1168 lines
32 KiB
C
1168 lines
32 KiB
C
/* ====================================================================
|
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <openssl/bn.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/e_os2.h>
|
|
#if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__) || defined(__MINGW32__)
|
|
# include <sys/types.h>
|
|
# include <unistd.h>
|
|
#else
|
|
# include <process.h>
|
|
typedef int pid_t;
|
|
#endif
|
|
|
|
#if defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_CLIB)
|
|
# define getpid GetThreadID
|
|
extern int GetThreadID(void);
|
|
#elif defined(_WIN32) && !defined(__WATCOMC__)
|
|
# define getpid _getpid
|
|
#endif
|
|
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/dso.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/buffer.h>
|
|
#ifndef OPENSSL_NO_RSA
|
|
# include <openssl/rsa.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
# include <openssl/dsa.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_DH
|
|
# include <openssl/dh.h>
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_HW
|
|
# ifndef OPENSSL_NO_HW_AEP
|
|
# ifdef FLAT_INC
|
|
# include "aep.h"
|
|
# else
|
|
# include "vendor_defns/aep.h"
|
|
# endif
|
|
|
|
# define AEP_LIB_NAME "aep engine"
|
|
# define FAIL_TO_SW 0x10101010
|
|
|
|
# include "e_aep_err.c"
|
|
|
|
static int aep_init(ENGINE *e);
|
|
static int aep_finish(ENGINE *e);
|
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
|
|
static int aep_destroy(ENGINE *e);
|
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection);
|
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection);
|
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection);
|
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use);
|
|
|
|
/* BIGNUM stuff */
|
|
# ifndef OPENSSL_NO_RSA
|
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx);
|
|
|
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *q, const BIGNUM *dmp1,
|
|
const BIGNUM *dmq1, const BIGNUM *iqmp,
|
|
BN_CTX *ctx);
|
|
# endif
|
|
|
|
/* RSA stuff */
|
|
# ifndef OPENSSL_NO_RSA
|
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
|
|
BN_CTX *ctx);
|
|
# endif
|
|
|
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */
|
|
# ifndef OPENSSL_NO_RSA
|
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
|
# endif
|
|
|
|
/* DSA stuff */
|
|
# ifndef OPENSSL_NO_DSA
|
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
|
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
|
|
BN_CTX *ctx, BN_MONT_CTX *in_mont);
|
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx);
|
|
# endif
|
|
|
|
/* DH stuff */
|
|
/* This function is aliased to mod_exp (with the DH and mont dropped). */
|
|
# ifndef OPENSSL_NO_DH
|
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx);
|
|
# endif
|
|
|
|
/* rand stuff */
|
|
# ifdef AEPRAND
|
|
static int aep_rand(unsigned char *buf, int num);
|
|
static int aep_rand_status(void);
|
|
# endif
|
|
|
|
/* Bignum conversion stuff */
|
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize);
|
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char *AEP_BigNum);
|
|
static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char *AEP_BigNum);
|
|
|
|
/* The definitions for control commands specific to this engine */
|
|
# define AEP_CMD_SO_PATH ENGINE_CMD_BASE
|
|
static const ENGINE_CMD_DEFN aep_cmd_defns[] = {
|
|
{AEP_CMD_SO_PATH,
|
|
"SO_PATH",
|
|
"Specifies the path to the 'aep' shared library",
|
|
ENGINE_CMD_FLAG_STRING},
|
|
{0, NULL, NULL, 0}
|
|
};
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
/* Our internal RSA_METHOD that we provide pointers to */
|
|
static RSA_METHOD aep_rsa = {
|
|
"Aep RSA method",
|
|
NULL, /* rsa_pub_encrypt */
|
|
NULL, /* rsa_pub_decrypt */
|
|
NULL, /* rsa_priv_encrypt */
|
|
NULL, /* rsa_priv_encrypt */
|
|
aep_rsa_mod_exp, /* rsa_mod_exp */
|
|
aep_mod_exp_mont, /* bn_mod_exp */
|
|
NULL, /* init */
|
|
NULL, /* finish */
|
|
0, /* flags */
|
|
NULL, /* app_data */
|
|
NULL, /* rsa_sign */
|
|
NULL, /* rsa_verify */
|
|
NULL /* rsa_keygen */
|
|
};
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
/* Our internal DSA_METHOD that we provide pointers to */
|
|
static DSA_METHOD aep_dsa = {
|
|
"Aep DSA method",
|
|
NULL, /* dsa_do_sign */
|
|
NULL, /* dsa_sign_setup */
|
|
NULL, /* dsa_do_verify */
|
|
aep_dsa_mod_exp, /* dsa_mod_exp */
|
|
aep_mod_exp_dsa, /* bn_mod_exp */
|
|
NULL, /* init */
|
|
NULL, /* finish */
|
|
0, /* flags */
|
|
NULL, /* app_data */
|
|
NULL, /* dsa_paramgen */
|
|
NULL /* dsa_keygen */
|
|
};
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DH
|
|
/* Our internal DH_METHOD that we provide pointers to */
|
|
static DH_METHOD aep_dh = {
|
|
"Aep DH method",
|
|
NULL,
|
|
NULL,
|
|
aep_mod_exp_dh,
|
|
NULL,
|
|
NULL,
|
|
0,
|
|
NULL,
|
|
NULL
|
|
};
|
|
# endif
|
|
|
|
# ifdef AEPRAND
|
|
/* our internal RAND_method that we provide pointers to */
|
|
static RAND_METHOD aep_random = {
|
|
/*
|
|
* "AEP RAND method",
|
|
*/
|
|
NULL,
|
|
aep_rand,
|
|
NULL,
|
|
NULL,
|
|
aep_rand,
|
|
aep_rand_status,
|
|
};
|
|
# endif
|
|
|
|
/*
|
|
* Define an array of structures to hold connections
|
|
*/
|
|
static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS];
|
|
|
|
/*
|
|
* Used to determine if this is a new process
|
|
*/
|
|
static pid_t recorded_pid = 0;
|
|
|
|
# ifdef AEPRAND
|
|
static AEP_U8 rand_block[RAND_BLK_SIZE];
|
|
static AEP_U32 rand_block_bytes = 0;
|
|
# endif
|
|
|
|
/* Constants used when creating the ENGINE */
|
|
static const char *engine_aep_id = "aep";
|
|
static const char *engine_aep_name = "Aep hardware engine support";
|
|
|
|
static int max_key_len = 2176;
|
|
|
|
/*
|
|
* This internal function is used by ENGINE_aep() and possibly by the
|
|
* "dynamic" ENGINE support too
|
|
*/
|
|
static int bind_aep(ENGINE *e)
|
|
{
|
|
# ifndef OPENSSL_NO_RSA
|
|
const RSA_METHOD *meth1;
|
|
# endif
|
|
# ifndef OPENSSL_NO_DSA
|
|
const DSA_METHOD *meth2;
|
|
# endif
|
|
# ifndef OPENSSL_NO_DH
|
|
const DH_METHOD *meth3;
|
|
# endif
|
|
|
|
if (!ENGINE_set_id(e, engine_aep_id) ||
|
|
!ENGINE_set_name(e, engine_aep_name) ||
|
|
# ifndef OPENSSL_NO_RSA
|
|
!ENGINE_set_RSA(e, &aep_rsa) ||
|
|
# endif
|
|
# ifndef OPENSSL_NO_DSA
|
|
!ENGINE_set_DSA(e, &aep_dsa) ||
|
|
# endif
|
|
# ifndef OPENSSL_NO_DH
|
|
!ENGINE_set_DH(e, &aep_dh) ||
|
|
# endif
|
|
# ifdef AEPRAND
|
|
!ENGINE_set_RAND(e, &aep_random) ||
|
|
# endif
|
|
!ENGINE_set_init_function(e, aep_init) ||
|
|
!ENGINE_set_destroy_function(e, aep_destroy) ||
|
|
!ENGINE_set_finish_function(e, aep_finish) ||
|
|
!ENGINE_set_ctrl_function(e, aep_ctrl) ||
|
|
!ENGINE_set_cmd_defns(e, aep_cmd_defns))
|
|
return 0;
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
/*
|
|
* We know that the "PKCS1_SSLeay()" functions hook properly to the
|
|
* aep-specific mod_exp and mod_exp_crt so we use those functions. NB: We
|
|
* don't use ENGINE_openssl() or anything "more generic" because
|
|
* something like the RSAref code may not hook properly, and if you own
|
|
* one of these cards then you have the right to do RSA operations on it
|
|
* anyway!
|
|
*/
|
|
meth1 = RSA_PKCS1_SSLeay();
|
|
aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
|
|
aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
|
|
aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
|
|
aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
/*
|
|
* Use the DSA_OpenSSL() method and just hook the mod_exp-ish bits.
|
|
*/
|
|
meth2 = DSA_OpenSSL();
|
|
aep_dsa.dsa_do_sign = meth2->dsa_do_sign;
|
|
aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup;
|
|
aep_dsa.dsa_do_verify = meth2->dsa_do_verify;
|
|
|
|
aep_dsa = *DSA_get_default_method();
|
|
aep_dsa.dsa_mod_exp = aep_dsa_mod_exp;
|
|
aep_dsa.bn_mod_exp = aep_mod_exp_dsa;
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DH
|
|
/* Much the same for Diffie-Hellman */
|
|
meth3 = DH_OpenSSL();
|
|
aep_dh.generate_key = meth3->generate_key;
|
|
aep_dh.compute_key = meth3->compute_key;
|
|
aep_dh.bn_mod_exp = meth3->bn_mod_exp;
|
|
# endif
|
|
|
|
/* Ensure the aep error handling is set up */
|
|
ERR_load_AEPHK_strings();
|
|
|
|
return 1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static int bind_helper(ENGINE *e, const char *id)
|
|
{
|
|
if (id && (strcmp(id, engine_aep_id) != 0))
|
|
return 0;
|
|
if (!bind_aep(e))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
|
|
# else
|
|
static ENGINE *engine_aep(void)
|
|
{
|
|
ENGINE *ret = ENGINE_new();
|
|
if (!ret)
|
|
return NULL;
|
|
if (!bind_aep(ret)) {
|
|
ENGINE_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ENGINE_load_aep(void)
|
|
{
|
|
/* Copied from eng_[openssl|dyn].c */
|
|
ENGINE *toadd = engine_aep();
|
|
if (!toadd)
|
|
return;
|
|
ENGINE_add(toadd);
|
|
ENGINE_free(toadd);
|
|
ERR_clear_error();
|
|
}
|
|
# endif
|
|
|
|
/*
|
|
* This is a process-global DSO handle used for loading and unloading the Aep
|
|
* library. NB: This is only set (or unset) during an init() or finish() call
|
|
* (reference counts permitting) and they're operating with global locks, so
|
|
* this should be thread-safe implicitly.
|
|
*/
|
|
static DSO *aep_dso = NULL;
|
|
|
|
/*
|
|
* These are the static string constants for the DSO file name and the
|
|
* function symbol names to bind to.
|
|
*/
|
|
static const char *AEP_LIBNAME = NULL;
|
|
static const char *get_AEP_LIBNAME(void)
|
|
{
|
|
if (AEP_LIBNAME)
|
|
return AEP_LIBNAME;
|
|
return "aep";
|
|
}
|
|
|
|
static void free_AEP_LIBNAME(void)
|
|
{
|
|
if (AEP_LIBNAME)
|
|
OPENSSL_free((void *)AEP_LIBNAME);
|
|
AEP_LIBNAME = NULL;
|
|
}
|
|
|
|
static long set_AEP_LIBNAME(const char *name)
|
|
{
|
|
free_AEP_LIBNAME();
|
|
return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
|
|
}
|
|
|
|
static const char *AEP_F1 = "AEP_ModExp";
|
|
static const char *AEP_F2 = "AEP_ModExpCrt";
|
|
# ifdef AEPRAND
|
|
static const char *AEP_F3 = "AEP_GenRandom";
|
|
# endif
|
|
static const char *AEP_F4 = "AEP_Finalize";
|
|
static const char *AEP_F5 = "AEP_Initialize";
|
|
static const char *AEP_F6 = "AEP_OpenConnection";
|
|
static const char *AEP_F7 = "AEP_SetBNCallBacks";
|
|
static const char *AEP_F8 = "AEP_CloseConnection";
|
|
|
|
/*
|
|
* These are the function pointers that are (un)set when the library has
|
|
* successfully (un)loaded.
|
|
*/
|
|
static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL;
|
|
static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL;
|
|
static t_AEP_ModExp *p_AEP_ModExp = NULL;
|
|
static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL;
|
|
# ifdef AEPRAND
|
|
static t_AEP_GenRandom *p_AEP_GenRandom = NULL;
|
|
# endif
|
|
static t_AEP_Initialize *p_AEP_Initialize = NULL;
|
|
static t_AEP_Finalize *p_AEP_Finalize = NULL;
|
|
static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL;
|
|
|
|
/* (de)initialisation functions. */
|
|
static int aep_init(ENGINE *e)
|
|
{
|
|
t_AEP_ModExp *p1;
|
|
t_AEP_ModExpCrt *p2;
|
|
# ifdef AEPRAND
|
|
t_AEP_GenRandom *p3;
|
|
# endif
|
|
t_AEP_Finalize *p4;
|
|
t_AEP_Initialize *p5;
|
|
t_AEP_OpenConnection *p6;
|
|
t_AEP_SetBNCallBacks *p7;
|
|
t_AEP_CloseConnection *p8;
|
|
|
|
int to_return = 0;
|
|
|
|
if (aep_dso != NULL) {
|
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_ALREADY_LOADED);
|
|
goto err;
|
|
}
|
|
/* Attempt to load libaep.so. */
|
|
|
|
aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0);
|
|
|
|
if (aep_dso == NULL) {
|
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
if (!(p1 = (t_AEP_ModExp *) DSO_bind_func(aep_dso, AEP_F1)) ||
|
|
!(p2 = (t_AEP_ModExpCrt *) DSO_bind_func(aep_dso, AEP_F2)) ||
|
|
# ifdef AEPRAND
|
|
!(p3 = (t_AEP_GenRandom *) DSO_bind_func(aep_dso, AEP_F3)) ||
|
|
# endif
|
|
!(p4 = (t_AEP_Finalize *) DSO_bind_func(aep_dso, AEP_F4)) ||
|
|
!(p5 = (t_AEP_Initialize *) DSO_bind_func(aep_dso, AEP_F5)) ||
|
|
!(p6 = (t_AEP_OpenConnection *) DSO_bind_func(aep_dso, AEP_F6)) ||
|
|
!(p7 = (t_AEP_SetBNCallBacks *) DSO_bind_func(aep_dso, AEP_F7)) ||
|
|
!(p8 = (t_AEP_CloseConnection *) DSO_bind_func(aep_dso, AEP_F8))) {
|
|
AEPHKerr(AEPHK_F_AEP_INIT, AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
/* Copy the pointers */
|
|
|
|
p_AEP_ModExp = p1;
|
|
p_AEP_ModExpCrt = p2;
|
|
# ifdef AEPRAND
|
|
p_AEP_GenRandom = p3;
|
|
# endif
|
|
p_AEP_Finalize = p4;
|
|
p_AEP_Initialize = p5;
|
|
p_AEP_OpenConnection = p6;
|
|
p_AEP_SetBNCallBacks = p7;
|
|
p_AEP_CloseConnection = p8;
|
|
|
|
to_return = 1;
|
|
|
|
return to_return;
|
|
|
|
err:
|
|
|
|
if (aep_dso)
|
|
DSO_free(aep_dso);
|
|
aep_dso = NULL;
|
|
|
|
p_AEP_OpenConnection = NULL;
|
|
p_AEP_ModExp = NULL;
|
|
p_AEP_ModExpCrt = NULL;
|
|
# ifdef AEPRAND
|
|
p_AEP_GenRandom = NULL;
|
|
# endif
|
|
p_AEP_Initialize = NULL;
|
|
p_AEP_Finalize = NULL;
|
|
p_AEP_SetBNCallBacks = NULL;
|
|
p_AEP_CloseConnection = NULL;
|
|
|
|
return to_return;
|
|
}
|
|
|
|
/* Destructor (complements the "ENGINE_aep()" constructor) */
|
|
static int aep_destroy(ENGINE *e)
|
|
{
|
|
free_AEP_LIBNAME();
|
|
ERR_unload_AEPHK_strings();
|
|
return 1;
|
|
}
|
|
|
|
static int aep_finish(ENGINE *e)
|
|
{
|
|
int to_return = 0, in_use;
|
|
AEP_RV rv;
|
|
|
|
if (aep_dso == NULL) {
|
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
rv = aep_close_all_connections(0, &in_use);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CLOSE_HANDLES_FAILED);
|
|
goto err;
|
|
}
|
|
if (in_use) {
|
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_CONNECTIONS_IN_USE);
|
|
goto err;
|
|
}
|
|
|
|
rv = p_AEP_Finalize();
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_FINALIZE_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
if (!DSO_free(aep_dso)) {
|
|
AEPHKerr(AEPHK_F_AEP_FINISH, AEPHK_R_UNIT_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
aep_dso = NULL;
|
|
p_AEP_CloseConnection = NULL;
|
|
p_AEP_OpenConnection = NULL;
|
|
p_AEP_ModExp = NULL;
|
|
p_AEP_ModExpCrt = NULL;
|
|
# ifdef AEPRAND
|
|
p_AEP_GenRandom = NULL;
|
|
# endif
|
|
p_AEP_Initialize = NULL;
|
|
p_AEP_Finalize = NULL;
|
|
p_AEP_SetBNCallBacks = NULL;
|
|
|
|
to_return = 1;
|
|
err:
|
|
return to_return;
|
|
}
|
|
|
|
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
|
|
{
|
|
int initialised = ((aep_dso == NULL) ? 0 : 1);
|
|
switch (cmd) {
|
|
case AEP_CMD_SO_PATH:
|
|
if (p == NULL) {
|
|
AEPHKerr(AEPHK_F_AEP_CTRL, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
if (initialised) {
|
|
AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_ALREADY_LOADED);
|
|
return 0;
|
|
}
|
|
return set_AEP_LIBNAME((const char *)p);
|
|
default:
|
|
break;
|
|
}
|
|
AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
|
|
return 0;
|
|
}
|
|
|
|
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx)
|
|
{
|
|
int to_return = 0;
|
|
int r_len = 0;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
AEP_RV rv;
|
|
|
|
r_len = BN_num_bits(m);
|
|
|
|
/* Perform in software if modulus is too large for hardware. */
|
|
|
|
if (r_len > max_key_len) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*
|
|
* Grab a connection from the pool
|
|
*/
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_GET_HANDLE_FAILED);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*
|
|
* To the card with the mod exp
|
|
*/
|
|
rv = p_AEP_ModExp(hConnection, (void *)a, (void *)p, (void *)m, (void *)r,
|
|
NULL);
|
|
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_MOD_EXP_FAILED);
|
|
rv = aep_close_connection(hConnection);
|
|
return BN_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
|
|
/*
|
|
* Return the connection to the pool
|
|
*/
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
to_return = 1;
|
|
err:
|
|
return to_return;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *q, const BIGNUM *dmp1,
|
|
const BIGNUM *dmq1, const BIGNUM *iqmp,
|
|
BN_CTX *ctx)
|
|
{
|
|
AEP_RV rv = AEP_R_OK;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
|
|
/*
|
|
* Grab a connection from the pool
|
|
*/
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_GET_HANDLE_FAILED);
|
|
return FAIL_TO_SW;
|
|
}
|
|
|
|
/*
|
|
* To the card with the mod exp
|
|
*/
|
|
rv = p_AEP_ModExpCrt(hConnection, (void *)a, (void *)p, (void *)q,
|
|
(void *)dmp1, (void *)dmq1, (void *)iqmp, (void *)r,
|
|
NULL);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_MOD_EXP_CRT_FAILED);
|
|
rv = aep_close_connection(hConnection);
|
|
return FAIL_TO_SW;
|
|
}
|
|
|
|
/*
|
|
* Return the connection to the pool
|
|
*/
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT, AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
return rv;
|
|
}
|
|
# endif
|
|
|
|
# ifdef AEPRAND
|
|
static int aep_rand(unsigned char *buf, int len)
|
|
{
|
|
AEP_RV rv = AEP_R_OK;
|
|
AEP_CONNECTION_HNDL hConnection;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
|
|
|
/*
|
|
* Can the request be serviced with what's already in the buffer?
|
|
*/
|
|
if (len <= rand_block_bytes) {
|
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
|
|
rand_block_bytes -= len;
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
} else
|
|
/*
|
|
* If not the get another block of random bytes
|
|
*/
|
|
{
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
|
|
rv = aep_get_connection(&hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_HANDLE_FAILED);
|
|
goto err_nounlock;
|
|
}
|
|
|
|
if (len > RAND_BLK_SIZE) {
|
|
rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED);
|
|
goto err_nounlock;
|
|
}
|
|
} else {
|
|
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
|
|
|
rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2,
|
|
&rand_block[0], NULL);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_GET_RANDOM_FAILED);
|
|
|
|
goto err;
|
|
}
|
|
|
|
rand_block_bytes = RAND_BLK_SIZE;
|
|
|
|
memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
|
|
rand_block_bytes -= len;
|
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
}
|
|
|
|
rv = aep_return_connection(hConnection);
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_RAND, AEPHK_R_RETURN_CONNECTION_FAILED);
|
|
|
|
goto err_nounlock;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
err:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
|
err_nounlock:
|
|
return 0;
|
|
}
|
|
|
|
static int aep_rand_status(void)
|
|
{
|
|
return 1;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
|
|
{
|
|
int to_return = 0;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
if (!aep_dso) {
|
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_NOT_LOADED);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* See if we have all the necessary bits for a crt
|
|
*/
|
|
if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) {
|
|
rv = aep_mod_exp_crt(r0, I, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1,
|
|
rsa->iqmp, ctx);
|
|
|
|
if (rv == FAIL_TO_SW) {
|
|
const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
|
|
to_return = (*meth->rsa_mod_exp) (r0, I, rsa, ctx);
|
|
goto err;
|
|
} else if (rv != AEP_R_OK)
|
|
goto err;
|
|
} else {
|
|
if (!rsa->d || !rsa->n) {
|
|
AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP, AEPHK_R_MISSING_KEY_COMPONENTS);
|
|
goto err;
|
|
}
|
|
|
|
rv = aep_mod_exp(r0, I, rsa->d, rsa->n, ctx);
|
|
if (rv != AEP_R_OK)
|
|
goto err;
|
|
|
|
}
|
|
|
|
to_return = 1;
|
|
|
|
err:
|
|
return to_return;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
|
|
BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
|
|
BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
|
{
|
|
BIGNUM t;
|
|
int to_return = 0;
|
|
BN_init(&t);
|
|
|
|
/* let rr = a1 ^ p1 mod m */
|
|
if (!aep_mod_exp(rr, a1, p1, m, ctx))
|
|
goto end;
|
|
/* let t = a2 ^ p2 mod m */
|
|
if (!aep_mod_exp(&t, a2, p2, m, ctx))
|
|
goto end;
|
|
/* let rr = rr * t mod m */
|
|
if (!BN_mod_mul(rr, rr, &t, m, ctx))
|
|
goto end;
|
|
to_return = 1;
|
|
end:
|
|
BN_free(&t);
|
|
return to_return;
|
|
}
|
|
|
|
static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
/* This function is aliased to mod_exp (with the mont stuff dropped). */
|
|
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DH
|
|
/* This function is aliased to mod_exp (with the dh and mont dropped). */
|
|
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
|
|
BN_MONT_CTX *m_ctx)
|
|
{
|
|
return aep_mod_exp(r, a, p, m, ctx);
|
|
}
|
|
# endif
|
|
|
|
static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
/*
|
|
* Get the current process id
|
|
*/
|
|
pid_t curr_pid;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
curr_pid = getpid();
|
|
|
|
/*
|
|
* Check if this is the first time this is being called from the current
|
|
* process
|
|
*/
|
|
if (recorded_pid != curr_pid) {
|
|
/*
|
|
* Remember our pid so we can check if we're in a new process
|
|
*/
|
|
recorded_pid = curr_pid;
|
|
|
|
/*
|
|
* Call Finalize to make sure we have not inherited some data from a
|
|
* parent process
|
|
*/
|
|
p_AEP_Finalize();
|
|
|
|
/*
|
|
* Initialise the AEP API
|
|
*/
|
|
rv = p_AEP_Initialize(NULL);
|
|
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_INIT_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Set the AEP big num call back functions
|
|
*/
|
|
rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum,
|
|
&ConvertAEPBigNum);
|
|
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,
|
|
AEPHK_R_SETBNCALLBACK_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
# ifdef AEPRAND
|
|
/*
|
|
* Reset the rand byte count
|
|
*/
|
|
rand_block_bytes = 0;
|
|
# endif
|
|
|
|
/*
|
|
* Init the structures
|
|
*/
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
}
|
|
|
|
/*
|
|
* Open a connection
|
|
*/
|
|
rv = p_AEP_OpenConnection(phConnection);
|
|
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE);
|
|
recorded_pid = 0;
|
|
goto end;
|
|
}
|
|
|
|
aep_app_conn_table[0].conn_state = InUse;
|
|
aep_app_conn_table[0].conn_hndl = *phConnection;
|
|
goto end;
|
|
}
|
|
/*
|
|
* Check the existing connections to see if we can find a free one
|
|
*/
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
if (aep_app_conn_table[count].conn_state == Connected) {
|
|
aep_app_conn_table[count].conn_state = InUse;
|
|
*phConnection = aep_app_conn_table[count].conn_hndl;
|
|
goto end;
|
|
}
|
|
}
|
|
/*
|
|
* If no connections available, we're going to have to try to open a new
|
|
* one
|
|
*/
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
if (aep_app_conn_table[count].conn_state == NotConnected) {
|
|
/*
|
|
* Open a connection
|
|
*/
|
|
rv = p_AEP_OpenConnection(phConnection);
|
|
|
|
if (rv != AEP_R_OK) {
|
|
AEPHKerr(AEPHK_F_AEP_GET_CONNECTION, AEPHK_R_UNIT_FAILURE);
|
|
goto end;
|
|
}
|
|
|
|
aep_app_conn_table[count].conn_state = InUse;
|
|
aep_app_conn_table[count].conn_hndl = *phConnection;
|
|
goto end;
|
|
}
|
|
}
|
|
rv = AEP_R_GENERAL_ERROR;
|
|
end:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection)
|
|
{
|
|
int count;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
/*
|
|
* Find the connection item that matches this connection handle
|
|
*/
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
if (aep_app_conn_table[count].conn_hndl == hConnection) {
|
|
aep_app_conn_table[count].conn_state = Connected;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
|
|
/*
|
|
* Find the connection item that matches this connection handle
|
|
*/
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
if (aep_app_conn_table[count].conn_hndl == hConnection) {
|
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
|
|
if (rv != AEP_R_OK)
|
|
goto end;
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
end:
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use)
|
|
{
|
|
int count;
|
|
AEP_RV rv = AEP_R_OK;
|
|
|
|
*in_use = 0;
|
|
if (use_engine_lock)
|
|
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
|
|
for (count = 0; count < MAX_PROCESS_CONNECTIONS; count++) {
|
|
switch (aep_app_conn_table[count].conn_state) {
|
|
case Connected:
|
|
rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
|
|
if (rv != AEP_R_OK)
|
|
goto end;
|
|
aep_app_conn_table[count].conn_state = NotConnected;
|
|
aep_app_conn_table[count].conn_hndl = 0;
|
|
break;
|
|
case InUse:
|
|
(*in_use)++;
|
|
break;
|
|
case NotConnected:
|
|
break;
|
|
}
|
|
}
|
|
end:
|
|
if (use_engine_lock)
|
|
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* BigNum call back functions, used to convert OpenSSL bignums into AEP
|
|
* bignums. Note only 32bit Openssl build support
|
|
*/
|
|
|
|
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32 *BigNumSize)
|
|
{
|
|
BIGNUM *bn;
|
|
|
|
/*
|
|
* Cast the ArbBigNum pointer to our BIGNUM struct
|
|
*/
|
|
bn = (BIGNUM *)ArbBigNum;
|
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG
|
|
*BigNumSize = bn->top << 3;
|
|
# else
|
|
/*
|
|
* Size of the bignum in bytes is equal to the bn->top (no of 32 bit
|
|
* words) multiplies by 4
|
|
*/
|
|
*BigNumSize = bn->top << 2;
|
|
# endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char *AEP_BigNum)
|
|
{
|
|
BIGNUM *bn;
|
|
|
|
# ifndef SIXTY_FOUR_BIT_LONG
|
|
unsigned char *buf;
|
|
int i;
|
|
# endif
|
|
|
|
/*
|
|
* Cast the ArbBigNum pointer to our BIGNUM struct
|
|
*/
|
|
bn = (BIGNUM *)ArbBigNum;
|
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG
|
|
memcpy(AEP_BigNum, bn->d, BigNumSize);
|
|
# else
|
|
/*
|
|
* Must copy data into a (monotone) least significant byte first format
|
|
* performing endian conversion if necessary
|
|
*/
|
|
for (i = 0; i < bn->top; i++) {
|
|
buf = (unsigned char *)&bn->d[i];
|
|
|
|
*((AEP_U32 *)AEP_BigNum) = (AEP_U32)
|
|
((unsigned)buf[1] << 8 | buf[0]) |
|
|
((unsigned)buf[3] << 8 | buf[2]) << 16;
|
|
|
|
AEP_BigNum += 4;
|
|
}
|
|
# endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
/*
|
|
* Turn an AEP Big Num back to a user big num
|
|
*/
|
|
static AEP_RV ConvertAEPBigNum(void *ArbBigNum, AEP_U32 BigNumSize,
|
|
unsigned char *AEP_BigNum)
|
|
{
|
|
BIGNUM *bn;
|
|
# ifndef SIXTY_FOUR_BIT_LONG
|
|
int i;
|
|
# endif
|
|
|
|
bn = (BIGNUM *)ArbBigNum;
|
|
|
|
/*
|
|
* Expand the result bn so that it can hold our big num. Size is in bits
|
|
*/
|
|
if (bn_expand(bn, (int)(BigNumSize << 3)) == NULL)
|
|
return AEP_R_HOST_MEMORY;
|
|
|
|
# ifdef SIXTY_FOUR_BIT_LONG
|
|
bn->top = BigNumSize >> 3;
|
|
|
|
if ((BigNumSize & 7) != 0)
|
|
bn->top++;
|
|
|
|
memset(bn->d, 0, bn->top << 3);
|
|
|
|
memcpy(bn->d, AEP_BigNum, BigNumSize);
|
|
# else
|
|
bn->top = BigNumSize >> 2;
|
|
|
|
for (i = 0; i < bn->top; i++) {
|
|
bn->d[i] = (AEP_U32)
|
|
((unsigned)AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 |
|
|
((unsigned)AEP_BigNum[1] << 8 | AEP_BigNum[0]);
|
|
AEP_BigNum += 4;
|
|
}
|
|
# endif
|
|
|
|
return AEP_R_OK;
|
|
}
|
|
|
|
# endif /* !OPENSSL_NO_HW_AEP */
|
|
#endif /* !OPENSSL_NO_HW */
|