, &bufPt, 1), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_ctrl_reset_read_request(bio1), 1);
/* new pair */
AssertIntEQ(BIO_make_bio_pair(bio1, bio3), WOLFSSL_FAILURE);
BIO_free(bio2); /* free bio2 and automaticly remove from pair */
AssertIntEQ(BIO_make_bio_pair(bio1, bio3), WOLFSSL_SUCCESS);
AssertIntEQ((int)BIO_ctrl_pending(bio3), 0);
AssertIntEQ(BIO_nread(bio3, &bufPt, 10), WOLFSSL_BIO_ERROR);
/* test wrap around... */
AssertIntEQ(BIO_reset(bio1), 0);
AssertIntEQ(BIO_reset(bio3), 0);
/* fill write buffer, read only small amount then write again */
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20);
XMEMCPY(bufPt, buffer, 20);
AssertIntEQ(BIO_nread(bio3, &bufPt, 4), 4);
for (i = 0; i < 4; i++) {
AssertIntEQ(bufPt[i], i);
}
/* try writing over read index */
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 5), 4);
XMEMSET(bufPt, 0, 4);
AssertIntEQ((int)BIO_ctrl_pending(bio3), 20);
/* read and write 0 bytes */
AssertIntEQ(BIO_nread(bio3, &bufPt, 0), 0);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 0), 0);
/* should read only to end of write buffer then need to read again */
AssertIntEQ(BIO_nread(bio3, &bufPt, 20), 16);
for (i = 0; i < 16; i++) {
AssertIntEQ(bufPt[i], buffer[4 + i]);
}
AssertIntEQ(BIO_nread(bio3, NULL, 0), WOLFSSL_FAILURE);
AssertIntEQ(BIO_nread0(bio3, &bufPt), 4);
for (i = 0; i < 4; i++) {
AssertIntEQ(bufPt[i], 0);
}
/* read index should not have advanced with nread0 */
AssertIntEQ(BIO_nread(bio3, &bufPt, 5), 4);
for (i = 0; i < 4; i++) {
AssertIntEQ(bufPt[i], 0);
}
/* write and fill up buffer checking reset of index state */
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20);
XMEMCPY(bufPt, buffer, 20);
/* test reset on data in bio1 write buffer */
AssertIntEQ(BIO_reset(bio1), 0);
AssertIntEQ((int)BIO_ctrl_pending(bio3), 0);
AssertIntEQ(BIO_nread(bio3, &bufPt, 3), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20);
XMEMCPY(bufPt, buffer, 20);
AssertIntEQ(BIO_nread(bio3, &bufPt, 6), 6);
for (i = 0; i < 6; i++) {
AssertIntEQ(bufPt[i], i);
}
/* test case of writing twice with offset read index */
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 3), 3);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), 3); /* try overwriting */
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_nread(bio3, &bufPt, 0), 0);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR);
AssertIntEQ(BIO_nread(bio3, &bufPt, 1), 1);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), 1);
AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR);
BIO_free(bio1);
BIO_free(bio3);
/* BIOs with file pointers */
#if !defined(NO_FILESYSTEM)
{
XFILE f1;
XFILE f2;
BIO* f_bio1;
BIO* f_bio2;
unsigned char cert[300];
char testFile[] = "tests/bio_write_test.txt";
char msg[] = "bio_write_test.txt contains the first 300 bytes of certs/server-cert.pem\ncreated by tests/unit.test\n\n";
AssertNotNull(f_bio1 = BIO_new(BIO_s_file()));
AssertNotNull(f_bio2 = BIO_new(BIO_s_file()));
AssertIntEQ((int)BIO_set_mem_eof_return(f_bio1, -1), 0);
AssertIntEQ((int)BIO_set_mem_eof_return(NULL, -1), 0);
f1 = XFOPEN(svrCertFile, "rwb");
AssertIntEQ((int)BIO_set_fp(f_bio1, f1, BIO_CLOSE), WOLFSSL_SUCCESS);
AssertIntEQ(BIO_write_filename(f_bio2, testFile),
WOLFSSL_SUCCESS);
AssertIntEQ(BIO_read(f_bio1, cert, sizeof(cert)), sizeof(cert));
AssertIntEQ(BIO_write(f_bio2, msg, sizeof(msg)), sizeof(msg));
AssertIntEQ(BIO_write(f_bio2, cert, sizeof(cert)), sizeof(cert));
AssertIntEQ((int)BIO_get_fp(f_bio2, &f2), WOLFSSL_SUCCESS);
AssertIntEQ(BIO_reset(f_bio2), 0);
AssertIntEQ(BIO_seek(f_bio2, 4), 0);
BIO_free(f_bio1);
BIO_free(f_bio2);
}
#endif /* !defined(NO_FILESYSTEM) */
printf(resultFmt, passed);
#endif
}
static void test_wolfSSL_DES_ecb_encrypt(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_DES3) && defined(WOLFSSL_DES_ECB)
WOLFSSL_DES_cblock input1,input2,output1,output2,back1,back2;
WOLFSSL_DES_key_schedule key;
printf(testingFmt, "wolfSSL_DES_ecb_encrypt()");
XMEMCPY(key,"12345678",sizeof(WOLFSSL_DES_key_schedule));
XMEMCPY(input1, "Iamhuman",sizeof(WOLFSSL_DES_cblock));
XMEMCPY(input2, "Whoisit?",sizeof(WOLFSSL_DES_cblock));
XMEMSET(output1, 0, sizeof(WOLFSSL_DES_cblock));
XMEMSET(output2, 0, sizeof(WOLFSSL_DES_cblock));
XMEMSET(back1, 0, sizeof(WOLFSSL_DES_cblock));
XMEMSET(back2, 0, sizeof(WOLFSSL_DES_cblock));
/* Encrypt messages */
wolfSSL_DES_ecb_encrypt(&input1,&output1,&key,DES_ENCRYPT);
wolfSSL_DES_ecb_encrypt(&input2,&output2,&key,DES_ENCRYPT);
/* Decrypt messages */
int ret1 = 0;
int ret2 = 0;
wolfSSL_DES_ecb_encrypt(&output1,&back1,&key,DES_DECRYPT);
ret1 = XMEMCMP((unsigned char *) back1,(unsigned char *) input1,sizeof(WOLFSSL_DES_cblock));
AssertIntEQ(ret1,0);
wolfSSL_DES_ecb_encrypt(&output2,&back2,&key,DES_DECRYPT);
ret2 = XMEMCMP((unsigned char *) back2,(unsigned char *) input2,sizeof(WOLFSSL_DES_cblock));
AssertIntEQ(ret2,0);
printf(resultFmt, passed);
#endif
}
static void test_wolfSSL_ASN1_TIME_adj(void)
{
#if defined(OPENSSL_EXTRA) && !defined(NO_ASN1_TIME) \
&& !defined(USER_TIME) && !defined(TIME_OVERRIDES)
const int year = 365*24*60*60;
const int day = 24*60*60;
const int hour = 60*60;
const int min = 60;
const byte asn_utc_time = ASN_UTC_TIME;
#if !defined(TIME_T_NOT_LONG) && !defined(NO_64BIT)
const byte asn_gen_time = ASN_GENERALIZED_TIME;
#endif
WOLFSSL_ASN1_TIME *asn_time, *s;
int offset_day;
long offset_sec;
char date_str[20];
time_t t;
printf(testingFmt, "wolfSSL_ASN1_TIME_adj()");
s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL,
DYNAMIC_TYPE_OPENSSL);
/* UTC notation test */
/* 2000/2/15 20:30:00 */
t = (time_t)30 * year + 45 * day + 20 * hour + 30 * min + 7 * day;
offset_day = 7;
offset_sec = 45 * min;
/* offset_sec = -45 * min;*/
asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec);
AssertTrue(asn_time->data[0] == asn_utc_time);
XSTRNCPY(date_str,(const char*) &asn_time->data+2,13);
AssertIntEQ(0, XMEMCMP(date_str, "000222211500Z", 13));
/* negative offset */
offset_sec = -45 * min;
asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec);
AssertTrue(asn_time->data[0] == asn_utc_time);
XSTRNCPY(date_str,(const char*) &asn_time->data+2,13);
AssertIntEQ(0, XMEMCMP(date_str, "000222194500Z", 13));
XFREE(s,NULL,DYNAMIC_TYPE_OPENSSL);
XMEMSET(date_str, 0, sizeof(date_str));
/* Generalized time will overflow time_t if not long */
#if !defined(TIME_T_NOT_LONG) && !defined(NO_64BIT)
s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL,
DYNAMIC_TYPE_OPENSSL);
/* GeneralizedTime notation test */
/* 2055/03/01 09:00:00 */
t = (time_t)85 * year + 59 * day + 9 * hour + 21 * day;
offset_day = 12;
offset_sec = 10 * min;
asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec);
AssertTrue(asn_time->data[0] == asn_gen_time);
XSTRNCPY(date_str,(const char*) &asn_time->data+2, 15);
AssertIntEQ(0, XMEMCMP(date_str, "20550313091000Z", 15));
XFREE(s,NULL,DYNAMIC_TYPE_OPENSSL);
XMEMSET(date_str, 0, sizeof(date_str));
#endif /* !TIME_T_NOT_LONG && !NO_64BIT */
/* if WOLFSSL_ASN1_TIME struct is not allocated */
s = NULL;
t = (time_t)30 * year + 45 * day + 20 * hour + 30 * min + 15 + 7 * day;
offset_day = 7;
offset_sec = 45 * min;
asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec);
AssertTrue(asn_time->data[0] == asn_utc_time);
XSTRNCPY(date_str,(const char*) &asn_time->data+2,13);
AssertIntEQ(0, XMEMCMP(date_str, "000222211515Z", 13));
XFREE(asn_time,NULL,DYNAMIC_TYPE_OPENSSL);
asn_time = wolfSSL_ASN1_TIME_adj(NULL, t, offset_day, offset_sec);
AssertTrue(asn_time->data[0] == asn_utc_time);
XSTRNCPY(date_str,(const char*) &asn_time->data+2,13);
AssertIntEQ(0, XMEMCMP(date_str, "000222211515Z", 13));
XFREE(asn_time,NULL,DYNAMIC_TYPE_OPENSSL);
printf(resultFmt, passed);
#endif
}
/*----------------------------------------------------------------------------*
| wolfCrypt ASN
*----------------------------------------------------------------------------*/
static void test_wc_GetPkcs8TraditionalOffset(void)
{
#if !defined(NO_ASN) && !defined(NO_FILESYSTEM)
int length, derSz;
word32 inOutIdx;
const char* path = "./certs/server-keyPkcs8.der";
FILE* file;
byte der[2048];
printf(testingFmt, "wc_GetPkcs8TraditionalOffset");
file = fopen(path, "rb");
AssertNotNull(file);
derSz = (int)fread(der, 1, sizeof(der), file);
fclose(file);
/* valid case */
inOutIdx = 0;
length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz);
AssertIntGT(length, 0);
/* inOutIdx > sz */
inOutIdx = 4000;
length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz);
AssertIntEQ(length, BAD_FUNC_ARG);
/* null input */
inOutIdx = 0;
length = wc_GetPkcs8TraditionalOffset(NULL, &inOutIdx, 0);
AssertIntEQ(length, BAD_FUNC_ARG);
/* invalid input, fill buffer with 1's */
XMEMSET(der, 1, sizeof(der));
inOutIdx = 0;
length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz);
AssertIntEQ(length, ASN_PARSE_E);
printf(resultFmt, passed);
#endif /* NO_ASN */
}
/*----------------------------------------------------------------------------*
| wolfCrypt ECC
*----------------------------------------------------------------------------*/
static void test_wc_ecc_get_curve_size_from_name(void)
{
#ifdef HAVE_ECC
int ret;
printf(testingFmt, "wc_ecc_get_curve_size_from_name");
#if !defined(NO_ECC256) && !defined(NO_ECC_SECP)
ret = wc_ecc_get_curve_size_from_name("SECP256R1");
AssertIntEQ(ret, 32);
#endif
/* invalid case */
ret = wc_ecc_get_curve_size_from_name("BADCURVE");
AssertIntEQ(ret, -1);
/* NULL input */
ret = wc_ecc_get_curve_size_from_name(NULL);
AssertIntEQ(ret, BAD_FUNC_ARG);
printf(resultFmt, passed);
#endif /* HAVE_ECC */
}
static void test_wc_ecc_get_curve_id_from_name(void)
{
#ifdef HAVE_ECC
int id;
printf(testingFmt, "wc_ecc_get_curve_id_from_name");
#if !defined(NO_ECC256) && !defined(NO_ECC_SECP)
id = wc_ecc_get_curve_id_from_name("SECP256R1");
AssertIntEQ(id, ECC_SECP256R1);
#endif
/* invalid case */
id = wc_ecc_get_curve_id_from_name("BADCURVE");
AssertIntEQ(id, -1);
/* NULL input */
id = wc_ecc_get_curve_id_from_name(NULL);
AssertIntEQ(id, BAD_FUNC_ARG);
printf(resultFmt, passed);
#endif /* HAVE_ECC */
}
static void test_wc_ecc_get_curve_id_from_params(void)
{
#ifdef HAVE_ECC
int id;
const byte prime[] =
{
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
};
const byte primeInvalid[] =
{
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x01,0x01
};
const byte Af[] =
{
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC
};
const byte Bf[] =
{
0x5A,0xC6,0x35,0xD8,0xAA,0x3A,0x93,0xE7,
0xB3,0xEB,0xBD,0x55,0x76,0x98,0x86,0xBC,
0x65,0x1D,0x06,0xB0,0xCC,0x53,0xB0,0xF6,
0x3B,0xCE,0x3C,0x3E,0x27,0xD2,0x60,0x4B
};
const byte order[] =
{
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xBC,0xE6,0xFA,0xAD,0xA7,0x17,0x9E,0x84,
0xF3,0xB9,0xCA,0xC2,0xFC,0x63,0x25,0x51
};
const byte Gx[] =
{
0x6B,0x17,0xD1,0xF2,0xE1,0x2C,0x42,0x47,
0xF8,0xBC,0xE6,0xE5,0x63,0xA4,0x40,0xF2,
0x77,0x03,0x7D,0x81,0x2D,0xEB,0x33,0xA0,
0xF4,0xA1,0x39,0x45,0xD8,0x98,0xC2,0x96
};
const byte Gy[] =
{
0x4F,0xE3,0x42,0xE2,0xFE,0x1A,0x7F,0x9B,
0x8E,0xE7,0xEB,0x4A,0x7C,0x0F,0x9E,0x16,
0x2B,0xCE,0x33,0x57,0x6B,0x31,0x5E,0xCE,
0xCB,0xB6,0x40,0x68,0x37,0xBF,0x51,0xF5
};
int cofactor = 1;
int fieldSize = 256;
printf(testingFmt, "wc_ecc_get_curve_id_from_params");
#if !defined(NO_ECC256) && !defined(NO_ECC_SECP)
id = wc_ecc_get_curve_id_from_params(fieldSize, prime, sizeof(prime),
Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order),
Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor);
AssertIntEQ(id, ECC_SECP256R1);
#endif
/* invalid case, fieldSize = 0 */
id = wc_ecc_get_curve_id_from_params(0, prime, sizeof(prime),
Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order),
Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor);
AssertIntEQ(id, ECC_CURVE_INVALID);
/* invalid case, NULL prime */
id = wc_ecc_get_curve_id_from_params(fieldSize, NULL, sizeof(prime),
Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order),
Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor);
AssertIntEQ(id, BAD_FUNC_ARG);
/* invalid case, invalid prime */
id = wc_ecc_get_curve_id_from_params(fieldSize,
primeInvalid, sizeof(primeInvalid),
Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order),
Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor);
AssertIntEQ(id, ECC_CURVE_INVALID);
printf(resultFmt, passed);
#endif
}
/*----------------------------------------------------------------------------*
| Certficate Failure Checks
*----------------------------------------------------------------------------*/
#ifndef NO_CERTS
/* Use the Cert Manager(CM) API to generate the error ASN_SIG_CONFIRM_E */
static int verify_sig_cm(const char* ca, byte* cert_buf, size_t cert_sz,
int type)
{
int ret;
WOLFSSL_CERT_MANAGER* cm = NULL;
switch (type) {
case TESTING_RSA:
#ifdef NO_RSA
printf("RSA disabled, skipping test\n");
return ASN_SIG_CONFIRM_E;
#else
break;
#endif
case TESTING_ECC:
#ifndef HAVE_ECC
printf("ECC disabled, skipping test\n");
return ASN_SIG_CONFIRM_E;
#else
break;
#endif
default:
printf("Bad function argument\n");
return BAD_FUNC_ARG;
}
cm = wolfSSL_CertManagerNew();
if (cm == NULL) {
printf("wolfSSL_CertManagerNew failed\n");
return -1;
}
#ifndef NO_FILESYSTEM
ret = wolfSSL_CertManagerLoadCA(cm, ca, 0);
if (ret != WOLFSSL_SUCCESS) {
printf("wolfSSL_CertManagerLoadCA failed\n");
wolfSSL_CertManagerFree(cm);
return ret;
}
#else
(void)ca;
#endif
ret = wolfSSL_CertManagerVerifyBuffer(cm, cert_buf, cert_sz, WOLFSSL_FILETYPE_ASN1);
/* Let AssertIntEQ handle return code */
wolfSSL_CertManagerFree(cm);
return ret;
}
static int test_RsaSigFailure_cm(void)
{
int ret = 0;
const char* ca_cert = "./certs/ca-cert.pem";
const char* server_cert = "./certs/server-cert.der";
byte* cert_buf = NULL;
size_t cert_sz = 0;
ret = load_file(server_cert, &cert_buf, &cert_sz);
if (ret == 0) {
/* corrupt DER - invert last byte, which is signature */
cert_buf[cert_sz-1] = ~cert_buf[cert_sz-1];
/* test bad cert */
ret = verify_sig_cm(ca_cert, cert_buf, cert_sz, TESTING_RSA);
}
printf("Signature failure test: RSA: Ret %d\n", ret);
if (cert_buf)
free(cert_buf);
return ret;
}
static int test_EccSigFailure_cm(void)
{
int ret = 0;
/* self-signed ECC cert, so use server cert as CA */
const char* ca_cert = "./certs/ca-ecc-cert.pem";
const char* server_cert = "./certs/server-ecc.der";
byte* cert_buf = NULL;
size_t cert_sz = 0;
ret = load_file(server_cert, &cert_buf, &cert_sz);
if (ret == 0) {
/* corrupt DER - invert last byte, which is signature */
cert_buf[cert_sz-1] = ~cert_buf[cert_sz-1];
/* test bad cert */
ret = verify_sig_cm(ca_cert, cert_buf, cert_sz, TESTING_ECC);
}
printf("Signature failure test: ECC: Ret %d\n", ret);
if (cert_buf)
free(cert_buf);
return ret;
}
#endif /* NO_CERTS */
#ifdef WOLFSSL_TLS13
#ifdef WOLFSSL_SEND_HRR_COOKIE
static byte fixedKey[WC_SHA384_DIGEST_SIZE] = { 0, };
#endif
#ifdef WOLFSSL_EARLY_DATA
static const char earlyData[] = "Early Data";
static char earlyDataBuffer[1];
#endif
static int test_tls13_apis(void)
{
int ret = 0;
WOLFSSL_CTX* clientTls12Ctx;
WOLFSSL* clientTls12Ssl;
WOLFSSL_CTX* serverTls12Ctx;
WOLFSSL* serverTls12Ssl;
WOLFSSL_CTX* clientCtx;
WOLFSSL* clientSsl;
WOLFSSL_CTX* serverCtx;
WOLFSSL* serverSsl;
#ifndef NO_CERTS
const char* ourCert = svrCertFile;
const char* ourKey = svrKeyFile;
#endif
#ifdef WOLFSSL_EARLY_DATA
int outSz;
#endif
clientTls12Ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method());
clientTls12Ssl = wolfSSL_new(clientTls12Ctx);
serverTls12Ctx = wolfSSL_CTX_new(wolfTLSv1_2_server_method());
#ifndef NO_CERTS
wolfSSL_CTX_use_certificate_chain_file(serverTls12Ctx, ourCert);
wolfSSL_CTX_use_PrivateKey_file(serverTls12Ctx, ourKey, WOLFSSL_FILETYPE_PEM);
#endif
serverTls12Ssl = wolfSSL_new(serverTls12Ctx);
clientCtx = wolfSSL_CTX_new(wolfTLSv1_3_client_method());
clientSsl = wolfSSL_new(clientCtx);
serverCtx = wolfSSL_CTX_new(wolfTLSv1_3_server_method());
#ifndef NO_CERTS
wolfSSL_CTX_use_certificate_chain_file(serverCtx, ourCert);
wolfSSL_CTX_use_PrivateKey_file(serverCtx, ourKey, WOLFSSL_FILETYPE_PEM);
#endif
serverSsl = wolfSSL_new(serverCtx);
#ifdef WOLFSSL_SEND_HRR_COOKIE
AssertIntEQ(wolfSSL_send_hrr_cookie(NULL, NULL, 0), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_send_hrr_cookie(clientSsl, NULL, 0), SIDE_ERROR);
AssertIntEQ(wolfSSL_send_hrr_cookie(serverTls12Ssl, NULL, 0), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_send_hrr_cookie(serverSsl, NULL, 0), WOLFSSL_SUCCESS);
AssertIntEQ(wolfSSL_send_hrr_cookie(serverSsl, fixedKey, sizeof(fixedKey)),
WOLFSSL_SUCCESS);
#endif
#ifdef HAVE_ECC
AssertIntEQ(wolfSSL_UseKeyShare(NULL, WOLFSSL_ECC_SECP256R1), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_UseKeyShare(serverSsl, WOLFSSL_ECC_SECP256R1),
SIDE_ERROR);
AssertIntEQ(wolfSSL_UseKeyShare(clientTls12Ssl, WOLFSSL_ECC_SECP256R1),
WOLFSSL_SUCCESS);
AssertIntEQ(wolfSSL_UseKeyShare(clientSsl, WOLFSSL_ECC_SECP256R1),
WOLFSSL_SUCCESS);
#else
AssertIntEQ(wolfSSL_UseKeyShare(NULL, WOLFSSL_ECC_SECP256R1), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_UseKeyShare(serverSsl, WOLFSSL_ECC_SECP256R1),
SIDE_ERROR);
AssertIntEQ(wolfSSL_UseKeyShare(clientTls12Ssl, WOLFSSL_ECC_SECP256R1),
NOT_COMPILED_IN);
AssertIntEQ(wolfSSL_UseKeyShare(clientSsl, WOLFSSL_ECC_SECP256R1),
NOT_COMPILED_IN);
#endif
AssertIntEQ(wolfSSL_NoKeyShares(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_NoKeyShares(serverSsl), SIDE_ERROR);
AssertIntEQ(wolfSSL_NoKeyShares(clientTls12Ssl), WOLFSSL_SUCCESS);
AssertIntEQ(wolfSSL_NoKeyShares(clientSsl), WOLFSSL_SUCCESS);
AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(clientCtx), SIDE_ERROR);
AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(serverTls12Ctx), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(serverCtx), 0);
AssertIntEQ(wolfSSL_no_ticket_TLSv13(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_no_ticket_TLSv13(clientSsl), SIDE_ERROR);
AssertIntEQ(wolfSSL_no_ticket_TLSv13(serverTls12Ssl), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_no_ticket_TLSv13(serverSsl), 0);
AssertIntEQ(wolfSSL_CTX_no_dhe_psk(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_no_dhe_psk(clientTls12Ctx), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_no_dhe_psk(serverCtx), 0);
AssertIntEQ(wolfSSL_CTX_no_dhe_psk(clientCtx), 0);
AssertIntEQ(wolfSSL_no_dhe_psk(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_no_dhe_psk(clientTls12Ssl), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_no_dhe_psk(serverSsl), 0);
AssertIntEQ(wolfSSL_no_dhe_psk(clientSsl), 0);
AssertIntEQ(wolfSSL_update_keys(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_update_keys(clientTls12Ssl), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_update_keys(serverSsl), BUILD_MSG_ERROR);
AssertIntEQ(wolfSSL_update_keys(clientSsl), BUILD_MSG_ERROR);
#if !defined(NO_CERTS) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(serverCtx), SIDE_ERROR);
AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(clientTls12Ctx),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(clientCtx), 0);
AssertIntEQ(wolfSSL_allow_post_handshake_auth(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_allow_post_handshake_auth(serverSsl), SIDE_ERROR);
AssertIntEQ(wolfSSL_allow_post_handshake_auth(clientTls12Ssl),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_allow_post_handshake_auth(clientSsl), 0);
AssertIntEQ(wolfSSL_request_certificate(NULL), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_request_certificate(clientSsl), SIDE_ERROR);
AssertIntEQ(wolfSSL_request_certificate(serverTls12Ssl),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_request_certificate(serverSsl), NOT_READY_ERROR);
#endif
#ifdef WOLFSSL_EARLY_DATA
AssertIntEQ(wolfSSL_CTX_set_max_early_data(NULL, 0), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_set_max_early_data(clientCtx, 0), SIDE_ERROR);
AssertIntEQ(wolfSSL_CTX_set_max_early_data(serverTls12Ctx, 0),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_CTX_set_max_early_data(serverCtx, 0), 0);
AssertIntEQ(wolfSSL_set_max_early_data(NULL, 0), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_set_max_early_data(clientSsl, 0), SIDE_ERROR);
AssertIntEQ(wolfSSL_set_max_early_data(serverTls12Ssl, 0), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_set_max_early_data(serverSsl, 0), 0);
AssertIntEQ(wolfSSL_write_early_data(NULL, earlyData, sizeof(earlyData),
&outSz), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_write_early_data(clientSsl, NULL, sizeof(earlyData),
&outSz), BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData, -1, &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData,
sizeof(earlyData), NULL),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_write_early_data(serverSsl, earlyData,
sizeof(earlyData), &outSz),
SIDE_ERROR);
AssertIntEQ(wolfSSL_write_early_data(clientTls12Ssl, earlyData,
sizeof(earlyData), &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData,
sizeof(earlyData), &outSz),
WOLFSSL_FATAL_ERROR);
AssertIntEQ(wolfSSL_read_early_data(NULL, earlyDataBuffer,
sizeof(earlyDataBuffer), &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_read_early_data(serverSsl, NULL,
sizeof(earlyDataBuffer), &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer, -1, &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer,
sizeof(earlyDataBuffer), NULL),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_read_early_data(clientSsl, earlyDataBuffer,
sizeof(earlyDataBuffer), &outSz),
SIDE_ERROR);
AssertIntEQ(wolfSSL_read_early_data(serverTls12Ssl, earlyDataBuffer,
sizeof(earlyDataBuffer), &outSz),
BAD_FUNC_ARG);
AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer,
sizeof(earlyDataBuffer), &outSz),
WOLFSSL_FATAL_ERROR);
#endif
wolfSSL_free(serverSsl);
wolfSSL_CTX_free(serverCtx);
wolfSSL_free(clientSsl);
wolfSSL_CTX_free(clientCtx);
wolfSSL_free(serverTls12Ssl);
wolfSSL_CTX_free(serverTls12Ctx);
wolfSSL_free(clientTls12Ssl);
wolfSSL_CTX_free(clientTls12Ctx);
return ret;
}
#endif
#ifdef HAVE_HASHDRBG
static int test_wc_RNG_GenerateBlock()
{
int i, ret;
WC_RNG rng;
byte key[32];
ret = wc_InitRng(&rng);
if (ret == 0) {
for(i = 0; i < WC_RESEED_INTERVAL + 10; i++) {
ret = wc_RNG_GenerateBlock(&rng, key, sizeof(key));
if (ret != 0) {
break;
}
}
}
wc_FreeRng(&rng);
return ret;
}
#endif
/*----------------------------------------------------------------------------*
| Main
*----------------------------------------------------------------------------*/
void ApiTest(void)
{
printf(" Begin API Tests\n");
AssertIntEQ(test_wolfSSL_Init(), WOLFSSL_SUCCESS);
/* wolfcrypt initialization tests */
test_wolfSSL_Method_Allocators();
#ifndef NO_WOLFSSL_SERVER
test_wolfSSL_CTX_new(wolfSSLv23_server_method());
#endif
test_wolfSSL_CTX_use_certificate_file();
AssertIntEQ(test_wolfSSL_CTX_use_certificate_buffer(), WOLFSSL_SUCCESS);
test_wolfSSL_CTX_use_PrivateKey_file();
test_wolfSSL_CTX_load_verify_locations();
test_wolfSSL_CTX_trust_peer_cert();
test_wolfSSL_CTX_SetTmpDH_file();
test_wolfSSL_CTX_SetTmpDH_buffer();
test_server_wolfSSL_new();
test_client_wolfSSL_new();
test_wolfSSL_SetTmpDH_file();
test_wolfSSL_SetTmpDH_buffer();
test_wolfSSL_read_write();
test_wolfSSL_dtls_export();
AssertIntEQ(test_wolfSSL_SetMinVersion(), WOLFSSL_SUCCESS);
AssertIntEQ(test_wolfSSL_CTX_SetMinVersion(), WOLFSSL_SUCCESS);
/* TLS extensions tests */
test_wolfSSL_UseSNI();
test_wolfSSL_UseMaxFragment();
test_wolfSSL_UseTruncatedHMAC();
test_wolfSSL_UseSupportedCurve();
test_wolfSSL_UseALPN();
test_wolfSSL_DisableExtendedMasterSecret();
/* X509 tests */
test_wolfSSL_X509_NAME_get_entry();
test_wolfSSL_PKCS12();
test_wolfSSL_PKCS5();
/*OCSP Stapling. */
AssertIntEQ(test_wolfSSL_UseOCSPStapling(), WOLFSSL_SUCCESS);
AssertIntEQ(test_wolfSSL_UseOCSPStaplingV2(), WOLFSSL_SUCCESS);
/* Multicast */
test_wolfSSL_mcast();
/* compatibility tests */
test_wolfSSL_DES();
test_wolfSSL_certs();
test_wolfSSL_ASN1_TIME_print();
test_wolfSSL_private_keys();
test_wolfSSL_PEM_PrivateKey();
test_wolfSSL_tmp_dh();
test_wolfSSL_ctrl();
test_wolfSSL_EVP_PKEY_new_mac_key();
test_wolfSSL_EVP_MD_hmac_signing();
test_wolfSSL_CTX_add_extra_chain_cert();
test_wolfSSL_ERR_peek_last_error_line();
test_wolfSSL_X509_STORE_set_flags();
test_wolfSSL_X509_LOOKUP_load_file();
test_wolfSSL_X509_NID();
test_wolfSSL_X509_STORE_CTX_set_time();
test_wolfSSL_BN();
test_wolfSSL_set_options();
test_wolfSSL_PEM_read_bio();
test_wolfSSL_BIO();
test_wolfSSL_DES_ecb_encrypt();
test_wolfSSL_set_tlsext_status_type();
test_wolfSSL_ASN1_TIME_adj();
test_wolfSSL_CTX_set_client_CA_list();
test_wolfSSL_CTX_add_client_CA();
test_wolfSSL_CTX_set_srp_username();
test_wolfSSL_CTX_set_srp_password();
AssertIntEQ(test_wolfSSL_Cleanup(), WOLFSSL_SUCCESS);
/* wolfCrypt ASN tests */
test_wc_GetPkcs8TraditionalOffset();
/* wolfCrypt ECC tests */
test_wc_ecc_get_curve_size_from_name();
test_wc_ecc_get_curve_id_from_name();
test_wc_ecc_get_curve_id_from_params();
#ifdef WOLFSSL_TLS13
/* TLS v1.3 API tests */
test_tls13_apis();
#endif
#ifndef NO_CERTS
/* Bad certificate signature tests */
AssertIntEQ(test_EccSigFailure_cm(), ASN_SIG_CONFIRM_E);
AssertIntEQ(test_RsaSigFailure_cm(), ASN_SIG_CONFIRM_E);
#endif /* NO_CERTS */
/*wolfcrypt */
printf("\n-----------------wolfcrypt unit tests------------------\n");
AssertFalse(test_wolfCrypt_Init());
AssertFalse(test_wc_InitMd5());
AssertFalse(test_wc_Md5Update());
AssertFalse(test_wc_Md5Final());
AssertFalse(test_wc_InitSha());
AssertFalse(test_wc_ShaUpdate());
AssertFalse(test_wc_ShaFinal());
AssertFalse(test_wc_InitSha256());
AssertFalse(test_wc_Sha256Update());
AssertFalse(test_wc_Sha256Final());
AssertFalse(test_wc_InitSha512());
AssertFalse(test_wc_Sha512Update());
AssertFalse(test_wc_Sha512Final());
AssertFalse(test_wc_InitSha384());
AssertFalse(test_wc_Sha384Update());
AssertFalse(test_wc_Sha384Final());
AssertFalse(test_wc_InitSha224());
AssertFalse(test_wc_Sha224Update());
AssertFalse(test_wc_Sha224Final());
AssertFalse(test_wc_InitRipeMd());
AssertFalse(test_wc_RipeMdUpdate());
AssertFalse(test_wc_RipeMdFinal());
AssertFalse(test_wc_Md5HmacSetKey());
AssertFalse(test_wc_Md5HmacUpdate());
AssertFalse(test_wc_Md5HmacFinal());
AssertFalse(test_wc_ShaHmacSetKey());
AssertFalse(test_wc_ShaHmacUpdate());
AssertFalse(test_wc_ShaHmacFinal());
AssertFalse(test_wc_Sha224HmacSetKey());
AssertFalse(test_wc_Sha224HmacUpdate());
AssertFalse(test_wc_Sha224HmacFinal());
AssertFalse(test_wc_Sha256HmacSetKey());
AssertFalse(test_wc_Sha256HmacUpdate());
AssertFalse(test_wc_Sha256HmacFinal());
AssertFalse(test_wc_Sha384HmacSetKey());
AssertFalse(test_wc_Sha384HmacUpdate());
AssertFalse(test_wc_Sha384HmacFinal());
AssertIntEQ(test_wc_Des3_SetIV(), 0);
AssertIntEQ(test_wc_Des3_SetKey(), 0);
AssertIntEQ(test_wc_Des3_CbcEncryptDecrypt(), 0);
AssertIntEQ(test_wc_Des3_CbcEncryptDecryptWithKey(), 0);
AssertIntEQ(test_wc_IdeaSetKey(), 0);
AssertIntEQ(test_wc_IdeaSetIV(), 0);
AssertIntEQ(test_wc_IdeaCipher(), 0);
AssertIntEQ(test_wc_IdeaCbcEncyptDecrypt(), 0);
AssertIntEQ(test_wc_Chacha_SetKey(), 0);
AssertIntEQ(test_wc_Chacha_Process(), 0);
AssertIntEQ(test_wc_ChaCha20Poly1305_aead(), 0);
AssertIntEQ(test_wc_CamelliaSetKey(), 0);
AssertIntEQ(test_wc_CamelliaSetIV(), 0);
AssertIntEQ(test_wc_CamelliaEncryptDecryptDirect(), 0);
AssertIntEQ(test_wc_CamelliaCbcEncryptDecrypt(), 0);
AssertIntEQ(test_wc_RabbitSetKey(), 0);
AssertIntEQ(test_wc_RabbitProcess(), 0);
AssertIntEQ(test_wc_Arc4SetKey(), 0);
AssertIntEQ(test_wc_Arc4Process(), 0);
AssertIntEQ(test_wc_AesSetKey(), 0);
AssertIntEQ(test_wc_AesSetIV(), 0);
AssertIntEQ(test_wc_AesCbcEncryptDecrypt(), 0);
AssertIntEQ(test_wc_AesCtrEncryptDecrypt(), 0);
AssertIntEQ(test_wc_AesGcmSetKey(), 0);
AssertIntEQ(test_wc_AesGcmEncryptDecrypt(), 0);
AssertIntEQ(test_wc_GmacSetKey(), 0);
AssertIntEQ(test_wc_GmacUpdate(), 0);
AssertIntEQ(test_wc_InitRsaKey(), 0);
AssertIntEQ(test_wc_RsaPrivateKeyDecode(), 0);
AssertIntEQ(test_wc_RsaPublicKeyDecode(), 0);
AssertIntEQ(test_wc_RsaPublicKeyDecodeRaw(), 0);
AssertIntEQ(test_wc_MakeRsaKey(), 0);
AssertIntEQ(test_wc_SetKeyUsage (), 0);
AssertIntEQ(test_wc_RsaKeyToDer(), 0);
AssertIntEQ(test_wc_RsaKeyToPublicDer(), 0);
AssertIntEQ(test_wc_RsaPublicEncryptDecrypt(), 0);
AssertIntEQ(test_wc_RsaPublicEncryptDecrypt_ex(), 0);
AssertIntEQ(test_wc_RsaEncryptSize(), 0);
AssertIntEQ(test_wc_RsaSSL_SignVerify(), 0);
AssertIntEQ(test_wc_RsaFlattenPublicKey(), 0);
AssertIntEQ(test_wc_AesCcmSetKey(), 0);
AssertIntEQ(test_wc_AesCcmEncryptDecrypt(), 0);
AssertIntEQ(test_wc_Hc128_SetKey(), 0);
AssertIntEQ(test_wc_Hc128_Process(), 0);
AssertIntEQ(test_wc_InitDsaKey(), 0);
AssertIntEQ(test_wc_DsaSignVerify(), 0);
AssertIntEQ(test_wc_DsaPublicPrivateKeyDecode(), 0);
AssertIntEQ(test_wc_MakeDsaKey(), 0);
AssertIntEQ(test_wc_DsaKeyToDer(), 0);
#ifdef OPENSSL_EXTRA
/*wolfSSS_EVP_get_cipherbynid test*/
test_wolfSSL_EVP_get_cipherbynid();
test_wolfSSL_EC();
#endif
#ifdef HAVE_HASHDRBG
AssertIntEQ(test_wc_RNG_GenerateBlock(), 0);
#endif
printf(" End API Tests\n");
}