/* benchmark.c * * Copyright (C) 2006-2017 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* wolfCrypt benchmark */ #ifdef HAVE_CONFIG_H #include #endif #include /* Macro to disable benchmark */ #ifndef NO_CRYPT_BENCHMARK #if defined(XMALLOC_USER) || defined(FREESCALE_MQX) /* MQX classic needs for EXIT_FAILURE */ #include /* we're using malloc / free direct here */ #endif #ifdef WOLFSSL_STATIC_MEMORY #include static WOLFSSL_HEAP_HINT* HEAP_HINT; #else #define HEAP_HINT NULL #endif /* WOLFSSL_STATIC_MEMORY */ #include #ifdef FREESCALE_MQX #include #if MQX_USE_IO_OLD #include #else #include #endif #elif defined(FREESCALE_KSDK_1_3) #include "fsl_debug_console.h" #include "fsl_os_abstraction.h" #undef printf #define printf PRINTF #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NO_HMAC #include #endif #ifndef NO_PWDBASED #include #endif #ifdef HAVE_ECC #include #endif #ifdef HAVE_IDEA #include #endif #ifdef HAVE_CURVE25519 #include #endif #ifdef HAVE_ED25519 #include #endif #include #ifdef HAVE_NTRU #include "libntruencrypt/ntru_crypto.h" #endif #include #include #include #ifndef EXIT_FAILURE #define EXIT_FAILURE 1 #endif /* only for stack size check */ #ifdef HAVE_STACK_SIZE #include #include #endif #ifdef WOLFSSL_ASYNC_CRYPT #include #endif /* Bit values for each algorithm that is able to be benchmarked. * Common grouping of algorithms also. * Each algorithm has a unique value for its type e.g. cipher. */ /* Cipher algorithms. */ #define BENCH_AES_CBC 0x00000001 #define BENCH_AES_GCM 0x00000002 #define BENCH_AES_ECB 0x00000004 #define BENCH_AES_XTS 0x00000008 #define BENCH_AES_CTR 0x00000010 #define BENCH_AES_CCM 0x00000020 #define BENCH_CAMELLIA 0x00000100 #define BENCH_ARC4 0x00000200 #define BENCH_HC128 0x00000400 #define BENCH_RABBIT 0x00000800 #define BENCH_CHACHA20 0x00001000 #define BENCH_CHACHA20_POLY1305 0x00002000 #define BENCH_DES 0x00004000 #define BENCH_IDEA 0x00008000 /* Digest algorithms. */ #define BENCH_MD5 0x00000001 #define BENCH_POLY1305 0x00000002 #define BENCH_SHA 0x00000004 #define BENCH_SHA224 0x00000010 #define BENCH_SHA256 0x00000020 #define BENCH_SHA384 0x00000040 #define BENCH_SHA512 0x00000080 #define BENCH_SHA2 (BENCH_SHA224 | BENCH_SHA256 | \ BENCH_SHA384 | BENCH_SHA512) #define BENCH_SHA3_224 0x00000100 #define BENCH_SHA3_256 0x00000200 #define BENCH_SHA3_384 0x00000400 #define BENCH_SHA3_512 0x00000800 #define BENCH_SHA3 (BENCH_SHA3_224 | BENCH_SHA3_256 | \ BENCH_SHA3_384 | BENCH_SHA3_512) #define BENCH_RIPEMD 0x00001000 #define BENCH_BLAKE2 0x00002000 /* MAC algorithms. */ #define BENCH_CMAC 0x00000001 #define BENCH_HMAC_MD5 0x00000002 #define BENCH_HMAC_SHA 0x00000004 #define BENCH_HMAC_SHA224 0x00000010 #define BENCH_HMAC_SHA256 0x00000020 #define BENCH_HMAC_SHA384 0x00000040 #define BENCH_HMAC_SHA512 0x00000080 #define BENCH_HMAC (BENCH_HMAC_MD5 | BENCH_HMAC_SHA | \ BENCH_HMAC_SHA224 | BENCH_HMAC_SHA256 | \ BENCH_HMAC_SHA384 | BENCH_HMAC_SHA512) /* Asymmetric algorithms. */ #define BENCH_RSA_KEYGEN 0x00000001 #define BENCH_RSA 0x00000002 #define BENCH_DH 0x00000010 #define BENCH_NTRU 0x00000100 #define BENCH_NTRU_KEYGEN 0x00000200 #define BENCH_ECC_MAKEKEY 0x00001000 #define BENCH_ECC 0x00002000 #define BENCH_ECC_ENCRYPT 0x00004000 #define BENCH_CURVE25519_KEYGEN 0x00010000 #define BENCH_CURVE25519_KA 0x00020000 #define BENCH_ED25519_KEYGEN 0x00040000 #define BENCH_ED25519_SIGN 0x00080000 /* Other */ #define BENCH_RNG 0x00000001 #define BENCH_SCRYPT 0x00000002 /* Benchmark all compiled in algorithms. * When 1, ignore other benchmark algorithm values. * 0, only benchmark algorithm values set. */ static int bench_all = 1; /* Cipher algorithms to benchmark. */ static int bench_cipher_algs = 0; /* Digest algorithms to benchmark. */ static int bench_digest_algs = 0; /* MAC algorithms to benchmark. */ static int bench_mac_algs = 0; /* Asymmetric algorithms to benchmark. */ static int bench_asym_algs = 0; /* Other cryptographic algorithms to benchmark. */ static int bench_other_algs = 0; #if !defined(WOLFSSL_BENCHMARK_ALL) && !defined(NO_MAIN_DRIVER) /* The mapping of command line option to bit values. */ typedef struct bench_alg { /* Command line option string. */ const char* str; /* Bit values to set. */ int val; } bench_alg; /* All recognized cipher algorithm choosing command line options. */ static const bench_alg bench_cipher_opt[] = { { "-cipher", -1 }, #ifdef HAVE_AES_CBC { "-aes_cbc", BENCH_AES_CBC }, #endif #ifdef HAVE_AESGCM { "-aes_gcm", BENCH_AES_GCM }, #endif #ifdef WOLFSSL_AES_DIRECT { "-aes_ecb", BENCH_AES_ECB }, #endif #ifdef WOLFSSL_AES_XTS { "-aes_xts", BENCH_AES_XTS }, #endif #ifdef WOLFSSL_AES_COUNTER { "-aes_ctr", BENCH_AES_CTR }, #endif #ifdef HAVE_AESCCM { "-aes_ccm", BENCH_AES_CCM }, #endif #ifdef HAVE_CAMELLIA { "-camellia", BENCH_CAMELLIA }, #endif #ifndef NO_RC4 { "-arc4", BENCH_ARC4 }, #endif #ifdef HAVE_HC128 { "-hc128", BENCH_HC128 }, #endif #ifndef NO_RABBIT { "-rabbit", BENCH_RABBIT }, #endif #ifdef HAVE_CHACHA { "-chacha20", BENCH_CHACHA20 }, #endif #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) { "-chacha20_poly1305", BENCH_CHACHA20_POLY1305 }, #endif #ifndef NO_DES3 { "-des", BENCH_DES }, #endif #ifdef HAVE_IDEA { "-idea", BENCH_IDEA }, #endif { NULL, 0} }; /* All recognized digest algorithm choosing command line options. */ static const bench_alg bench_digest_opt[] = { { "-digest", -1 }, #ifndef NO_MD5 { "-md5", BENCH_MD5 }, #endif #ifdef HAVE_POLY1305 { "-poly1305", BENCH_POLY1305 }, #endif #ifndef NO_SHA { "-sha", BENCH_SHA }, #endif #if defined(WOLFSSL_SHA224) || !defined(NO_SHA256) || defined(WOLFSSL_SHA384) \ || defined(WOLFSSL_SHA512) { "-sha2", BENCH_SHA2 }, #endif #ifdef WOLFSSL_SHA224 { "-sha224", BENCH_SHA224 }, #endif #ifndef NO_SHA256 { "-sha256", BENCH_SHA256 }, #endif #ifdef WOLFSSL_SHA384 { "-sha384", BENCH_SHA384 }, #endif #ifdef WOLFSSL_SHA512 { "-sha512", BENCH_SHA512 }, #endif #ifdef WOLFSSL_SHA3 { "-sha3", BENCH_SHA3 }, #ifndef WOLFSSL_NOSHA3_224 { "-sha3_224", BENCH_SHA3_224 }, #endif #ifndef WOLFSSL_NOSHA3_256 { "-sha3_256", BENCH_SHA3_256 }, #endif #ifndef WOLFSSL_NOSHA3_384 { "-sha3_384", BENCH_SHA3_384 }, #endif #ifndef WOLFSSL_NOSHA3_512 { "-sha3_512", BENCH_SHA3_512 }, #endif #endif #ifdef WOLFSSL_RIPEMD { "-ripemd", BENCH_RIPEMD }, #endif #ifdef HAVE_BLAKE2 { "-blake2", BENCH_BLAKE2 }, #endif { NULL, 0} }; /* All recognized MAC algorithm choosing command line options. */ static const bench_alg bench_mac_opt[] = { { "-mac", -1 }, #ifdef WOLFSSL_CMAC { "-cmac", BENCH_CMAC }, #endif #ifndef NO_HMAC { "-hmac", BENCH_HMAC }, #ifndef NO_MD5 { "-hmac_md5", BENCH_HMAC_MD5 }, #endif #ifndef NO_SHA { "-hmac_sha", BENCH_HMAC_SHA }, #endif #ifdef WOLFSSL_SHA224 { "-hmac_sha224", BENCH_HMAC_SHA224 }, #endif #ifndef NO_SHA256 { "-hmac_sha256", BENCH_HMAC_SHA256 }, #endif #ifdef WOLFSSL_SHA384 { "-hmac_sha384", BENCH_HMAC_SHA384 }, #endif #ifdef WOLFSSL_SHA512 { "-hmac_sha512", BENCH_HMAC_SHA512 }, #endif #endif { NULL, 0} }; /* All recognized asymmetric algorithm choosing command line options. */ static const bench_alg bench_asym_opt[] = { { "-asym", -1 }, #ifndef NO_RSA #ifdef WOLFSSL_KEY_GEN { "-rsa_kg", BENCH_RSA_KEYGEN }, #endif { "-rsa", BENCH_RSA }, #endif #ifndef NO_DH { "-dh", BENCH_DH }, #endif #ifdef HAVE_NTRU { "-ntru", BENCH_NTRU }, { "-ntru_kg", BENCH_NTRU_KEYGEN }, #endif #ifdef HAVE_ECC { "-ecc_kg", BENCH_ECC_MAKEKEY }, { "-ecc", BENCH_ECC }, #ifdef HAVE_ECC_ENCRYPT { "-ecc_enc", BENCH_ECC_ENCRYPT }, #endif #endif #ifdef HAVE_CURVE25519 { "-curve25519_kg", BENCH_CURVE25519_KEYGEN }, #ifdef HAVE_CURVE25519_SHARED_SECRET { "-x25519", BENCH_CURVE25519_KA }, #endif #endif #ifdef HAVE_ED25519 { "-ed25519_kg", BENCH_ED25519_KEYGEN }, { "-ed25519", BENCH_ED25519_SIGN }, #endif { NULL, 0} }; /* All recognized other cryptographic algorithm choosing command line options. */ static const bench_alg bench_other_opt[] = { { "-other", -1 }, #ifndef WC_NO_RNG { "-rng", BENCH_RNG }, #endif #ifdef HAVE_SCRYPT { "-scrypt", BENCH_SCRYPT }, #endif { NULL, 0} }; #endif #ifdef HAVE_WNR const char* wnrConfigFile = "wnr-example.conf"; #endif #if defined(WOLFSSL_MDK_ARM) extern FILE * wolfSSL_fopen(const char *fname, const char *mode); #define fopen wolfSSL_fopen #endif #if defined(__GNUC__) && defined(__x86_64__) && !defined(NO_ASM) && !defined(WOLFSSL_SGX) #define HAVE_GET_CYCLES static INLINE word64 get_intel_cycles(void); static THREAD_LS_T word64 total_cycles; #define INIT_CYCLE_COUNTER #define BEGIN_INTEL_CYCLES total_cycles = get_intel_cycles(); #define END_INTEL_CYCLES total_cycles = get_intel_cycles() - total_cycles; /* s == size in bytes that 1 count represents, normally BENCH_SIZE */ #define SHOW_INTEL_CYCLES(b, n, s) \ XSNPRINTF(b + XSTRLEN(b), n - XSTRLEN(b), " Cycles per byte = %6.2f\n", \ count == 0 ? 0 : (float)total_cycles / ((word64)count*s)) #elif defined(LINUX_CYCLE_COUNT) #include #include #include static THREAD_LS_T word64 begin_cycles; static THREAD_LS_T word64 total_cycles; static THREAD_LS_T int cycles = -1; static THREAD_LS_T struct perf_event_attr atr; #define INIT_CYCLE_COUNTER do { \ atr.type = PERF_TYPE_HARDWARE; \ atr.config = PERF_COUNT_HW_CPU_CYCLES; \ cycles = (int)syscall(__NR_perf_event_open, &atr, 0, -1, -1, 0); \ } while (0); #define BEGIN_INTEL_CYCLES read(cycles, &begin_cycles, sizeof(begin_cycles)); #define END_INTEL_CYCLES do { \ read(cycles, &total_cycles, sizeof(total_cycles)); \ total_cycles = total_cycles - begin_cycles; \ } while (0); /* s == size in bytes that 1 count represents, normally BENCH_SIZE */ #define SHOW_INTEL_CYCLES(b, n, s) \ XSNPRINTF(b + XSTRLEN(b), n - XSTRLEN(b), " Cycles per byte = %6.2f\n", \ (float)total_cycles / (count*s)) #else #define INIT_CYCLE_COUNTER #define BEGIN_INTEL_CYCLES #define END_INTEL_CYCLES #define SHOW_INTEL_CYCLES(b, n, s) b[XSTRLEN(b)] = '\n' #endif /* let's use buffers, we have them */ #if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048) #define USE_CERT_BUFFERS_2048 #endif #if defined(USE_CERT_BUFFERS_1024) || defined(USE_CERT_BUFFERS_2048) \ || !defined(NO_DH) /* include test cert and key buffers for use with NO_FILESYSTEM */ #include #endif #ifdef HAVE_BLAKE2 #include #endif #ifdef _MSC_VER /* 4996 warning to use MS extensions e.g., strcpy_s instead of strncpy */ #pragma warning(disable: 4996) #endif #include "wolfcrypt/benchmark/benchmark.h" #ifdef WOLFSSL_CURRTIME_REMAP #define current_time WOLFSSL_CURRTIME_REMAP #elif !defined(HAVE_STACK_SIZE) double current_time(int); #endif #if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND) && \ !defined(HAVE_STACK_SIZE) #ifdef __cplusplus extern "C" { #endif WOLFSSL_API int wolfSSL_Debugging_ON(void); WOLFSSL_API void wolfSSL_Debugging_OFF(void); #ifdef __cplusplus } /* extern "C" */ #endif #endif #if !defined(NO_RSA) || !defined(NO_DH) \ || defined(WOLFSSL_KEYGEN) || defined(HAVE_ECC) \ || defined(HAVE_CURVE25519) || defined(HAVE_ED25519) #define HAVE_LOCAL_RNG static THREAD_LS_T WC_RNG rng; #endif #if defined(HAVE_ED25519) || defined(HAVE_CURVE25519) || defined(HAVE_ECC) || \ defined(HAVE_ECC) || defined(HAVE_NTRU) || !defined(NO_DH) || \ !defined(NO_RSA) || defined(HAVE_SCRYPT) #define BENCH_ASYM #endif /* Asynchronous helper macros */ static THREAD_LS_T int devId = INVALID_DEVID; #ifdef WOLFSSL_ASYNC_CRYPT static WOLF_EVENT_QUEUE eventQueue; #define BENCH_ASYNC_GET_DEV(obj) (&(obj)->asyncDev) #define BENCH_ASYNC_GET_NAME(doAsync) (doAsync) ? "HW" : "SW" #define BENCH_MAX_PENDING (WOLF_ASYNC_MAX_PENDING) #ifndef WC_NO_ASYNC_THREADING typedef struct ThreadData { pthread_t thread_id; } ThreadData; static ThreadData* g_threadData; static int g_threadCount; #endif static int bench_async_check(int* ret, WC_ASYNC_DEV* asyncDev, int callAgain, int* times, int limit, int* pending) { int allowNext = 0; /* this state can be set from a different thread */ WOLF_EVENT_STATE state = asyncDev->event.state; /* if algo doesn't require calling again then use this flow */ if (state == WOLF_EVENT_STATE_DONE) { if (callAgain) { /* needs called again, so allow it and handle completion in bench_async_handle */ allowNext = 1; } else { *ret = asyncDev->event.ret; asyncDev->event.state = WOLF_EVENT_STATE_READY; (*times)++; if (*pending > 0) /* to support case where async blocks */ (*pending)--; if ((*times + *pending) < limit) allowNext = 1; } } /* if slot is available and we haven't reached limit, start another */ else if (state == WOLF_EVENT_STATE_READY && (*times + *pending) < limit) { allowNext = 1; } return allowNext; } static int bench_async_handle(int* ret, WC_ASYNC_DEV* asyncDev, int callAgain, int* times, int* pending) { WOLF_EVENT_STATE state = asyncDev->event.state; if (*ret == WC_PENDING_E) { if (state == WOLF_EVENT_STATE_DONE) { *ret = asyncDev->event.ret; asyncDev->event.state = WOLF_EVENT_STATE_READY; (*times)++; (*pending)--; } else { (*pending)++; *ret = wc_AsyncHandle(asyncDev, &eventQueue, callAgain ? WC_ASYNC_FLAG_CALL_AGAIN : WC_ASYNC_FLAG_NONE); } } else if (*ret >= 0) { *ret = asyncDev->event.ret; asyncDev->event.state = WOLF_EVENT_STATE_READY; (*times)++; if (*pending > 0) /* to support case where async blocks */ (*pending)--; } return (*ret >= 0) ? 1 : 0; } static INLINE int bench_async_poll(int* pending) { int ret, asyncDone = 0; ret = wolfAsync_EventQueuePoll(&eventQueue, NULL, NULL, 0, WOLF_POLL_FLAG_CHECK_HW, &asyncDone); if (ret != 0) { printf("Async poll failed %d\n", ret); return ret; } if (asyncDone == 0) { #ifndef WC_NO_ASYNC_THREADING /* give time to other threads */ wc_AsyncThreadYield(); #endif } (void)pending; return asyncDone; } #else #define BENCH_MAX_PENDING (1) #define BENCH_ASYNC_GET_NAME(doAsync) "" #define BENCH_ASYNC_GET_DEV(obj) NULL static INLINE int bench_async_check(int* ret, void* asyncDev, int callAgain, int* times, int limit, int* pending) { (void)ret; (void)asyncDev; (void)callAgain; (void)times; (void)limit; (void)pending; return 1; } static INLINE int bench_async_handle(int* ret, void* asyncDev, int callAgain, int* times, int* pending) { (void)asyncDev; (void)callAgain; (void)pending; if (*ret >= 0) { /* operation completed */ (*times)++; return 1; } return 0; } #define bench_async_poll(p) #endif /* WOLFSSL_ASYNC_CRYPT */ /* maximum runtime for each benchmark */ #define BENCH_MIN_RUNTIME_SEC 1.0f #if defined(HAVE_AESGCM) || defined(HAVE_AESCCM) #define AES_AUTH_ADD_SZ 13 #define AES_AUTH_TAG_SZ 16 #define BENCH_CIPHER_ADD AES_AUTH_TAG_SZ #endif #ifndef BENCH_CIPHER_ADD #define BENCH_CIPHER_ADD 0 #endif /* use kB instead of mB for embedded benchmarking */ #ifdef BENCH_EMBEDDED enum BenchmarkBounds { numBlocks = 25, /* how many kB to test (en/de)cryption */ scryptCnt = 1, ntimes = 2, genTimes = BENCH_MAX_PENDING, agreeTimes = 2 }; static word32 bench_size = (1024ul); #else enum BenchmarkBounds { numBlocks = 5, /* how many megs to test (en/de)cryption */ scryptCnt = 10, ntimes = 100, genTimes = BENCH_MAX_PENDING, /* must be at least BENCH_MAX_PENDING */ agreeTimes = 100 }; static word32 bench_size = (1024*1024ul); #endif static int base2 = 1; /* for compatibility */ #define BENCH_SIZE bench_size /* globals for cipher tests */ static THREAD_LS_T byte* bench_plain = NULL; static THREAD_LS_T byte* bench_cipher = NULL; static const XGEN_ALIGN byte bench_key_buf[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67, 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef }; static const XGEN_ALIGN byte bench_iv_buf[] = { 0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81 }; static THREAD_LS_T byte* bench_key = NULL; static THREAD_LS_T byte* bench_iv = NULL; #ifdef WOLFSSL_STATIC_MEMORY #ifdef BENCH_EMBEDDED static byte gBenchMemory[50000]; #else static byte gBenchMemory[400000]; #endif #endif /******************************************************************************/ /* Begin Stats Functions */ /******************************************************************************/ #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) typedef enum bench_stat_type { BENCH_STAT_ASYM, BENCH_STAT_SYM, } bench_stat_type_t; typedef struct bench_stats { struct bench_stats* next; struct bench_stats* prev; const char* algo; const char* desc; double perfsec; int strength; int doAsync; int finishCount; bench_stat_type_t type; int lastRet; } bench_stats_t; static bench_stats_t* bench_stats_head; static bench_stats_t* bench_stats_tail; static pthread_mutex_t bench_lock = PTHREAD_MUTEX_INITIALIZER; static bench_stats_t* bench_stats_add(bench_stat_type_t type, const char* algo, int strength, const char* desc, int doAsync, double perfsec, int ret) { bench_stats_t* stat; /* protect bench_stats_head and bench_stats_tail access */ pthread_mutex_lock(&bench_lock); /* locate existing in list */ for (stat = bench_stats_head; stat != NULL; stat = stat->next) { /* match based on algo, strength and desc */ if (stat->algo == algo && stat->strength == strength && stat->desc == desc && stat->doAsync == doAsync) { break; } } if (stat == NULL) { /* allocate new and put on list */ stat = (bench_stats_t*)XMALLOC(sizeof(bench_stats_t), NULL, DYNAMIC_TYPE_INFO); if (stat) { XMEMSET(stat, 0, sizeof(bench_stats_t)); /* add to list */ stat->next = NULL; if (bench_stats_tail == NULL) { bench_stats_head = stat; } else { bench_stats_tail->next = stat; stat->prev = bench_stats_tail; } bench_stats_tail = stat; /* add to the end either way */ } } if (stat) { int isLast = 0; stat->type = type; stat->algo = algo; stat->strength = strength; stat->desc = desc; stat->doAsync = doAsync; stat->perfsec += perfsec; stat->finishCount++; if (stat->lastRet > ret) stat->lastRet = ret; /* track last error */ if (stat->finishCount == g_threadCount) { isLast = 1; } pthread_mutex_unlock(&bench_lock); /* wait until remaining are complete */ while (stat->finishCount < g_threadCount) { wc_AsyncThreadYield(); } /* print final stat */ if (isLast) { if (stat->type == BENCH_STAT_SYM) { printf("%-12s%s %8.3f MB/s\n", stat->desc, BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec); } else { printf("%-5s %4d %-9s %s %.3f ops/sec\n", stat->algo, stat->strength, stat->desc, BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec); } } } else { pthread_mutex_unlock(&bench_lock); } return stat; } #endif /* WOLFSSL_ASYNC_CRYPT && !WC_NO_ASYNC_THREADING */ static INLINE void bench_stats_init(void) { #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) bench_stats_head = NULL; bench_stats_tail = NULL; #endif INIT_CYCLE_COUNTER } static INLINE void bench_stats_start(int* count, double* start) { *count = 0; *start = current_time(1); BEGIN_INTEL_CYCLES } static INLINE int bench_stats_sym_check(double start) { return ((current_time(0) - start) < BENCH_MIN_RUNTIME_SEC); } /* countSz is number of bytes that 1 count represents. Normally bench_size, * except for AES direct that operates on AES_BLOCK_SIZE blocks */ static void bench_stats_sym_finish(const char* desc, int doAsync, int count, int countSz, double start, int ret) { double total, persec = 0, blocks = count; const char* blockType; char msg[128] = {0}; END_INTEL_CYCLES total = current_time(0) - start; /* calculate actual bytes */ blocks *= countSz; if (base2) { /* determine if we should show as KB or MB */ if (blocks > (1024 * 1024)) { blocks /= (1024 * 1024); blockType = "MB"; } else if (blocks > 1024) { blocks /= 1024; /* make KB */ blockType = "KB"; } else { blockType = "bytes"; } } else { /* determine if we should show as kB or mB */ if (blocks > (1000 * 1000)) { blocks /= (1000 * 1000); blockType = "mB"; } else if (blocks > 1000) { blocks /= 1000; /* make kB */ blockType = "kB"; } else { blockType = "bytes"; } } /* caclulcate blocks per second */ if (total > 0) { persec = (1 / total) * blocks; } XSNPRINTF(msg, sizeof(msg), "%-16s%s %5.0f %s took %5.3f seconds, %8.3f %s/s", desc, BENCH_ASYNC_GET_NAME(doAsync), blocks, blockType, total, persec, blockType); SHOW_INTEL_CYCLES(msg, sizeof(msg), countSz); printf("%s", msg); /* show errors */ if (ret < 0) { printf("Benchmark %s failed: %d\n", desc, ret); } #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) /* Add to thread stats */ bench_stats_add(BENCH_STAT_SYM, NULL, 0, desc, doAsync, persec, ret); #endif (void)doAsync; (void)ret; } #ifdef BENCH_ASYM static void bench_stats_asym_finish(const char* algo, int strength, const char* desc, int doAsync, int count, double start, int ret) { double total, each = 0, opsSec, milliEach; total = current_time(0) - start; if (count > 0) each = total / count; /* per second */ opsSec = count / total; /* ops second */ milliEach = each * 1000; /* milliseconds */ printf("%-6s %5d %-9s %s %6d ops took %5.3f sec, avg %5.3f ms," " %.3f ops/sec\n", algo, strength, desc, BENCH_ASYNC_GET_NAME(doAsync), count, total, milliEach, opsSec); /* show errors */ if (ret < 0) { printf("Benchmark %s %s %d failed: %d\n", algo, desc, strength, ret); } #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) /* Add to thread stats */ bench_stats_add(BENCH_STAT_ASYM, algo, strength, desc, doAsync, opsSec, ret); #endif (void)doAsync; (void)ret; } #endif /* BENCH_ASYM */ static INLINE void bench_stats_free(void) { #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) bench_stats_t* stat; for (stat = bench_stats_head; stat != NULL; ) { bench_stats_t* next = stat->next; XFREE(stat, NULL, DYNAMIC_TYPE_INFO); stat = next; } bench_stats_head = NULL; bench_stats_tail = NULL; #endif } /******************************************************************************/ /* End Stats Functions */ /******************************************************************************/ static void* benchmarks_do(void* args) { int bench_buf_size; #ifdef WOLFSSL_ASYNC_CRYPT #ifndef WC_NO_ASYNC_THREADING ThreadData* threadData = (ThreadData*)args; if (wolfAsync_DevOpenThread(&devId, &threadData->thread_id) < 0) #else if (wolfAsync_DevOpen(&devId) < 0) #endif { printf("Async device open failed\nRunning without async\n"); } #endif /* WOLFSSL_ASYNC_CRYPT */ (void)args; #ifdef WOLFSSL_ASYNC_CRYPT if (wolfEventQueue_Init(&eventQueue) != 0) { printf("Async event queue init failure!\n"); } #endif #if defined(HAVE_LOCAL_RNG) { int rngRet; #ifndef HAVE_FIPS rngRet = wc_InitRng_ex(&rng, HEAP_HINT, devId); #else rngRet = wc_InitRng(&rng); #endif if (rngRet < 0) { printf("InitRNG failed\n"); return NULL; } } #endif /* setup bench plain, cipher, key and iv globals */ /* make sure bench buffer is multiple of 16 (AES block size) */ bench_buf_size = (int)bench_size + BENCH_CIPHER_ADD; if (bench_buf_size % 16) bench_buf_size += 16 - (bench_buf_size % 16); bench_plain = (byte*)XMALLOC((size_t)bench_buf_size, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); bench_cipher = (byte*)XMALLOC((size_t)bench_buf_size, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); if (bench_plain == NULL || bench_cipher == NULL) { XFREE(bench_plain, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); XFREE(bench_cipher, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); bench_plain = bench_cipher = NULL; printf("Benchmark block buffer alloc failed!\n"); goto exit; } XMEMSET(bench_plain, 0, (size_t)bench_buf_size); XMEMSET(bench_cipher, 0, (size_t)bench_buf_size); #ifdef WOLFSSL_ASYNC_CRYPT bench_key = (byte*)XMALLOC(sizeof(bench_key_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); bench_iv = (byte*)XMALLOC(sizeof(bench_iv_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); if (bench_key == NULL || bench_iv == NULL) { XFREE(bench_key, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); XFREE(bench_iv, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); bench_key = bench_iv = NULL; printf("Benchmark cipher buffer alloc failed!\n"); goto exit; } XMEMCPY(bench_key, bench_key_buf, sizeof(bench_key_buf)); XMEMCPY(bench_iv, bench_iv_buf, sizeof(bench_iv_buf)); #else bench_key = (byte*)bench_key_buf; bench_iv = (byte*)bench_iv_buf; #endif #ifndef WC_NO_RNG if (bench_all || (bench_other_algs & BENCH_RNG)) bench_rng(); #endif /* WC_NO_RNG */ #ifndef NO_AES #ifdef HAVE_AES_CBC if (bench_all || (bench_cipher_algs & BENCH_AES_CBC)) { #ifndef NO_SW_BENCH bench_aescbc(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES) bench_aescbc(1); #endif } #endif #ifdef HAVE_AESGCM if (bench_all || (bench_cipher_algs & BENCH_AES_GCM)) { #ifndef NO_SW_BENCH bench_aesgcm(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES) bench_aesgcm(1); #endif } #endif #ifdef WOLFSSL_AES_DIRECT if (bench_all || (bench_cipher_algs & BENCH_AES_ECB)) { #ifndef NO_SW_BENCH bench_aesecb(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES) bench_aesecb(1); #endif } #endif #ifdef WOLFSSL_AES_XTS if (bench_all || (bench_cipher_algs & BENCH_AES_XTS)) bench_aesxts(); #endif #ifdef WOLFSSL_AES_COUNTER if (bench_all || (bench_cipher_algs & BENCH_AES_CTR)) bench_aesctr(); #endif #ifdef HAVE_AESCCM if (bench_all || (bench_cipher_algs & BENCH_AES_CCM)) bench_aesccm(); #endif #endif /* !NO_AES */ #ifdef HAVE_CAMELLIA if (bench_all || (bench_cipher_algs & BENCH_CAMELLIA)) bench_camellia(); #endif #ifndef NO_RC4 if (bench_all || (bench_cipher_algs & BENCH_ARC4)) { #ifndef NO_SW_BENCH bench_arc4(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ARC4) bench_arc4(1); #endif } #endif #ifdef HAVE_HC128 if (bench_all || (bench_cipher_algs & BENCH_HC128)) bench_hc128(); #endif #ifndef NO_RABBIT if (bench_all || (bench_cipher_algs & BENCH_RABBIT)) bench_rabbit(); #endif #ifdef HAVE_CHACHA if (bench_all || (bench_cipher_algs & BENCH_CHACHA20)) bench_chacha(); #endif #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) if (bench_all || (bench_cipher_algs & BENCH_CHACHA20_POLY1305)) bench_chacha20_poly1305_aead(); #endif #ifndef NO_DES3 if (bench_all || (bench_cipher_algs & BENCH_DES)) { #ifndef NO_SW_BENCH bench_des(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_3DES) bench_des(1); #endif } #endif #ifdef HAVE_IDEA if (bench_all || (bench_cipher_algs & BENCH_IDEA)) bench_idea(); #endif #ifndef NO_MD5 if (bench_all || (bench_digest_algs & BENCH_MD5)) { #ifndef NO_SW_BENCH bench_md5(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_MD5) bench_md5(1); #endif } #endif #ifdef HAVE_POLY1305 if (bench_all || (bench_digest_algs & BENCH_POLY1305)) bench_poly1305(); #endif #ifndef NO_SHA if (bench_all || (bench_digest_algs & BENCH_SHA)) { #ifndef NO_SW_BENCH bench_sha(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) bench_sha(1); #endif } #endif #ifdef WOLFSSL_SHA224 if (bench_all || (bench_digest_algs & BENCH_SHA224)) { #ifndef NO_SW_BENCH bench_sha224(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA224) bench_sha224(1); #endif } #endif #ifndef NO_SHA256 if (bench_all || (bench_digest_algs & BENCH_SHA256)) { #ifndef NO_SW_BENCH bench_sha256(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA256) bench_sha256(1); #endif } #endif #ifdef WOLFSSL_SHA384 if (bench_all || (bench_digest_algs & BENCH_SHA384)) { #ifndef NO_SW_BENCH bench_sha384(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA384) bench_sha384(1); #endif } #endif #ifdef WOLFSSL_SHA512 if (bench_all || (bench_digest_algs & BENCH_SHA512)) { #ifndef NO_SW_BENCH bench_sha512(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512) bench_sha512(1); #endif } #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 if (bench_all || (bench_digest_algs & BENCH_SHA3_224)) { #ifndef NO_SW_BENCH bench_sha3_224(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3) bench_sha3_224(1); #endif } #endif /* WOLFSSL_NOSHA3_224 */ #ifndef WOLFSSL_NOSHA3_256 if (bench_all || (bench_digest_algs & BENCH_SHA3_256)) { #ifndef NO_SW_BENCH bench_sha3_256(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3) bench_sha3_256(1); #endif } #endif /* WOLFSSL_NOSHA3_256 */ #ifndef WOLFSSL_NOSHA3_384 if (bench_all || (bench_digest_algs & BENCH_SHA3_384)) { #ifndef NO_SW_BENCH bench_sha3_384(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3) bench_sha3_384(1); #endif } #endif /* WOLFSSL_NOSHA3_384 */ #ifndef WOLFSSL_NOSHA3_512 if (bench_all || (bench_digest_algs & BENCH_SHA3_512)) { #ifndef NO_SW_BENCH bench_sha3_512(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512) bench_sha3_512(1); #endif } #endif /* WOLFSSL_NOSHA3_512 */ #endif #ifdef WOLFSSL_RIPEMD if (bench_all || (bench_digest_algs & BENCH_RIPEMD)) bench_ripemd(); #endif #ifdef HAVE_BLAKE2 if (bench_all || (bench_digest_algs & BENCH_BLAKE2)) bench_blake2(); #endif #ifdef WOLFSSL_CMAC if (bench_all || (bench_mac_algs & BENCH_CMAC)) bench_cmac(); #endif #ifndef NO_HMAC #ifndef NO_MD5 if (bench_all || (bench_mac_algs & BENCH_HMAC_MD5)) { #ifndef NO_SW_BENCH bench_hmac_md5(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_HMAC) bench_hmac_md5(1); #endif } #endif #ifndef NO_SHA if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA)) { #ifndef NO_SW_BENCH bench_hmac_sha(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA) bench_hmac_sha(1); #endif } #endif #ifdef WOLFSSL_SHA224 if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA224)) { #ifndef NO_SW_BENCH bench_hmac_sha224(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA224) bench_hmac_sha224(1); #endif } #endif #ifndef NO_SHA256 if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA256)) { #ifndef NO_SW_BENCH bench_hmac_sha256(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA256) bench_hmac_sha256(1); #endif } #endif #ifdef WOLFSSL_SHA384 if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA384)) { #ifndef NO_SW_BENCH bench_hmac_sha384(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA384) bench_hmac_sha384(1); #endif } #endif #ifdef WOLFSSL_SHA512 if (bench_all || (bench_mac_algs & BENCH_HMAC_SHA512)) { #ifndef NO_SW_BENCH bench_hmac_sha512(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512) bench_hmac_sha512(1); #endif } #endif #endif /* NO_HMAC */ #ifdef HAVE_SCRYPT if (bench_all || (bench_other_algs & BENCH_SCRYPT)) bench_scrypt(); #endif #ifndef NO_RSA #ifdef WOLFSSL_KEY_GEN if (bench_all || (bench_asym_algs & BENCH_RSA_KEYGEN)) { #ifndef NO_SW_BENCH bench_rsaKeyGen(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) /* async supported in simulator only */ #ifdef WOLFSSL_ASYNC_CRYPT_TEST bench_rsaKeyGen(1); #endif #endif } #endif if (bench_all || (bench_asym_algs & BENCH_RSA)) { #ifndef NO_SW_BENCH bench_rsa(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA) bench_rsa(1); #endif } #endif #ifndef NO_DH if (bench_all || (bench_asym_algs & BENCH_DH)) { #ifndef NO_SW_BENCH bench_dh(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_DH) bench_dh(1); #endif } #endif #ifdef HAVE_NTRU if (bench_all || (bench_asym_algs & BENCH_NTRU)) bench_ntru(); if (bench_all || (bench_asym_algs & BENCH_NTRU_KEYGEN)) bench_ntruKeyGen(); #endif #ifdef HAVE_ECC if (bench_all || (bench_asym_algs & BENCH_ECC_MAKEKEY)) { #ifndef NO_SW_BENCH bench_eccMakeKey(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC) /* async supported in simulator only */ #ifdef WOLFSSL_ASYNC_CRYPT_TEST bench_eccMakeKey(1); #endif #endif } if (bench_all || (bench_asym_algs & BENCH_ECC)) { #ifndef NO_SW_BENCH bench_ecc(0); #endif #if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC) bench_ecc(1); #endif } #ifdef HAVE_ECC_ENCRYPT if (bench_all || (bench_asym_algs & BENCH_ECC_ENCRYPT)) bench_eccEncrypt(); #endif #endif #ifdef HAVE_CURVE25519 if (bench_all || (bench_asym_algs & BENCH_CURVE25519_KEYGEN)) bench_curve25519KeyGen(); #ifdef HAVE_CURVE25519_SHARED_SECRET if (bench_all || (bench_asym_algs & BENCH_CURVE25519_KA)) bench_curve25519KeyAgree(); #endif #endif #ifdef HAVE_ED25519 if (bench_all || (bench_asym_algs & BENCH_ED25519_KEYGEN)) bench_ed25519KeyGen(); if (bench_all || (bench_asym_algs & BENCH_ED25519_SIGN)) bench_ed25519KeySign(); #endif exit: /* free benchmark buffers */ XFREE(bench_plain, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); XFREE(bench_cipher, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); #ifdef WOLFSSL_ASYNC_CRYPT XFREE(bench_key, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); XFREE(bench_iv, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT); #endif #ifdef WOLFSSL_ASYNC_CRYPT /* free event queue */ wolfEventQueue_Free(&eventQueue); #endif #if defined(HAVE_LOCAL_RNG) wc_FreeRng(&rng); #endif #ifdef WOLFSSL_ASYNC_CRYPT wolfAsync_DevClose(&devId); #endif return NULL; } int benchmark_init(void) { int ret = 0; #ifdef WOLFSSL_STATIC_MEMORY ret = wc_LoadStaticMemory(&HEAP_HINT, gBenchMemory, sizeof(gBenchMemory), WOLFMEM_GENERAL, 1); if (ret != 0) { printf("unable to load static memory %d\n", ret); } #endif /* WOLFSSL_STATIC_MEMORY */ if ((ret = wolfCrypt_Init()) != 0) { printf("wolfCrypt_Init failed %d\n", ret); return EXIT_FAILURE; } bench_stats_init(); #if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND) wolfSSL_Debugging_ON(); #endif printf("wolfCrypt Benchmark (block bytes %d, min %.1f sec each)\n", BENCH_SIZE, BENCH_MIN_RUNTIME_SEC); #ifdef HAVE_WNR ret = wc_InitNetRandom(wnrConfigFile, NULL, 5000); if (ret != 0) { printf("Whitewood netRandom config init failed %d\n", ret); } #endif /* HAVE_WNR */ return ret; } int benchmark_free(void) { int ret; #ifdef HAVE_WNR ret = wc_FreeNetRandom(); if (ret < 0) { printf("Failed to free netRandom context %d\n", ret); } #endif bench_stats_free(); if ((ret = wolfCrypt_Cleanup()) != 0) { printf("error %d with wolfCrypt_Cleanup\n", ret); } return ret; } /* so embedded projects can pull in tests on their own */ #ifdef HAVE_STACK_SIZE THREAD_RETURN WOLFSSL_THREAD benchmark_test(void* args) #else int benchmark_test(void *args) #endif { int ret; (void)args; ret = benchmark_init(); if (ret != 0) EXIT_TEST(ret); #if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING) { int i; int numCpus = wc_AsyncGetNumberOfCpus(); printf("CPUs: %d\n", numCpus); g_threadData = (ThreadData*)XMALLOC(sizeof(ThreadData) * numCpus, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); if (g_threadData == NULL) { printf("Thread data alloc failed!\n"); EXIT_TEST(EXIT_FAILURE); } g_threadCount = numCpus; /* Create threads */ for (i = 0; i < numCpus; i++) { ret = wc_AsyncThreadCreate(&g_threadData[i].thread_id, benchmarks_do, &g_threadData[i]); if (ret != 0) { printf("Error creating benchmark thread %d\n", ret); EXIT_TEST(EXIT_FAILURE); } } /* Start threads */ for (i = 0; i < numCpus; i++) { wc_AsyncThreadJoin(&g_threadData[i].thread_id); } XFREE(g_threadData, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); } #else benchmarks_do(NULL); #endif ret = benchmark_free(); EXIT_TEST(ret); } #ifndef WC_NO_RNG void bench_rng(void) { int ret, i, count; double start; int pos, len, remain; WC_RNG myrng; #ifndef HAVE_FIPS ret = wc_InitRng_ex(&myrng, HEAP_HINT, devId); #else ret = wc_InitRng(&myrng); #endif if (ret < 0) { printf("InitRNG failed %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { /* Split request to handle large RNG request */ pos = 0; remain = (int)BENCH_SIZE; while (remain > 0) { len = remain; if (len > RNG_MAX_BLOCK_LEN) len = RNG_MAX_BLOCK_LEN; ret = wc_RNG_GenerateBlock(&myrng, &bench_plain[pos], (word32)len); if (ret < 0) goto exit_rng; remain -= len; pos += len; } } count += i; } while (bench_stats_sym_check(start)); exit_rng: bench_stats_sym_finish("RNG", 0, count, bench_size, start, ret); wc_FreeRng(&myrng); } #endif /* WC_NO_RNG */ #ifndef NO_AES #ifdef HAVE_AES_CBC static void bench_aescbc_internal(int doAsync, const byte* key, word32 keySz, const byte* iv, const char* encLabel, const char* decLabel) { int ret = 0, i, count = 0, times, pending = 0; Aes enc[BENCH_MAX_PENDING]; double start; /* clear for done cleanup */ XMEMSET(enc, 0, sizeof(enc)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if ((ret = wc_AesInit(&enc[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) != 0) { printf("AesInit failed, ret = %d\n", ret); goto exit; } ret = wc_AesSetKey(&enc[i], key, keySz, iv, AES_ENCRYPTION); if (ret != 0) { printf("AesSetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_AesCbcEncrypt(&enc[i], bench_plain, bench_cipher, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_enc; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_enc: bench_stats_sym_finish(encLabel, doAsync, count, bench_size, start, ret); if (ret < 0) { goto exit; } #ifdef HAVE_AES_DECRYPT /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_AesSetKey(&enc[i], key, keySz, iv, AES_DECRYPTION); if (ret != 0) { printf("AesSetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_AesCbcDecrypt(&enc[i], bench_plain, bench_cipher, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_dec; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_dec: bench_stats_sym_finish(decLabel, doAsync, count, bench_size, start, ret); #endif /* HAVE_AES_DECRYPT */ exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_AesFree(&enc[i]); } } void bench_aescbc(int doAsync) { bench_aescbc_internal(doAsync, bench_key, 16, bench_iv, "AES-128-CBC-enc", "AES-128-CBC-dec"); bench_aescbc_internal(doAsync, bench_key, 24, bench_iv, "AES-192-CBC-enc", "AES-192-CBC-dec"); bench_aescbc_internal(doAsync, bench_key, 32, bench_iv, "AES-256-CBC-enc", "AES-256-CBC-dec"); } #endif /* HAVE_AES_CBC */ #ifdef HAVE_AESGCM static void bench_aesgcm_internal(int doAsync, const byte* key, word32 keySz, const byte* iv, word32 ivSz, const char* encLabel, const char* decLabel) { int ret = 0, i, count = 0, times, pending = 0; Aes enc[BENCH_MAX_PENDING]; double start; DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT); DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT); /* clear for done cleanup */ XMEMSET(enc, 0, sizeof(enc)); #ifdef WOLFSSL_ASYNC_CRYPT if (bench_additional) #endif { XMEMSET(bench_additional, 0, AES_AUTH_ADD_SZ); } #ifdef WOLFSSL_ASYNC_CRYPT if (bench_tag) #endif { XMEMSET(bench_tag, 0, AES_AUTH_TAG_SZ); } /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if ((ret = wc_AesInit(&enc[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) != 0) { printf("AesInit failed, ret = %d\n", ret); goto exit; } ret = wc_AesGcmSetKey(&enc[i], key, keySz); if (ret != 0) { printf("AesGcmSetKey failed, ret = %d\n", ret); goto exit; } } /* GCM uses same routine in backend for both encrypt and decrypt */ bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_AesGcmEncrypt(&enc[i], bench_cipher, bench_plain, BENCH_SIZE, iv, ivSz, bench_tag, AES_AUTH_TAG_SZ, bench_additional, AES_AUTH_ADD_SZ); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_gcm; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_gcm: bench_stats_sym_finish(encLabel, doAsync, count, bench_size, start, ret); /* GCM uses same routine in backend for both encrypt and decrypt */ bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_AesGcmDecrypt(&enc[i], bench_plain, bench_cipher, BENCH_SIZE, iv, ivSz, bench_tag, AES_AUTH_TAG_SZ, bench_additional, AES_AUTH_ADD_SZ); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_gcm_dec; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_gcm_dec: bench_stats_sym_finish(decLabel, doAsync, count, bench_size, start, ret); exit: if (ret < 0) { printf("bench_aesgcm failed: %d\n", ret); } for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_AesFree(&enc[i]); } FREE_VAR(bench_additional, HEAP_HINT); FREE_VAR(bench_tag, HEAP_HINT); } void bench_aesgcm(int doAsync) { bench_aesgcm_internal(doAsync, bench_key, 16, bench_iv, 12, "AES-128-GCM-enc", "AES-128-GCM-dec"); bench_aesgcm_internal(doAsync, bench_key, 24, bench_iv, 12, "AES-192-GCM-enc", "AES-192-GCM-dec"); bench_aesgcm_internal(doAsync, bench_key, 32, bench_iv, 12, "AES-256-GCM-enc", "AES-256-GCM-dec"); } #endif /* HAVE_AESGCM */ #ifdef WOLFSSL_AES_DIRECT static void bench_aesecb_internal(int doAsync, const byte* key, word32 keySz, const char* encLabel, const char* decLabel) { int ret, i, count = 0, times, pending = 0; Aes enc[BENCH_MAX_PENDING]; double start; /* clear for done cleanup */ XMEMSET(enc, 0, sizeof(enc)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if ((ret = wc_AesInit(&enc[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) != 0) { printf("AesInit failed, ret = %d\n", ret); goto exit; } ret = wc_AesSetKey(&enc[i], key, keySz, bench_iv, AES_ENCRYPTION); if (ret != 0) { printf("AesSetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { wc_AesEncryptDirect(&enc[i], bench_cipher, bench_plain); ret = 0; if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_enc; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_enc: bench_stats_sym_finish(encLabel, doAsync, count, AES_BLOCK_SIZE, start, ret); #ifdef HAVE_AES_DECRYPT /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_AesSetKey(&enc[i], key, keySz, bench_iv, AES_DECRYPTION); if (ret != 0) { printf("AesSetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { wc_AesDecryptDirect(&enc[i], bench_plain, bench_cipher); ret = 0; if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_aes_dec; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_aes_dec: bench_stats_sym_finish(decLabel, doAsync, count, AES_BLOCK_SIZE, start, ret); #endif /* HAVE_AES_DECRYPT */ exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_AesFree(&enc[i]); } } void bench_aesecb(int doAsync) { bench_aesecb_internal(doAsync, bench_key, 16, "AES-128-ECB-enc", "AES-128-ECB-dec"); bench_aesecb_internal(doAsync, bench_key, 24, "AES-192-ECB-enc", "AES-192-ECB-dec"); bench_aesecb_internal(doAsync, bench_key, 32, "AES-256-ECB-enc", "AES-256-ECB-dec"); } #endif /* WOLFSSL_AES_DIRECT */ #ifdef WOLFSSL_AES_XTS void bench_aesxts(void) { XtsAes aes; double start; int i, count, ret; static unsigned char k1[] = { 0xa1, 0xb9, 0x0c, 0xba, 0x3f, 0x06, 0xac, 0x35, 0x3b, 0x2c, 0x34, 0x38, 0x76, 0x08, 0x17, 0x62, 0x09, 0x09, 0x23, 0x02, 0x6e, 0x91, 0x77, 0x18, 0x15, 0xf2, 0x9d, 0xab, 0x01, 0x93, 0x2f, 0x2f }; static unsigned char i1[] = { 0x4f, 0xae, 0xf7, 0x11, 0x7c, 0xda, 0x59, 0xc6, 0x6e, 0x4b, 0x92, 0x01, 0x3e, 0x76, 0x8a, 0xd5 }; ret = wc_AesXtsSetKey(&aes, k1, sizeof(k1), AES_ENCRYPTION, HEAP_HINT, devId); if (ret != 0) { printf("wc_AesXtsSetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { if ((ret = wc_AesXtsEncrypt(&aes, bench_plain, bench_cipher, BENCH_SIZE, i1, sizeof(i1))) != 0) { printf("wc_AesXtsEncrypt failed, ret = %d\n", ret); return; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("AES-XTS-enc", 0, count, bench_size, start, ret); wc_AesXtsFree(&aes); /* decryption benchmark */ ret = wc_AesXtsSetKey(&aes, k1, sizeof(k1), AES_DECRYPTION, HEAP_HINT, devId); if (ret != 0) { printf("wc_AesXtsSetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { if ((ret = wc_AesXtsDecrypt(&aes, bench_plain, bench_cipher, BENCH_SIZE, i1, sizeof(i1))) != 0) { printf("wc_AesXtsDecrypt failed, ret = %d\n", ret); return; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("AES-XTS-dec", 0, count, bench_size, start, ret); wc_AesXtsFree(&aes); } #endif /* WOLFSSL_AES_XTS */ #ifdef WOLFSSL_AES_COUNTER static void bench_aesctr_internal(const byte* key, word32 keySz, const byte* iv, const char* label) { Aes enc; double start; int i, count, ret; wc_AesSetKeyDirect(&enc, key, keySz, iv, AES_ENCRYPTION); bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { if((ret = wc_AesCtrEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE)) != 0) { printf("wc_AesCtrEncrypt failed, ret = %d\n", ret); return; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish(label, 0, count, bench_size, start, ret); } void bench_aesctr(void) { bench_aesctr_internal(bench_key, 16, bench_iv, "AES-128-CTR"); bench_aesctr_internal(bench_key, 24, bench_iv, "AES-192-CTR"); bench_aesctr_internal(bench_key, 32, bench_iv, "AES-256-CTR"); } #endif /* WOLFSSL_AES_COUNTER */ #ifdef HAVE_AESCCM void bench_aesccm(void) { Aes enc; double start; int ret, i, count; DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT); DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT); XMEMSET(bench_tag, 0, AES_AUTH_TAG_SZ); XMEMSET(bench_additional, 0, AES_AUTH_ADD_SZ); if ((ret = wc_AesCcmSetKey(&enc, bench_key, 16)) != 0) { printf("wc_AesCcmSetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { wc_AesCcmEncrypt(&enc, bench_cipher, bench_plain, BENCH_SIZE, bench_iv, 12, bench_tag, AES_AUTH_TAG_SZ, bench_additional, AES_AUTH_ADD_SZ); } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("AES-CCM", 0, count, bench_size, start, ret); FREE_VAR(bench_additional, HEAP_HINT); FREE_VAR(bench_tag, HEAP_HINT); } #endif /* HAVE_AESCCM */ #endif /* !NO_AES */ #ifdef HAVE_POLY1305 void bench_poly1305() { Poly1305 enc; byte mac[16]; double start; int ret, i, count; ret = wc_Poly1305SetKey(&enc, bench_key, 32); if (ret != 0) { printf("Poly1305SetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { ret = wc_Poly1305Update(&enc, bench_plain, BENCH_SIZE); if (ret != 0) { printf("Poly1305Update failed: %d\n", ret); break; } } wc_Poly1305Final(&enc, mac); count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("POLY1305", 0, count, bench_size, start, ret); } #endif /* HAVE_POLY1305 */ #ifdef HAVE_CAMELLIA void bench_camellia(void) { Camellia cam; double start; int ret, i, count; ret = wc_CamelliaSetKey(&cam, bench_key, 16, bench_iv); if (ret != 0) { printf("CamelliaSetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { ret = wc_CamelliaCbcEncrypt(&cam, bench_plain, bench_cipher, BENCH_SIZE); if (ret < 0) { printf("CamelliaCbcEncrypt failed: %d\n", ret); return; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("Camellia", 0, count, bench_size, start, ret); } #endif #ifndef NO_DES3 void bench_des(int doAsync) { int ret = 0, i, count = 0, times, pending = 0; Des3 enc[BENCH_MAX_PENDING]; double start; /* clear for done cleanup */ XMEMSET(enc, 0, sizeof(enc)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if ((ret = wc_Des3Init(&enc[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) != 0) { printf("Des3Init failed, ret = %d\n", ret); goto exit; } ret = wc_Des3_SetKey(&enc[i], bench_key, bench_iv, DES_ENCRYPTION); if (ret != 0) { printf("Des3_SetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_Des3_CbcEncrypt(&enc[i], bench_plain, bench_cipher, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_3des; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_3des: bench_stats_sym_finish("3DES", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Des3Free(&enc[i]); } } #endif /* !NO_DES3 */ #ifdef HAVE_IDEA void bench_idea(void) { Idea enc; double start; int ret = 0, i, count; ret = wc_IdeaSetKey(&enc, bench_key, IDEA_KEY_SIZE, bench_iv, IDEA_ENCRYPTION); if (ret != 0) { printf("Des3_SetKey failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { wc_IdeaCbcEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE); } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("IDEA", 0, count, bench_size, start, ret); } #endif /* HAVE_IDEA */ #ifndef NO_RC4 void bench_arc4(int doAsync) { int ret = 0, i, count = 0, times, pending = 0; Arc4 enc[BENCH_MAX_PENDING]; double start; /* clear for done cleanup */ XMEMSET(enc, 0, sizeof(enc)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if ((ret = wc_Arc4Init(&enc[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) != 0) { printf("Arc4Init failed, ret = %d\n", ret); goto exit; } ret = wc_Arc4SetKey(&enc[i], bench_key, 16); if (ret != 0) { printf("Arc4SetKey failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, numBlocks, &pending)) { ret = wc_Arc4Process(&enc[i], bench_cipher, bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, ×, &pending)) { goto exit_arc4; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_arc4: bench_stats_sym_finish("ARC4", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Arc4Free(&enc[i]); } } #endif /* !NO_RC4 */ #ifdef HAVE_HC128 void bench_hc128(void) { HC128 enc; double start; int i, count; wc_Hc128_SetKey(&enc, bench_key, bench_iv); bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { wc_Hc128_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE); } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("HC128", 0, count, bench_size, start, 0); } #endif /* HAVE_HC128 */ #ifndef NO_RABBIT void bench_rabbit(void) { Rabbit enc; double start; int i, count; wc_RabbitSetKey(&enc, bench_key, bench_iv); bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { wc_RabbitProcess(&enc, bench_cipher, bench_plain, BENCH_SIZE); } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("RABBIT", 0, count, bench_size, start, 0); } #endif /* NO_RABBIT */ #ifdef HAVE_CHACHA void bench_chacha(void) { ChaCha enc; double start; int i, count; wc_Chacha_SetKey(&enc, bench_key, 16); bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { wc_Chacha_SetIV(&enc, bench_iv, 0); wc_Chacha_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE); } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("CHACHA", 0, count, bench_size, start, 0); } #endif /* HAVE_CHACHA*/ #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) void bench_chacha20_poly1305_aead(void) { double start; int ret = 0, i, count; byte authTag[CHACHA20_POLY1305_AEAD_AUTHTAG_SIZE]; XMEMSET(authTag, 0, sizeof(authTag)); bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { ret = wc_ChaCha20Poly1305_Encrypt(bench_key, bench_iv, NULL, 0, bench_plain, BENCH_SIZE, bench_cipher, authTag); if (ret < 0) { printf("wc_ChaCha20Poly1305_Encrypt error: %d\n", ret); break; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("CHA-POLY", 0, count, bench_size, start, ret); } #endif /* HAVE_CHACHA && HAVE_POLY1305 */ #ifndef NO_MD5 void bench_md5(int doAsync) { wc_Md5 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_MD5_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitMd5_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitMd5_ex failed, ret = %d\n", ret); goto exit; } #ifdef WOLFSSL_PIC32MZ_HASH wc_Md5SizeSet(&hash[i], numBlocks * BENCH_SIZE); #endif } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Md5Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_md5; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Md5Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_md5; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_md5: bench_stats_sym_finish("MD5", doAsync, count, bench_size, start, ret); exit: #ifdef WOLFSSL_ASYNC_CRYPT for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Md5Free(&hash[i]); } #endif FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* !NO_MD5 */ #ifndef NO_SHA void bench_sha(int doAsync) { wc_Sha hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha failed, ret = %d\n", ret); goto exit; } #ifdef WOLFSSL_PIC32MZ_HASH wc_ShaSizeSet(&hash[i], numBlocks * BENCH_SIZE); #endif } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_ShaUpdate(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_ShaFinal(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha: bench_stats_sym_finish("SHA", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_ShaFree(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* NO_SHA */ #ifdef WOLFSSL_SHA224 void bench_sha224(int doAsync) { wc_Sha224 hash[BENCH_MAX_PENDING]; double start; int ret, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA224_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha224_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha224_ex failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha224Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha224; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha224Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha224; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha224: bench_stats_sym_finish("SHA-224", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha224Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif #ifndef NO_SHA256 void bench_sha256(int doAsync) { wc_Sha256 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA256_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha256_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha256_ex failed, ret = %d\n", ret); goto exit; } #ifdef WOLFSSL_PIC32MZ_HASH wc_Sha256SizeSet(&hash[i], numBlocks * BENCH_SIZE); #endif } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha256Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha256; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha256Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha256; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha256: bench_stats_sym_finish("SHA-256", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha256Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif #ifdef WOLFSSL_SHA384 void bench_sha384(int doAsync) { wc_Sha384 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA384_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha384_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha384_ex failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha384Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha384; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha384Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha384; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha384: bench_stats_sym_finish("SHA-384", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha384Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif #ifdef WOLFSSL_SHA512 void bench_sha512(int doAsync) { wc_Sha512 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, WC_SHA512_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha512_ex(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha512_ex failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha512Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha512; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha512Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha512; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha512: bench_stats_sym_finish("SHA-512", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha512Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif #ifdef WOLFSSL_SHA3 #ifndef WOLFSSL_NOSHA3_224 void bench_sha3_224(int doAsync) { Sha3 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_224_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha3_224(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha3_224 failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_224_Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_224; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_224_Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_224; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha3_224: bench_stats_sym_finish("SHA3-224", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha3_224_Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* WOLFSSL_NOSHA3_224 */ #ifndef WOLFSSL_NOSHA3_256 void bench_sha3_256(int doAsync) { Sha3 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_256_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha3_256(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha3_256 failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_256_Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_256; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_256_Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_256; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha3_256: bench_stats_sym_finish("SHA3-256", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha3_256_Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* WOLFSSL_NOSHA3_256 */ #ifndef WOLFSSL_NOSHA3_384 void bench_sha3_384(int doAsync) { Sha3 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_384_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha3_384(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha3_384 failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_384_Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_384; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_384_Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_384; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha3_384: bench_stats_sym_finish("SHA3-384", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha3_384_Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* WOLFSSL_NOSHA3_384 */ #ifndef WOLFSSL_NOSHA3_512 void bench_sha3_512(int doAsync) { Sha3 hash[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA3_512_DIGEST_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(hash, 0, sizeof(hash)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_InitSha3_512(&hash[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("InitSha3_512 failed, ret = %d\n", ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_512_Update(&hash[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_512; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, numBlocks, &pending)) { ret = wc_Sha3_512_Final(&hash[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, ×, &pending)) { goto exit_sha3_512; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_sha3_512: bench_stats_sym_finish("SHA3-512", doAsync, count, bench_size, start, ret); exit: for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_Sha3_512_Free(&hash[i]); } FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* WOLFSSL_NOSHA3_512 */ #endif #ifdef WOLFSSL_RIPEMD int bench_ripemd(void) { RipeMd hash; byte digest[RIPEMD_DIGEST_SIZE]; double start; int i, count, ret; ret = wc_InitRipeMd(&hash); if (ret != 0) { return ret; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { ret = wc_RipeMdUpdate(&hash, bench_plain, BENCH_SIZE); if (ret != 0) { return ret; } } ret = wc_RipeMdFinal(&hash, digest); if (ret != 0) { return ret; } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("RIPEMD", 0, count, bench_size, start, ret); return 0; } #endif #ifdef HAVE_BLAKE2 void bench_blake2(void) { Blake2b b2b; byte digest[64]; double start; int ret, i, count; ret = wc_InitBlake2b(&b2b, 64); if (ret != 0) { printf("InitBlake2b failed, ret = %d\n", ret); return; } bench_stats_start(&count, &start); do { for (i = 0; i < numBlocks; i++) { ret = wc_Blake2bUpdate(&b2b, bench_plain, BENCH_SIZE); if (ret != 0) { printf("Blake2bUpdate failed, ret = %d\n", ret); return; } } ret = wc_Blake2bFinal(&b2b, digest, 64); if (ret != 0) { printf("Blake2bFinal failed, ret = %d\n", ret); return; } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("BLAKE2b", 0, count, bench_size, start, ret); } #endif #ifdef WOLFSSL_CMAC void bench_cmac(void) { Cmac cmac; byte digest[AES_BLOCK_SIZE]; word32 digestSz = sizeof(digest); double start; int ret, i, count; bench_stats_start(&count, &start); do { ret = wc_InitCmac(&cmac, bench_key, 16, WC_CMAC_AES, NULL); if (ret != 0) { printf("InitCmac failed, ret = %d\n", ret); return; } for (i = 0; i < numBlocks; i++) { ret = wc_CmacUpdate(&cmac, bench_plain, BENCH_SIZE); if (ret != 0) { printf("CmacUpdate failed, ret = %d\n", ret); return; } } /* Note: final force zero's the Cmac struct */ ret = wc_CmacFinal(&cmac, digest, &digestSz); if (ret != 0) { printf("CmacFinal failed, ret = %d\n", ret); return; } count += i; } while (bench_stats_sym_check(start)); bench_stats_sym_finish("AES-CMAC", 0, count, bench_size, start, ret); } #endif /* WOLFSSL_CMAC */ #ifdef HAVE_SCRYPT void bench_scrypt(void) { byte derived[64]; double start; int ret, i, count; bench_stats_start(&count, &start); do { for (i = 0; i < scryptCnt; i++) { ret = wc_scrypt(derived, (byte*)"pleaseletmein", 13, (byte*)"SodiumChloride", 14, 14, 8, 1, sizeof(derived)); if (ret != 0) { printf("scrypt failed, ret = %d\n", ret); goto exit; } } count += i; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("scrypt", 17, "", 0, count, start, ret); } #endif /* HAVE_SCRYPT */ #ifndef NO_HMAC static void bench_hmac(int doAsync, int type, int digestSz, byte* key, word32 keySz, const char* label) { Hmac hmac[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; #if defined(BENCH_EMBEDDED) DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, MAX_DIGEST_SIZE, HEAP_HINT); #else DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, digestSz, HEAP_HINT); #endif /* clear for done cleanup */ XMEMSET(hmac, 0, sizeof(hmac)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { ret = wc_HmacInit(&hmac[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) { printf("wc_HmacInit failed for %s, ret = %d\n", label, ret); goto exit; } ret = wc_HmacSetKey(&hmac[i], type, key, keySz); if (ret != 0) { printf("wc_HmacSetKey failed for %s, ret = %d\n", label, ret); goto exit; } } bench_stats_start(&count, &start); do { for (times = 0; times < numBlocks || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0, ×, numBlocks, &pending)) { ret = wc_HmacUpdate(&hmac[i], bench_plain, BENCH_SIZE); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0, ×, &pending)) { goto exit_hmac; } } } /* for i */ } /* for times */ count += times; times = 0; do { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0, ×, numBlocks, &pending)) { ret = wc_HmacFinal(&hmac[i], digest[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hmac[i]), 0, ×, &pending)) { goto exit_hmac; } } } /* for i */ } while (pending > 0); } while (bench_stats_sym_check(start)); exit_hmac: bench_stats_sym_finish(label, doAsync, count, bench_size, start, ret); exit: #ifdef WOLFSSL_ASYNC_CRYPT for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_HmacFree(&hmac[i]); } #endif FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #ifndef NO_MD5 void bench_hmac_md5(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_MD5, WC_MD5_DIGEST_SIZE, key, sizeof(key), "HMAC-MD5"); } #endif /* NO_MD5 */ #ifndef NO_SHA void bench_hmac_sha(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_SHA, WC_SHA_DIGEST_SIZE, key, sizeof(key), "HMAC-SHA"); } #endif /* NO_SHA */ #ifdef WOLFSSL_SHA224 void bench_hmac_sha224(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_SHA224, WC_SHA224_DIGEST_SIZE, key, sizeof(key), "HMAC-SHA224"); } #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 void bench_hmac_sha256(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_SHA256, WC_SHA256_DIGEST_SIZE, key, sizeof(key), "HMAC-SHA256"); } #endif /* NO_SHA256 */ #ifdef WOLFSSL_SHA384 void bench_hmac_sha384(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_SHA384, WC_SHA384_DIGEST_SIZE, key, sizeof(key), "HMAC-SHA384"); } #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 void bench_hmac_sha512(int doAsync) { byte key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; bench_hmac(doAsync, WC_SHA512, WC_SHA512_DIGEST_SIZE, key, sizeof(key), "HMAC-SHA512"); } #endif /* WOLFSSL_SHA512 */ #endif /* NO_HMAC */ #ifndef NO_RSA #if defined(WOLFSSL_KEY_GEN) void bench_rsaKeyGen(int doAsync) { RsaKey genKey[BENCH_MAX_PENDING]; double start; int ret = 0, i, count = 0, times, pending = 0; int k, keySz; const int keySizes[2] = {1024, 2048}; const long rsa_e_val = WC_RSA_EXPONENT; /* clear for done cleanup */ XMEMSET(genKey, 0, sizeof(genKey)); for (k = 0; k < (int)(sizeof(keySizes)/sizeof(int)); k++) { keySz = keySizes[k]; bench_stats_start(&count, &start); do { /* while free pending slots in queue, submit ops */ for (times = 0; times < genTimes || pending > 0; ) { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, ×, genTimes, &pending)) { wc_FreeRsaKey(&genKey[i]); ret = wc_InitRsaKey_ex(&genKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret < 0) { goto exit; } ret = wc_MakeRsaKey(&genKey[i], keySz, rsa_e_val, &rng); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, ×, &pending)) { goto exit; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("RSA", keySz, "key gen", doAsync, count, start, ret); if (ret < 0) { break; } } /* cleanup */ for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_FreeRsaKey(&genKey[i]); } } #endif /* WOLFSSL_KEY_GEN */ #if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048) #if defined(WOLFSSL_MDK_SHELL) static char *certRSAname = "certs/rsa2048.der"; /* set by shell command */ static void set_Bench_RSA_File(char * cert) { certRSAname = cert ; } #elif defined(FREESCALE_MQX) static char *certRSAname = "a:\\certs\\rsa2048.der"; #else static const char *certRSAname = "certs/rsa2048.der"; #endif #endif #define RSA_BUF_SIZE 256 /* for up to 2048 bit */ void bench_rsa(int doAsync) { int ret = 0, i, times, count = 0, pending = 0; size_t bytes; word32 idx = 0; const byte* tmp; const char* messageStr = "Everyone gets Friday off."; const int len = (int)XSTRLEN((char*)messageStr); double start = 0.0f; RsaKey rsaKey[BENCH_MAX_PENDING]; int rsaKeySz = RSA_BUF_SIZE * 8; /* used in printf */ DECLARE_VAR_INIT(message, byte, len, messageStr, HEAP_HINT); DECLARE_ARRAY(enc, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT); DECLARE_ARRAY(out, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT); #ifdef USE_CERT_BUFFERS_1024 tmp = rsa_key_der_1024; bytes = (size_t)sizeof_rsa_key_der_1024; rsaKeySz = 1024; #elif defined(USE_CERT_BUFFERS_2048) tmp = rsa_key_der_2048; bytes = (size_t)sizeof_rsa_key_der_2048; #else #error "need a cert buffer size" #endif /* USE_CERT_BUFFERS */ /* clear for done cleanup */ XMEMSET(rsaKey, 0, sizeof(rsaKey)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { /* setup an async context for each key */ if ((ret = wc_InitRsaKey_ex(&rsaKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) < 0) { goto exit; } #ifdef WC_RSA_BLINDING ret = wc_RsaSetRNG(&rsaKey[i], &rng); if (ret != 0) goto exit; #endif /* decode the private key */ idx = 0; if ((ret = wc_RsaPrivateKeyDecode(tmp, &idx, &rsaKey[i], (word32)bytes)) != 0) { printf("wc_RsaPrivateKeyDecode failed! %d\n", ret); goto exit; } } #ifndef BENCHMARK_RSA_SIGN_VERIFY /* begin public RSA */ bench_stats_start(&count, &start); do { for (times = 0; times < ntimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, ntimes, &pending)) { ret = wc_RsaPublicEncrypt(message, (word32)len, enc[i], RSA_BUF_SIZE, &rsaKey[i], &rng); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, &pending)) { goto exit_rsa_pub; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_rsa_pub: bench_stats_asym_finish("RSA", rsaKeySz, "public", doAsync, count, start, ret); if (ret < 0) { goto exit; } /* capture resulting encrypt length */ idx = (word32)(rsaKeySz/8); /* begin private async RSA */ bench_stats_start(&count, &start); do { for (times = 0; times < ntimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, ntimes, &pending)) { ret = wc_RsaPrivateDecrypt(enc[i], idx, out[i], RSA_BUF_SIZE, &rsaKey[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, &pending)) { goto exit; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("RSA", rsaKeySz, "private", doAsync, count, start, ret); #else /* begin public RSA */ bench_stats_start(&count, &start); do { for (times = 0; times < ntimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, ntimes, &pending)) { ret = wc_RsaSSL_Sign(message, len, enc[i], RSA_BUF_SIZE, &rsaKey[i], &rng); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, &pending)) { goto exit_rsa_pub; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_rsa_pub: bench_stats_asym_finish("RSA", rsaKeySz, "private", doAsync, count, start, ret); if (ret < 0) { goto exit; } /* capture resulting encrypt length */ idx = rsaKeySz/8; /* begin private async RSA */ bench_stats_start(&count, &start); do { for (times = 0; times < ntimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, ntimes, &pending)) { ret = wc_RsaSSL_Verify(enc[i], idx, out[i], RSA_BUF_SIZE, &rsaKey[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, ×, &pending)) { goto exit; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("RSA", rsaKeySz, "public", doAsync, count, start, ret); #endif /* cleanup */ for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_FreeRsaKey(&rsaKey[i]); } FREE_ARRAY(enc, BENCH_MAX_PENDING, HEAP_HINT); FREE_ARRAY(out, BENCH_MAX_PENDING, HEAP_HINT); FREE_VAR(message, HEAP_HINT); } #endif /* !NO_RSA */ #ifndef NO_DH #if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048) #if defined(WOLFSSL_MDK_SHELL) static char *certDHname = "certs/dh2048.der"; /* set by shell command */ void set_Bench_DH_File(char * cert) { certDHname = cert ; } #elif defined(FREESCALE_MQX) static char *certDHname = "a:\\certs\\dh2048.der"; #elif defined(NO_ASN) /* do nothing, but don't need a file */ #else static const char *certDHname = "certs/dh2048.der"; #endif #endif #define BENCH_DH_KEY_SIZE 256 /* for 2048 bit */ #define BENCH_DH_PRIV_SIZE (BENCH_DH_KEY_SIZE/8) void bench_dh(int doAsync) { int ret = 0, i; int count = 0, times, pending = 0; const byte* tmp = NULL; double start = 0.0f; DhKey dhKey[BENCH_MAX_PENDING]; int dhKeySz = 2048; /* used in printf */ #ifndef NO_ASN size_t bytes; word32 idx; #endif word32 pubSz[BENCH_MAX_PENDING]; word32 privSz[BENCH_MAX_PENDING]; word32 pubSz2; word32 privSz2; word32 agreeSz[BENCH_MAX_PENDING]; DECLARE_ARRAY(pub, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT); DECLARE_VAR(pub2, byte, BENCH_DH_KEY_SIZE, HEAP_HINT); DECLARE_ARRAY(agree, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT); DECLARE_ARRAY(priv, byte, BENCH_MAX_PENDING, BENCH_DH_PRIV_SIZE, HEAP_HINT); DECLARE_VAR(priv2, byte, BENCH_DH_PRIV_SIZE, HEAP_HINT); (void)tmp; #if defined(NO_ASN) dhKeySz = 1024; /* do nothing, but don't use default FILE */ #elif defined(USE_CERT_BUFFERS_1024) tmp = dh_key_der_1024; bytes = (size_t)sizeof_dh_key_der_1024; dhKeySz = 1024; #elif defined(USE_CERT_BUFFERS_2048) tmp = dh_key_der_2048; bytes = (size_t)sizeof_dh_key_der_2048; #else #error "need to define a cert buffer size" #endif /* USE_CERT_BUFFERS */ /* clear for done cleanup */ XMEMSET(dhKey, 0, sizeof(dhKey)); /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { /* setup an async context for each key */ ret = wc_InitDhKey_ex(&dhKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret != 0) goto exit; /* setup key */ #ifdef NO_ASN ret = wc_DhSetKey(&dhKey[i], dh_p, sizeof(dh_p), dh_g, sizeof(dh_g)); #else idx = 0; ret = wc_DhKeyDecode(tmp, &idx, &dhKey[i], (word32)bytes); #endif if (ret != 0) { printf("DhKeyDecode failed %d, can't benchmark\n", ret); goto exit; } } /* Key Gen */ bench_stats_start(&count, &start); do { /* while free pending slots in queue, submit ops */ for (times = 0; times < genTimes || pending > 0; ) { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, ×, genTimes, &pending)) { privSz[i] = 0; ret = wc_DhGenerateKeyPair(&dhKey[i], &rng, priv[i], &privSz[i], pub[i], &pubSz[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, ×, &pending)) { goto exit_dh_gen; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_dh_gen: bench_stats_asym_finish("DH", dhKeySz, "key gen", doAsync, count, start, ret); if (ret < 0) { goto exit; } /* Generate key to use as other public */ ret = wc_DhGenerateKeyPair(&dhKey[0], &rng, priv2, &privSz2, pub2, &pubSz2); #ifdef WOLFSSL_ASYNC_CRYPT ret = wc_AsyncWait(ret, &dhKey[0].asyncDev, WC_ASYNC_FLAG_NONE); #endif /* Key Agree */ bench_stats_start(&count, &start); do { for (times = 0; times < agreeTimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, ×, agreeTimes, &pending)) { ret = wc_DhAgree(&dhKey[i], agree[i], &agreeSz[i], priv[i], privSz[i], pub2, pubSz2); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, ×, &pending)) { goto exit; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("DH", dhKeySz, "key agree", doAsync, count, start, ret); /* cleanup */ for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_FreeDhKey(&dhKey[i]); } FREE_ARRAY(pub, BENCH_MAX_PENDING, HEAP_HINT); FREE_VAR(pub2, HEAP_HINT); FREE_ARRAY(priv, BENCH_MAX_PENDING, HEAP_HINT); FREE_VAR(priv2, HEAP_HINT); FREE_ARRAY(agree, BENCH_MAX_PENDING, HEAP_HINT); } #endif /* !NO_DH */ #ifdef HAVE_NTRU byte GetEntropy(ENTROPY_CMD cmd, byte* out); byte GetEntropy(ENTROPY_CMD cmd, byte* out) { if (cmd == INIT) return 1; /* using local rng */ if (out == NULL) return 0; if (cmd == GET_BYTE_OF_ENTROPY) return (wc_RNG_GenerateBlock(&rng, out, 1) == 0) ? 1 : 0; if (cmd == GET_NUM_BYTES_PER_BYTE_OF_ENTROPY) { *out = 1; return 1; } return 0; } void bench_ntru(void) { int i; double start; byte public_key[1027]; word16 public_key_len = sizeof(public_key); byte private_key[1120]; word16 private_key_len = sizeof(private_key); word16 ntruBits = 128; word16 type = 0; word32 ret; byte ciphertext[1022]; word16 ciphertext_len; byte plaintext[16]; word16 plaintext_len; DRBG_HANDLE drbg; static byte const aes_key[] = { 0xf3, 0xe9, 0x87, 0xbb, 0x18, 0x08, 0x3c, 0xaa, 0x7b, 0x12, 0x49, 0x88, 0xaf, 0xb3, 0x22, 0xd8 }; static byte const wolfsslStr[] = { 'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 'N', 'T', 'R', 'U' }; for (ntruBits = 128; ntruBits < 257; ntruBits += 64) { switch (ntruBits) { case 128: type = NTRU_EES439EP1; break; case 192: type = NTRU_EES593EP1; break; case 256: type = NTRU_EES743EP1; break; } ret = ntru_crypto_drbg_instantiate(ntruBits, wolfsslStr, sizeof(wolfsslStr), (ENTROPY_FN) GetEntropy, &drbg); if(ret != DRBG_OK) { printf("NTRU drbg instantiate failed\n"); return; } /* set key sizes */ ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len, NULL, &private_key_len, NULL); if (ret != NTRU_OK) { ntru_crypto_drbg_uninstantiate(drbg); printf("NTRU failed to get key lengths\n"); return; } ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len, public_key, &private_key_len, private_key); ntru_crypto_drbg_uninstantiate(drbg); if (ret != NTRU_OK) { printf("NTRU keygen failed\n"); return; } ret = ntru_crypto_drbg_instantiate(ntruBits, NULL, 0, (ENTROPY_FN)GetEntropy, &drbg); if (ret != DRBG_OK) { printf("NTRU error occurred during DRBG instantiation\n"); return; } ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key, sizeof(aes_key), aes_key, &ciphertext_len, NULL); if (ret != NTRU_OK) { printf("NTRU error occurred requesting the buffer size needed\n"); return; } bench_stats_start(&i, &start); for (i = 0; i < ntimes; i++) { ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key, sizeof(aes_key), aes_key, &ciphertext_len, ciphertext); if (ret != NTRU_OK) { printf("NTRU encrypt error\n"); return; } } bench_stats_asym_finish("NTRU", ntruBits, "encryption", 0, i, start, ret); ret = ntru_crypto_drbg_uninstantiate(drbg); if (ret != DRBG_OK) { printf("NTRU error occurred uninstantiating the DRBG\n"); return; } ret = ntru_crypto_ntru_decrypt(private_key_len, private_key, ciphertext_len, ciphertext, &plaintext_len, NULL); if (ret != NTRU_OK) { printf("NTRU decrypt error occurred getting the buffer size needed\n"); return; } plaintext_len = sizeof(plaintext); bench_stats_start(&i, &start); for (i = 0; i < ntimes; i++) { ret = ntru_crypto_ntru_decrypt(private_key_len, private_key, ciphertext_len, ciphertext, &plaintext_len, plaintext); if (ret != NTRU_OK) { printf("NTRU error occurred decrypting the key\n"); return; } } bench_stats_asym_finish("NTRU", ntruBits, "decryption", 0, i, start, ret); } } void bench_ntruKeyGen(void) { double start; int i; byte public_key[1027]; word16 public_key_len = sizeof(public_key); byte private_key[1120]; word16 private_key_len = sizeof(private_key); word16 ntruBits = 128; word16 type = 0; word32 ret; DRBG_HANDLE drbg; static uint8_t const pers_str[] = { 'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 't', 'e', 's', 't' }; for (ntruBits = 128; ntruBits < 257; ntruBits += 64) { ret = ntru_crypto_drbg_instantiate(ntruBits, pers_str, sizeof(pers_str), GetEntropy, &drbg); if (ret != DRBG_OK) { printf("NTRU drbg instantiate failed\n"); return; } switch (ntruBits) { case 128: type = NTRU_EES439EP1; break; case 192: type = NTRU_EES593EP1; break; case 256: type = NTRU_EES743EP1; break; } /* set key sizes */ ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len, NULL, &private_key_len, NULL); bench_stats_start(&i, &start); for (i = 0; i < genTimes; i++) { ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len, public_key, &private_key_len, private_key); } bench_stats_asym_finish("NTRU", ntruBits, "key gen", 0, i, start, ret); if (ret != NTRU_OK) { return; } ret = ntru_crypto_drbg_uninstantiate(drbg); if (ret != NTRU_OK) { printf("NTRU drbg uninstantiate failed\n"); return; } } } #endif #ifdef HAVE_ECC #ifndef BENCH_ECC_SIZE #define BENCH_ECC_SIZE 32 #endif void bench_eccMakeKey(int doAsync) { int ret = 0, i, times, count, pending = 0; const int keySize = BENCH_ECC_SIZE; ecc_key genKey[BENCH_MAX_PENDING]; double start; /* clear for done cleanup */ XMEMSET(&genKey, 0, sizeof(genKey)); /* ECC Make Key */ bench_stats_start(&count, &start); do { /* while free pending slots in queue, submit ops */ for (times = 0; times < genTimes || pending > 0; ) { bench_async_poll(&pending); for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, ×, genTimes, &pending)) { wc_ecc_free(&genKey[i]); ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID); if (ret < 0) { goto exit; } ret = wc_ecc_make_key(&rng, keySize, &genKey[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, ×, &pending)) { goto exit; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("ECC", keySize * 8, "key gen", doAsync, count, start, ret); /* cleanup */ for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_ecc_free(&genKey[i]); } } void bench_ecc(int doAsync) { int ret = 0, i, times, count, pending = 0; const int keySize = BENCH_ECC_SIZE; ecc_key genKey[BENCH_MAX_PENDING]; #ifdef HAVE_ECC_DHE ecc_key genKey2[BENCH_MAX_PENDING]; #endif #if !defined(NO_ASN) && defined(HAVE_ECC_SIGN) #ifdef HAVE_ECC_VERIFY int verify[BENCH_MAX_PENDING]; #endif #endif word32 x[BENCH_MAX_PENDING]; double start; #ifdef HAVE_ECC_DHE DECLARE_ARRAY(shared, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT); #endif #if !defined(NO_ASN) && defined(HAVE_ECC_SIGN) DECLARE_ARRAY(sig, byte, BENCH_MAX_PENDING, ECC_MAX_SIG_SIZE, HEAP_HINT); #endif DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT); /* clear for done cleanup */ XMEMSET(&genKey, 0, sizeof(genKey)); #ifdef HAVE_ECC_DHE XMEMSET(&genKey2, 0, sizeof(genKey2)); #endif /* init keys */ for (i = 0; i < BENCH_MAX_PENDING; i++) { /* setup an context for each key */ if ((ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID)) < 0) { goto exit; } ret = wc_ecc_make_key(&rng, keySize, &genKey[i]); #ifdef WOLFSSL_ASYNC_CRYPT ret = wc_AsyncWait(ret, &genKey[i].asyncDev, WC_ASYNC_FLAG_NONE); #endif if (ret < 0) { goto exit; } #ifdef HAVE_ECC_DHE if ((ret = wc_ecc_init_ex(&genKey2[i], HEAP_HINT, INVALID_DEVID)) < 0) { goto exit; } if ((ret = wc_ecc_make_key(&rng, keySize, &genKey2[i])) > 0) { goto exit; } #endif } #ifdef HAVE_ECC_DHE /* ECC Shared Secret */ bench_stats_start(&count, &start); do { for (times = 0; times < agreeTimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, agreeTimes, &pending)) { x[i] = (word32)keySize; ret = wc_ecc_shared_secret(&genKey[i], &genKey2[i], shared[i], &x[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, &pending)) { goto exit_ecdhe; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_ecdhe: bench_stats_asym_finish("ECDHE", keySize * 8, "agree", doAsync, count, start, ret); if (ret < 0) { goto exit; } #endif /* HAVE_ECC_DHE */ #if !defined(NO_ASN) && defined(HAVE_ECC_SIGN) /* Init digest to sign */ for (i = 0; i < BENCH_MAX_PENDING; i++) { for (count = 0; count < keySize; count++) { digest[i][count] = (byte)count; } } /* ECC Sign */ bench_stats_start(&count, &start); do { for (times = 0; times < agreeTimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, agreeTimes, &pending)) { if (genKey[i].state == 0) x[i] = ECC_MAX_SIG_SIZE; ret = wc_ecc_sign_hash(digest[i], (word32)keySize, sig[i], &x[i], &rng, &genKey[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, &pending)) { goto exit_ecdsa_sign; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_ecdsa_sign: bench_stats_asym_finish("ECDSA", keySize * 8, "sign", doAsync, count, start, ret); if (ret < 0) { goto exit; } #ifdef HAVE_ECC_VERIFY /* ECC Verify */ bench_stats_start(&count, &start); do { for (times = 0; times < agreeTimes || pending > 0; ) { bench_async_poll(&pending); /* while free pending slots in queue, submit ops */ for (i = 0; i < BENCH_MAX_PENDING; i++) { if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, agreeTimes, &pending)) { if (genKey[i].state == 0) verify[i] = 0; ret = wc_ecc_verify_hash(sig[i], x[i], digest[i], (word32)keySize, &verify[i], &genKey[i]); if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, ×, &pending)) { goto exit_ecdsa_verify; } } } /* for i */ } /* for times */ count += times; } while (bench_stats_sym_check(start)); exit_ecdsa_verify: bench_stats_asym_finish("ECDSA", keySize * 8, "verify", doAsync, count, start, ret); #endif /* HAVE_ECC_VERIFY */ #endif /* !NO_ASN && HAVE_ECC_SIGN */ exit: /* cleanup */ for (i = 0; i < BENCH_MAX_PENDING; i++) { wc_ecc_free(&genKey[i]); #ifdef HAVE_ECC_DHE wc_ecc_free(&genKey2[i]); #endif } #ifdef HAVE_ECC_DHE FREE_ARRAY(shared, BENCH_MAX_PENDING, HEAP_HINT); #endif #if !defined(NO_ASN) && defined(HAVE_ECC_SIGN) FREE_ARRAY(sig, BENCH_MAX_PENDING, HEAP_HINT); #endif FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT); } #ifdef HAVE_ECC_ENCRYPT void bench_eccEncrypt(void) { ecc_key userA, userB; const int keySize = BENCH_ECC_SIZE; byte msg[48]; byte out[80]; word32 outSz = sizeof(out); word32 bench_plainSz = BENCH_SIZE; int ret, i, count; double start; ret = wc_ecc_init_ex(&userA, HEAP_HINT, devId); if (ret != 0) { printf("wc_ecc_encrypt make key A failed: %d\n", ret); return; } wc_ecc_init_ex(&userB, HEAP_HINT, devId); if (ret != 0) { printf("wc_ecc_encrypt make key B failed: %d\n", ret); wc_ecc_free(&userA); return; } ret = wc_ecc_make_key(&rng, keySize, &userA); #ifdef WOLFSSL_ASYNC_CRYPT ret = wc_AsyncWait(ret, &userA.asyncDev, WC_ASYNC_FLAG_NONE); #endif if (ret != 0) goto exit; ret = wc_ecc_make_key(&rng, keySize, &userB); #ifdef WOLFSSL_ASYNC_CRYPT ret = wc_AsyncWait(ret, &userB.asyncDev, WC_ASYNC_FLAG_NONE); #endif if (ret != 0) goto exit; for (i = 0; i < (int)sizeof(msg); i++) msg[i] = i; bench_stats_start(&count, &start); do { for (i = 0; i < ntimes; i++) { /* encrypt msg to B */ ret = wc_ecc_encrypt(&userA, &userB, msg, sizeof(msg), out, &outSz, NULL); if (ret != 0) { printf("wc_ecc_encrypt failed! %d\n", ret); goto exit_enc; } } count += i; } while (bench_stats_sym_check(start)); exit_enc: bench_stats_asym_finish("ECC", keySize * 8, "encrypt", 0, count, start, ret); bench_stats_start(&count, &start); do { for (i = 0; i < ntimes; i++) { /* decrypt msg from A */ ret = wc_ecc_decrypt(&userB, &userA, out, outSz, bench_plain, &bench_plainSz, NULL); if (ret != 0) { printf("wc_ecc_decrypt failed! %d\n", ret); goto exit_dec; } } count += i; } while (bench_stats_sym_check(start)); exit_dec: bench_stats_asym_finish("ECC", keySize * 8, "decrypt", 0, count, start, ret); exit: /* cleanup */ wc_ecc_free(&userB); wc_ecc_free(&userA); } #endif #endif /* HAVE_ECC */ #ifdef HAVE_CURVE25519 void bench_curve25519KeyGen(void) { curve25519_key genKey; double start; int ret = 0, i, count; /* Key Gen */ bench_stats_start(&count, &start); do { for (i = 0; i < genTimes; i++) { ret = wc_curve25519_make_key(&rng, 32, &genKey); wc_curve25519_free(&genKey); if (ret != 0) { printf("wc_curve25519_make_key failed: %d\n", ret); break; } } count += i; } while (bench_stats_sym_check(start)); bench_stats_asym_finish("CURVE", 25519, "key gen", 0, count, start, ret); } #ifdef HAVE_CURVE25519_SHARED_SECRET void bench_curve25519KeyAgree(void) { curve25519_key genKey, genKey2; double start; int ret, i, count; byte shared[32]; word32 x = 0; wc_curve25519_init(&genKey); wc_curve25519_init(&genKey2); ret = wc_curve25519_make_key(&rng, 32, &genKey); if (ret != 0) { printf("curve25519_make_key failed\n"); return; } ret = wc_curve25519_make_key(&rng, 32, &genKey2); if (ret != 0) { printf("curve25519_make_key failed: %d\n", ret); wc_curve25519_free(&genKey); return; } /* Shared secret */ bench_stats_start(&count, &start); do { for (i = 0; i < agreeTimes; i++) { x = sizeof(shared); ret = wc_curve25519_shared_secret(&genKey, &genKey2, shared, &x); if (ret != 0) { printf("curve25519_shared_secret failed: %d\n", ret); goto exit; } } count += i; } while (bench_stats_sym_check(start)); exit: bench_stats_asym_finish("CURVE", 25519, "key agree", 0, count, start, ret); wc_curve25519_free(&genKey2); wc_curve25519_free(&genKey); } #endif /* HAVE_CURVE25519_SHARED_SECRET */ #endif /* HAVE_CURVE25519 */ #ifdef HAVE_ED25519 void bench_ed25519KeyGen(void) { ed25519_key genKey; double start; int i, count; /* Key Gen */ bench_stats_start(&count, &start); do { for (i = 0; i < genTimes; i++) { wc_ed25519_init(&genKey); wc_ed25519_make_key(&rng, 32, &genKey); wc_ed25519_free(&genKey); } count += i; } while (bench_stats_sym_check(start)); bench_stats_asym_finish("ED", 25519, "key gen", 0, count, start, 0); } void bench_ed25519KeySign(void) { int ret; ed25519_key genKey; #ifdef HAVE_ED25519_SIGN double start; int i, count; byte sig[ED25519_SIG_SIZE]; byte msg[512]; word32 x = 0; #endif wc_ed25519_init(&genKey); ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &genKey); if (ret != 0) { printf("ed25519_make_key failed\n"); return; } #ifdef HAVE_ED25519_SIGN /* make dummy msg */ for (i = 0; i < (int)sizeof(msg); i++) msg[i] = (byte)i; bench_stats_start(&count, &start); do { for (i = 0; i < agreeTimes; i++) { x = sizeof(sig); ret = wc_ed25519_sign_msg(msg, sizeof(msg), sig, &x, &genKey); if (ret != 0) { printf("ed25519_sign_msg failed\n"); goto exit_ed_sign; } } count += i; } while (bench_stats_sym_check(start)); exit_ed_sign: bench_stats_asym_finish("ED", 25519, "sign", 0, count, start, ret); #ifdef HAVE_ED25519_VERIFY bench_stats_start(&count, &start); do { for (i = 0; i < agreeTimes; i++) { int verify = 0; ret = wc_ed25519_verify_msg(sig, x, msg, sizeof(msg), &verify, &genKey); if (ret != 0 || verify != 1) { printf("ed25519_verify_msg failed\n"); goto exit_ed_verify; } } count += i; } while (bench_stats_sym_check(start)); exit_ed_verify: bench_stats_asym_finish("ED", 25519, "verify", 0, count, start, ret); #endif /* HAVE_ED25519_VERIFY */ #endif /* HAVE_ED25519_SIGN */ wc_ed25519_free(&genKey); } #endif /* HAVE_ED25519 */ #ifndef HAVE_STACK_SIZE #if defined(_WIN32) && !defined(INTIME_RTOS) #define WIN32_LEAN_AND_MEAN #include double current_time(int reset) { static int init = 0; static LARGE_INTEGER freq; LARGE_INTEGER count; (void)reset; if (!init) { QueryPerformanceFrequency(&freq); init = 1; } QueryPerformanceCounter(&count); return (double)count.QuadPart / freq.QuadPart; } #elif defined MICROCHIP_PIC32 #if defined(WOLFSSL_MICROCHIP_PIC32MZ) #define CLOCK 80000000.0 #else #define CLOCK 40000000.0 #endif extern void WriteCoreTimer(word32 t); extern word32 ReadCoreTimer(void); double current_time(int reset) { unsigned int ns; if (reset) { WriteCoreTimer(0); } /* get timer in ns */ ns = ReadCoreTimer(); /* return seconds as a double */ return ( ns / CLOCK * 2.0); } #elif defined(WOLFSSL_IAR_ARM_TIME) || defined (WOLFSSL_MDK_ARM) || \ defined(WOLFSSL_USER_CURRTIME) || defined(WOLFSSL_CURRTIME_REMAP) /* declared above at line 239 */ /* extern double current_time(int reset); */ #elif defined FREERTOS double current_time(int reset) { portTickType tickCount; (void) reset; /* tick count == ms, if configTICK_RATE_HZ is set to 1000 */ tickCount = xTaskGetTickCount(); return (double)tickCount / 1000; } #elif defined (WOLFSSL_TIRTOS) extern double current_time(int reset); #elif defined(FREESCALE_MQX) double current_time(int reset) { TIME_STRUCT tv; _time_get(&tv); return (double)tv.SECONDS + (double)tv.MILLISECONDS / 1000; } #elif defined(FREESCALE_KSDK_BM) double current_time(int reset) { return (double)OSA_TimeGetMsec() / 1000; } #elif defined(WOLFSSL_EMBOS) #include "RTOS.h" double current_time(int reset) { double time_now; double current_s = OS_GetTime() / 1000.0; double current_us = OS_GetTime_us() / 1000000.0; time_now = (double)( current_s + current_us); (void) reset; return time_now; } #elif defined(WOLFSSL_SGX) double current_time(int reset); #else #include double current_time(int reset) { struct timeval tv; (void)reset; gettimeofday(&tv, 0); return (double)tv.tv_sec + (double)tv.tv_usec / 1000000; } #endif /* _WIN32 */ #endif /* !HAVE_STACK_SIZE */ #if defined(HAVE_GET_CYCLES) static INLINE word64 get_intel_cycles(void) { unsigned int lo_c, hi_c; __asm__ __volatile__ ( "cpuid\n\t" "rdtsc" : "=a"(lo_c), "=d"(hi_c) /* out */ : "a"(0) /* in */ : "%ebx", "%ecx"); /* clobber */ return ((word64)lo_c) | (((word64)hi_c) << 32); } #endif /* HAVE_GET_CYCLES */ void benchmark_configure(int block_size) { /* must be greater than 0 */ if (block_size > 0) { bench_size = (word32)block_size; } } #ifndef NO_MAIN_DRIVER #ifndef WOLFSSL_BENCHMARK_ALL /* Display the algorithm string and keep to 80 characters per line. * * str Algorithm string to print. * line Length of line used so far. */ static void print_alg(const char* str, int* line) { int optLen; optLen = (int)XSTRLEN(str) + 1; if (optLen + *line > 80) { printf("\n "); *line = 13; } *line += optLen; printf(" %s", str); } #endif /* Display the usage options of the benchmark program. */ static void Usage(void) { #ifndef WOLFSSL_BENCHMARK_ALL int i; int line; #endif printf("benchmark\n"); printf("-? Help, print this usage\n"); printf("-base10 Display bytes as power of 10 (eg 1 kB = 1000 Bytes)\n"); #ifndef WOLFSSL_BENCHMARK_ALL printf("- Algorithm to benchmark. Available algorithms " "include:\n"); printf(" "); line = 13; for (i=0; bench_cipher_opt[i].str != NULL; i++) print_alg(bench_cipher_opt[i].str + 1, &line); printf("\n "); line = 13; for (i=0; bench_digest_opt[i].str != NULL; i++) print_alg(bench_digest_opt[i].str + 1, &line); printf("\n "); line = 13; for (i=0; bench_mac_opt[i].str != NULL; i++) print_alg(bench_mac_opt[i].str + 1, &line); printf("\n "); line = 13; for (i=0; bench_asym_opt[i].str != NULL; i++) print_alg(bench_asym_opt[i].str + 1, &line); printf("\n "); line = 13; for (i=0; bench_other_opt[i].str != NULL; i++) print_alg(bench_other_opt[i].str + 1, &line); printf("\n"); #endif printf(" Size of block in bytes\n"); } /* Match the command line argument with the string. * * arg Command line argument. * str String to check for. * return 1 if the command line argument matches the string, 0 otherwise. */ static int string_matches(const char* arg, const char* str) { int len = (int)XSTRLEN(str) + 1; return XSTRNCMP(arg, str, len) == 0; } int main(int argc, char** argv) { int ret = 0; int optMatched; #ifndef WOLFSSL_BENCHMARK_ALL int i; #endif while (argc > 1) { if (string_matches(argv[1], "-?")) { Usage(); return 0; } else if (string_matches(argv[1], "-base10")) base2 = 0; else if (argv[1][0] == '-') { optMatched = 0; #ifndef WOLFSSL_BENCHMARK_ALL /* Check known algorithm choosing command line options. */ /* Known cipher algorithms */ for (i=0; !optMatched && bench_cipher_opt[i].str != NULL; i++) { if (string_matches(argv[1], bench_cipher_opt[i].str)) { bench_cipher_algs |= bench_cipher_opt[i].val; bench_all = 0; optMatched = 1; } } /* Known digest algorithms */ for (i=0; !optMatched && bench_digest_opt[i].str != NULL; i++) { if (string_matches(argv[1], bench_digest_opt[i].str)) { bench_digest_algs |= bench_digest_opt[i].val; bench_all = 0; optMatched = 1; } } /* Known MAC algorithms */ for (i=0; !optMatched && bench_mac_opt[i].str != NULL; i++) { if (string_matches(argv[1], bench_mac_opt[i].str)) { bench_mac_algs |= bench_mac_opt[i].val; bench_all = 0; optMatched = 1; } } /* Known asymmetric algorithms */ for (i=0; !optMatched && bench_asym_opt[i].str != NULL; i++) { if (string_matches(argv[1], bench_asym_opt[i].str)) { bench_asym_algs |= bench_asym_opt[i].val; bench_all = 0; optMatched = 1; } } /* Other known cryptographic algorithms */ for (i=0; !optMatched && bench_other_opt[i].str != NULL; i++) { if (string_matches(argv[1], bench_other_opt[i].str)) { bench_other_algs |= bench_other_opt[i].val; bench_all = 0; optMatched = 1; } } #endif if (!optMatched) { printf("Option not recognized: %s\n", argv[1]); Usage(); return 1; } } else { /* parse for block size */ benchmark_configure(atoi(argv[1])); } argc--; argv++; } #ifdef HAVE_STACK_SIZE ret = StackSizeCheck(NULL, benchmark_test); #else ret = benchmark_test(NULL); #endif return ret; } #endif /* !NO_MAIN_DRIVER */ #else #ifndef NO_MAIN_DRIVER int main() { return 0; } #endif #endif /* !NO_CRYPT_BENCHMARK */