openssl1.0/doc/crypto/ecdsa.pod
2019-08-09 10:00:55 +02:00

209 lines
6.1 KiB
Plaintext

=pod
=head1 NAME
ECDSA_SIG_new, ECDSA_SIG_free, i2d_ECDSA_SIG, d2i_ECDSA_SIG, ECDSA_size, ECDSA_sign_setup, ECDSA_sign, ECDSA_sign_ex, ECDSA_verify, ECDSA_do_sign, ECDSA_do_sign_ex, ECDSA_do_verify - Elliptic Curve Digital Signature Algorithm
=head1 SYNOPSIS
#include <openssl/ecdsa.h>
ECDSA_SIG* ECDSA_SIG_new(void);
void ECDSA_SIG_free(ECDSA_SIG *sig);
int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp);
ECDSA_SIG* d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp,
long len);
ECDSA_SIG* ECDSA_do_sign(const unsigned char *dgst, int dgst_len,
EC_KEY *eckey);
ECDSA_SIG* ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen,
const BIGNUM *kinv, const BIGNUM *rp,
EC_KEY *eckey);
int ECDSA_do_verify(const unsigned char *dgst, int dgst_len,
const ECDSA_SIG *sig, EC_KEY* eckey);
int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx,
BIGNUM **kinv, BIGNUM **rp);
int ECDSA_sign(int type, const unsigned char *dgst,
int dgstlen, unsigned char *sig,
unsigned int *siglen, EC_KEY *eckey);
int ECDSA_sign_ex(int type, const unsigned char *dgst,
int dgstlen, unsigned char *sig,
unsigned int *siglen, const BIGNUM *kinv,
const BIGNUM *rp, EC_KEY *eckey);
int ECDSA_verify(int type, const unsigned char *dgst,
int dgstlen, const unsigned char *sig,
int siglen, EC_KEY *eckey);
int ECDSA_size(const EC_KEY *eckey);
const ECDSA_METHOD* ECDSA_OpenSSL(void);
void ECDSA_set_default_method(const ECDSA_METHOD *meth);
const ECDSA_METHOD* ECDSA_get_default_method(void);
int ECDSA_set_method(EC_KEY *eckey,const ECDSA_METHOD *meth);
int ECDSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func);
int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg);
void* ECDSA_get_ex_data(EC_KEY *d, int idx);
=head1 DESCRIPTION
The B<ECDSA_SIG> structure consists of two BIGNUMs for the
r and s value of a ECDSA signature (see X9.62 or FIPS 186-2).
struct
{
BIGNUM *r;
BIGNUM *s;
} ECDSA_SIG;
ECDSA_SIG_new() allocates a new B<ECDSA_SIG> structure (note: this
function also allocates the BIGNUMs) and initialize it.
ECDSA_SIG_free() frees the B<ECDSA_SIG> structure B<sig>.
i2d_ECDSA_SIG() creates the DER encoding of the ECDSA signature
B<sig> and writes the encoded signature to B<*pp> (note: if B<pp>
is NULL B<i2d_ECDSA_SIG> returns the expected length in bytes of
the DER encoded signature). B<i2d_ECDSA_SIG> returns the length
of the DER encoded signature (or 0 on error).
d2i_ECDSA_SIG() decodes a DER encoded ECDSA signature and returns
the decoded signature in a newly allocated B<ECDSA_SIG> structure.
B<*sig> points to the buffer containing the DER encoded signature
of size B<len>.
ECDSA_size() returns the maximum length of a DER encoded
ECDSA signature created with the private EC key B<eckey>.
ECDSA_sign_setup() may be used to precompute parts of the
signing operation. B<eckey> is the private EC key and B<ctx>
is a pointer to B<BN_CTX> structure (or NULL). The precomputed
values or returned in B<kinv> and B<rp> and can be used in a
later call to B<ECDSA_sign_ex> or B<ECDSA_do_sign_ex>.
ECDSA_sign() is wrapper function for ECDSA_sign_ex with B<kinv>
and B<rp> set to NULL.
ECDSA_sign_ex() computes a digital signature of the B<dgstlen> bytes
hash value B<dgst> using the private EC key B<eckey> and the optional
pre-computed values B<kinv> and B<rp>. The DER encoded signatures is
stored in B<sig> and it's length is returned in B<sig_len>. Note: B<sig>
must point to B<ECDSA_size> bytes of memory. The parameter B<type>
is ignored.
ECDSA_verify() verifies that the signature in B<sig> of size
B<siglen> is a valid ECDSA signature of the hash value
B<dgst> of size B<dgstlen> using the public key B<eckey>.
The parameter B<type> is ignored.
ECDSA_do_sign() is wrapper function for ECDSA_do_sign_ex with B<kinv>
and B<rp> set to NULL.
ECDSA_do_sign_ex() computes a digital signature of the B<dgst_len>
bytes hash value B<dgst> using the private key B<eckey> and the
optional pre-computed values B<kinv> and B<rp>. The signature is
returned in a newly allocated B<ECDSA_SIG> structure (or NULL on error).
ECDSA_do_verify() verifies that the signature B<sig> is a valid
ECDSA signature of the hash value B<dgst> of size B<dgst_len>
using the public key B<eckey>.
=head1 RETURN VALUES
ECDSA_SIG_new() returns NULL if the allocation fails.
ECDSA_size() returns the maximum length signature or 0 on error.
ECDSA_sign_setup() and ECDSA_sign() return 1 if successful or 0
on error.
ECDSA_verify() and ECDSA_do_verify() return 1 for a valid
signature, 0 for an invalid signature and -1 on error.
The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.
=head1 EXAMPLES
Creating a ECDSA signature of given SHA-1 hash value using the
named curve secp192k1.
First step: create a EC_KEY object (note: this part is B<not> ECDSA
specific)
int ret;
ECDSA_SIG *sig;
EC_KEY *eckey;
eckey = EC_KEY_new_by_curve_name(NID_secp192k1);
if (eckey == NULL)
{
/* error */
}
if (!EC_KEY_generate_key(eckey))
{
/* error */
}
Second step: compute the ECDSA signature of a SHA-1 hash value
using B<ECDSA_do_sign>
sig = ECDSA_do_sign(digest, 20, eckey);
if (sig == NULL)
{
/* error */
}
or using B<ECDSA_sign>
unsigned char *buffer, *pp;
int buf_len;
buf_len = ECDSA_size(eckey);
buffer = OPENSSL_malloc(buf_len);
pp = buffer;
if (!ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey);
{
/* error */
}
Third step: verify the created ECDSA signature using B<ECDSA_do_verify>
ret = ECDSA_do_verify(digest, 20, sig, eckey);
or using B<ECDSA_verify>
ret = ECDSA_verify(0, digest, 20, buffer, buf_len, eckey);
and finally evaluate the return value:
if (ret == -1)
{
/* error */
}
else if (ret == 0)
{
/* incorrect signature */
}
else /* ret == 1 */
{
/* signature ok */
}
=head1 CONFORMING TO
ANSI X9.62, US Federal Information Processing Standard FIPS 186-2
(Digital Signature Standard, DSS)
=head1 SEE ALSO
L<dsa(3)|dsa(3)>, L<rsa(3)|rsa(3)>
=head1 HISTORY
The ecdsa implementation was first introduced in OpenSSL 0.9.8
=head1 AUTHOR
Nils Larsch for the OpenSSL project (http://www.openssl.org).
=cut