openssl1.0/engines/e_chil.c
2019-08-09 10:00:55 +02:00

1367 lines
43 KiB
C

/* crypto/engine/e_chil.c */
/*
* Written by Richard Levitte (richard@levitte.org), Geoff Thorpe
* (geoff@geoffthorpe.net) and Dr Stephen N Henson (steve@openssl.org) for
* the OpenSSL project 2000.
*/
/* ====================================================================
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/pem.h>
#include <openssl/dso.h>
#include <openssl/engine.h>
#include <openssl/ui.h>
#include <openssl/rand.h>
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
#endif
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_HW
# ifndef OPENSSL_NO_HW_CHIL
/*-
* Attribution notice: nCipher have said several times that it's OK for
* us to implement a general interface to their boxes, and recently declared
* their HWCryptoHook to be public, and therefore available for us to use.
* Thanks, nCipher.
*
* The hwcryptohook.h included here is from May 2000.
* [Richard Levitte]
*/
# ifdef FLAT_INC
# include "hwcryptohook.h"
# else
# include "vendor_defns/hwcryptohook.h"
# endif
# define HWCRHK_LIB_NAME "CHIL engine"
# include "e_chil_err.c"
static int hwcrhk_destroy(ENGINE *e);
static int hwcrhk_init(ENGINE *e);
static int hwcrhk_finish(ENGINE *e);
static int hwcrhk_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
/* Functions to handle mutexes */
static int hwcrhk_mutex_init(HWCryptoHook_Mutex *,
HWCryptoHook_CallerContext *);
static int hwcrhk_mutex_lock(HWCryptoHook_Mutex *);
static void hwcrhk_mutex_unlock(HWCryptoHook_Mutex *);
static void hwcrhk_mutex_destroy(HWCryptoHook_Mutex *);
/* BIGNUM stuff */
static int hwcrhk_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
# ifndef OPENSSL_NO_RSA
/* RSA stuff */
static int hwcrhk_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx);
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int hwcrhk_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
static int hwcrhk_rsa_finish(RSA *rsa);
# endif
# ifndef OPENSSL_NO_DH
/* DH stuff */
/* This function is alised to mod_exp (with the DH and mont dropped). */
static int hwcrhk_mod_exp_dh(const DH *dh, BIGNUM *r,
const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
# endif
/* RAND stuff */
static int hwcrhk_rand_bytes(unsigned char *buf, int num);
static int hwcrhk_rand_status(void);
/* KM stuff */
static EVP_PKEY *hwcrhk_load_privkey(ENGINE *eng, const char *key_id,
UI_METHOD *ui_method,
void *callback_data);
static EVP_PKEY *hwcrhk_load_pubkey(ENGINE *eng, const char *key_id,
UI_METHOD *ui_method,
void *callback_data);
/* Interaction stuff */
static int hwcrhk_insert_card(const char *prompt_info,
const char *wrong_info,
HWCryptoHook_PassphraseContext * ppctx,
HWCryptoHook_CallerContext * cactx);
static int hwcrhk_get_pass(const char *prompt_info,
int *len_io, char *buf,
HWCryptoHook_PassphraseContext * ppctx,
HWCryptoHook_CallerContext * cactx);
static void hwcrhk_log_message(void *logstr, const char *message);
/* The definitions for control commands specific to this engine */
# define HWCRHK_CMD_SO_PATH ENGINE_CMD_BASE
# define HWCRHK_CMD_FORK_CHECK (ENGINE_CMD_BASE + 1)
# define HWCRHK_CMD_THREAD_LOCKING (ENGINE_CMD_BASE + 2)
# define HWCRHK_CMD_SET_USER_INTERFACE (ENGINE_CMD_BASE + 3)
# define HWCRHK_CMD_SET_CALLBACK_DATA (ENGINE_CMD_BASE + 4)
static const ENGINE_CMD_DEFN hwcrhk_cmd_defns[] = {
{HWCRHK_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the 'hwcrhk' shared library",
ENGINE_CMD_FLAG_STRING},
{HWCRHK_CMD_FORK_CHECK,
"FORK_CHECK",
"Turns fork() checking on (non-zero) or off (zero)",
ENGINE_CMD_FLAG_NUMERIC},
{HWCRHK_CMD_THREAD_LOCKING,
"THREAD_LOCKING",
"Turns thread-safe locking on (zero) or off (non-zero)",
ENGINE_CMD_FLAG_NUMERIC},
{HWCRHK_CMD_SET_USER_INTERFACE,
"SET_USER_INTERFACE",
"Set the global user interface (internal)",
ENGINE_CMD_FLAG_INTERNAL},
{HWCRHK_CMD_SET_CALLBACK_DATA,
"SET_CALLBACK_DATA",
"Set the global user interface extra data (internal)",
ENGINE_CMD_FLAG_INTERNAL},
{0, NULL, NULL, 0}
};
# ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD hwcrhk_rsa = {
"CHIL RSA method",
NULL,
NULL,
NULL,
NULL,
hwcrhk_rsa_mod_exp,
hwcrhk_mod_exp_mont,
NULL,
hwcrhk_rsa_finish,
0,
NULL,
NULL,
NULL,
NULL
};
# endif
# ifndef OPENSSL_NO_DH
/* Our internal DH_METHOD that we provide pointers to */
static DH_METHOD hwcrhk_dh = {
"CHIL DH method",
NULL,
NULL,
hwcrhk_mod_exp_dh,
NULL,
NULL,
0,
NULL,
NULL
};
# endif
static RAND_METHOD hwcrhk_rand = {
/* "CHIL RAND method", */
NULL,
hwcrhk_rand_bytes,
NULL,
NULL,
hwcrhk_rand_bytes,
hwcrhk_rand_status,
};
/* Constants used when creating the ENGINE */
static const char *engine_hwcrhk_id = "chil";
static const char *engine_hwcrhk_name = "CHIL hardware engine support";
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
/* Compatibility hack, the dynamic library uses this form in the path */
static const char *engine_hwcrhk_id_alt = "ncipher";
# endif
/* Internal stuff for HWCryptoHook */
/* Some structures needed for proper use of thread locks */
/*
* hwcryptohook.h has some typedefs that turn struct HWCryptoHook_MutexValue
* into HWCryptoHook_Mutex
*/
struct HWCryptoHook_MutexValue {
int lockid;
};
/*
* hwcryptohook.h has some typedefs that turn struct
* HWCryptoHook_PassphraseContextValue into HWCryptoHook_PassphraseContext
*/
struct HWCryptoHook_PassphraseContextValue {
UI_METHOD *ui_method;
void *callback_data;
};
/*
* hwcryptohook.h has some typedefs that turn struct
* HWCryptoHook_CallerContextValue into HWCryptoHook_CallerContext
*/
struct HWCryptoHook_CallerContextValue {
pem_password_cb *password_callback; /* Deprecated! Only present for
* backward compatibility! */
UI_METHOD *ui_method;
void *callback_data;
};
/*
* The MPI structure in HWCryptoHook is pretty compatible with OpenSSL
* BIGNUM's, so lets define a couple of conversion macros
*/
# define BN2MPI(mp, bn) \
{mp.size = bn->top * sizeof(BN_ULONG); mp.buf = (unsigned char *)bn->d;}
# define MPI2BN(bn, mp) \
{mp.size = bn->dmax * sizeof(BN_ULONG); mp.buf = (unsigned char *)bn->d;}
static BIO *logstream = NULL;
static int disable_mutex_callbacks = 0;
/*
* One might wonder why these are needed, since one can pass down at least a
* UI_METHOD and a pointer to callback data to the key-loading functions. The
* thing is that the ModExp and RSAImmed functions can load keys as well, if
* the data they get is in a special, nCipher-defined format (hint: if you
* look at the private exponent of the RSA data as a string, you'll see this
* string: "nCipher KM tool key id", followed by some bytes, followed a key
* identity string, followed by more bytes. This happens when you use
* "embed" keys instead of "hwcrhk" keys). Unfortunately, those functions do
* not take any passphrase or caller context, and our functions can't really
* take any callback data either. Still, the "insert_card" and
* "get_passphrase" callbacks may be called down the line, and will need to
* know what user interface callbacks to call, and having callback data from
* the application may be a nice thing as well, so we need to keep track of
* that globally.
*/
static HWCryptoHook_CallerContext password_context = { NULL, NULL, NULL };
/* Stuff to pass to the HWCryptoHook library */
static HWCryptoHook_InitInfo hwcrhk_globals = {
HWCryptoHook_InitFlags_SimpleForkCheck, /* Flags */
&logstream, /* logstream */
sizeof(BN_ULONG), /* limbsize */
0, /* mslimb first: false for BNs */
-1, /* msbyte first: use native */
0, /* Max mutexes, 0 = no small limit */
0, /* Max simultaneous, 0 = default */
/*
* The next few are mutex stuff: we write wrapper functions around the OS
* mutex functions. We initialise them to 0 here, and change that to
* actual function pointers in hwcrhk_init() if dynamic locks are
* supported (that is, if the application programmer has made sure of
* setting up callbacks bafore starting this engine) *and* if
* disable_mutex_callbacks hasn't been set by a call to
* ENGINE_ctrl(ENGINE_CTRL_CHIL_NO_LOCKING).
*/
sizeof(HWCryptoHook_Mutex),
0,
0,
0,
0,
/*
* The next few are condvar stuff: we write wrapper functions round the
* OS functions. Currently not implemented and not and absolute
* necessity even in threaded programs, therefore 0'ed. Will hopefully
* be implemented some day, since it enhances the efficiency of
* HWCryptoHook.
*/
0, /* sizeof(HWCryptoHook_CondVar), */
0, /* hwcrhk_cv_init, */
0, /* hwcrhk_cv_wait, */
0, /* hwcrhk_cv_signal, */
0, /* hwcrhk_cv_broadcast, */
0, /* hwcrhk_cv_destroy, */
hwcrhk_get_pass, /* pass phrase */
hwcrhk_insert_card, /* insert a card */
hwcrhk_log_message /* Log message */
};
/* Now, to our own code */
/*
* This internal function is used by ENGINE_chil() and possibly by the
* "dynamic" ENGINE support too
*/
static int bind_helper(ENGINE *e)
{
# ifndef OPENSSL_NO_RSA
const RSA_METHOD *meth1;
# endif
# ifndef OPENSSL_NO_DH
const DH_METHOD *meth2;
# endif
if (!ENGINE_set_id(e, engine_hwcrhk_id) ||
!ENGINE_set_name(e, engine_hwcrhk_name) ||
# ifndef OPENSSL_NO_RSA
!ENGINE_set_RSA(e, &hwcrhk_rsa) ||
# endif
# ifndef OPENSSL_NO_DH
!ENGINE_set_DH(e, &hwcrhk_dh) ||
# endif
!ENGINE_set_RAND(e, &hwcrhk_rand) ||
!ENGINE_set_destroy_function(e, hwcrhk_destroy) ||
!ENGINE_set_init_function(e, hwcrhk_init) ||
!ENGINE_set_finish_function(e, hwcrhk_finish) ||
!ENGINE_set_ctrl_function(e, hwcrhk_ctrl) ||
!ENGINE_set_load_privkey_function(e, hwcrhk_load_privkey) ||
!ENGINE_set_load_pubkey_function(e, hwcrhk_load_pubkey) ||
!ENGINE_set_cmd_defns(e, hwcrhk_cmd_defns))
return 0;
# ifndef OPENSSL_NO_RSA
/*
* We know that the "PKCS1_SSLeay()" functions hook properly to the
* cswift-specific mod_exp and mod_exp_crt so we use those functions. NB:
* We don't use ENGINE_openssl() or anything "more generic" because
* something like the RSAref code may not hook properly, and if you own
* one of these cards then you have the right to do RSA operations on it
* anyway!
*/
meth1 = RSA_PKCS1_SSLeay();
hwcrhk_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
hwcrhk_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
hwcrhk_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
hwcrhk_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
# endif
# ifndef OPENSSL_NO_DH
/* Much the same for Diffie-Hellman */
meth2 = DH_OpenSSL();
hwcrhk_dh.generate_key = meth2->generate_key;
hwcrhk_dh.compute_key = meth2->compute_key;
# endif
/* Ensure the hwcrhk error handling is set up */
ERR_load_HWCRHK_strings();
return 1;
}
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *engine_chil(void)
{
ENGINE *ret = ENGINE_new();
if (!ret)
return NULL;
if (!bind_helper(ret)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
void ENGINE_load_chil(void)
{
/* Copied from eng_[openssl|dyn].c */
ENGINE *toadd = engine_chil();
if (!toadd)
return;
ENGINE_add(toadd);
ENGINE_free(toadd);
ERR_clear_error();
}
# endif
/*
* This is a process-global DSO handle used for loading and unloading the
* HWCryptoHook library. NB: This is only set (or unset) during an init() or
* finish() call (reference counts permitting) and they're operating with
* global locks, so this should be thread-safe implicitly.
*/
static DSO *hwcrhk_dso = NULL;
static HWCryptoHook_ContextHandle hwcrhk_context = 0;
# ifndef OPENSSL_NO_RSA
/* Index for KM handle. Not really used yet. */
static int hndidx_rsa = -1;
# endif
/*
* These are the function pointers that are (un)set when the library has
* successfully (un)loaded.
*/
static HWCryptoHook_Init_t *p_hwcrhk_Init = NULL;
static HWCryptoHook_Finish_t *p_hwcrhk_Finish = NULL;
static HWCryptoHook_ModExp_t *p_hwcrhk_ModExp = NULL;
# ifndef OPENSSL_NO_RSA
static HWCryptoHook_RSA_t *p_hwcrhk_RSA = NULL;
# endif
static HWCryptoHook_RandomBytes_t *p_hwcrhk_RandomBytes = NULL;
# ifndef OPENSSL_NO_RSA
static HWCryptoHook_RSALoadKey_t *p_hwcrhk_RSALoadKey = NULL;
static HWCryptoHook_RSAGetPublicKey_t *p_hwcrhk_RSAGetPublicKey = NULL;
static HWCryptoHook_RSAUnloadKey_t *p_hwcrhk_RSAUnloadKey = NULL;
# endif
static HWCryptoHook_ModExpCRT_t *p_hwcrhk_ModExpCRT = NULL;
/* Used in the DSO operations. */
static const char *HWCRHK_LIBNAME = NULL;
static void free_HWCRHK_LIBNAME(void)
{
if (HWCRHK_LIBNAME)
OPENSSL_free((void *)HWCRHK_LIBNAME);
HWCRHK_LIBNAME = NULL;
}
static const char *get_HWCRHK_LIBNAME(void)
{
if (HWCRHK_LIBNAME)
return HWCRHK_LIBNAME;
return "nfhwcrhk";
}
static long set_HWCRHK_LIBNAME(const char *name)
{
free_HWCRHK_LIBNAME();
return (((HWCRHK_LIBNAME = BUF_strdup(name)) != NULL) ? 1 : 0);
}
static const char *n_hwcrhk_Init = "HWCryptoHook_Init";
static const char *n_hwcrhk_Finish = "HWCryptoHook_Finish";
static const char *n_hwcrhk_ModExp = "HWCryptoHook_ModExp";
# ifndef OPENSSL_NO_RSA
static const char *n_hwcrhk_RSA = "HWCryptoHook_RSA";
# endif
static const char *n_hwcrhk_RandomBytes = "HWCryptoHook_RandomBytes";
# ifndef OPENSSL_NO_RSA
static const char *n_hwcrhk_RSALoadKey = "HWCryptoHook_RSALoadKey";
static const char *n_hwcrhk_RSAGetPublicKey = "HWCryptoHook_RSAGetPublicKey";
static const char *n_hwcrhk_RSAUnloadKey = "HWCryptoHook_RSAUnloadKey";
# endif
static const char *n_hwcrhk_ModExpCRT = "HWCryptoHook_ModExpCRT";
/*
* HWCryptoHook library functions and mechanics - these are used by the
* higher-level functions further down. NB: As and where there's no error
* checking, take a look lower down where these functions are called, the
* checking and error handling is probably down there.
*/
/* utility function to obtain a context */
static int get_context(HWCryptoHook_ContextHandle * hac,
HWCryptoHook_CallerContext * cac)
{
char tempbuf[1024];
HWCryptoHook_ErrMsgBuf rmsg;
rmsg.buf = tempbuf;
rmsg.size = sizeof(tempbuf);
*hac = p_hwcrhk_Init(&hwcrhk_globals, sizeof(hwcrhk_globals), &rmsg, cac);
if (!*hac)
return 0;
return 1;
}
/* similarly to release one. */
static void release_context(HWCryptoHook_ContextHandle hac)
{
p_hwcrhk_Finish(hac);
}
/* Destructor (complements the "ENGINE_chil()" constructor) */
static int hwcrhk_destroy(ENGINE *e)
{
free_HWCRHK_LIBNAME();
ERR_unload_HWCRHK_strings();
return 1;
}
/* (de)initialisation functions. */
static int hwcrhk_init(ENGINE *e)
{
HWCryptoHook_Init_t *p1;
HWCryptoHook_Finish_t *p2;
HWCryptoHook_ModExp_t *p3;
# ifndef OPENSSL_NO_RSA
HWCryptoHook_RSA_t *p4;
HWCryptoHook_RSALoadKey_t *p5;
HWCryptoHook_RSAGetPublicKey_t *p6;
HWCryptoHook_RSAUnloadKey_t *p7;
# endif
HWCryptoHook_RandomBytes_t *p8;
HWCryptoHook_ModExpCRT_t *p9;
if (hwcrhk_dso != NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_INIT, HWCRHK_R_ALREADY_LOADED);
goto err;
}
/* Attempt to load libnfhwcrhk.so/nfhwcrhk.dll/whatever. */
hwcrhk_dso = DSO_load(NULL, get_HWCRHK_LIBNAME(), NULL, 0);
if (hwcrhk_dso == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_INIT, HWCRHK_R_DSO_FAILURE);
goto err;
}
if (!(p1 = (HWCryptoHook_Init_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_Init)) ||
!(p2 = (HWCryptoHook_Finish_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_Finish)) ||
!(p3 = (HWCryptoHook_ModExp_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_ModExp)) ||
# ifndef OPENSSL_NO_RSA
!(p4 = (HWCryptoHook_RSA_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_RSA)) ||
!(p5 = (HWCryptoHook_RSALoadKey_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_RSALoadKey)) ||
!(p6 = (HWCryptoHook_RSAGetPublicKey_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_RSAGetPublicKey)) ||
!(p7 = (HWCryptoHook_RSAUnloadKey_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_RSAUnloadKey)) ||
# endif
!(p8 = (HWCryptoHook_RandomBytes_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_RandomBytes)) ||
!(p9 = (HWCryptoHook_ModExpCRT_t *)
DSO_bind_func(hwcrhk_dso, n_hwcrhk_ModExpCRT))) {
HWCRHKerr(HWCRHK_F_HWCRHK_INIT, HWCRHK_R_DSO_FAILURE);
goto err;
}
/* Copy the pointers */
p_hwcrhk_Init = p1;
p_hwcrhk_Finish = p2;
p_hwcrhk_ModExp = p3;
# ifndef OPENSSL_NO_RSA
p_hwcrhk_RSA = p4;
p_hwcrhk_RSALoadKey = p5;
p_hwcrhk_RSAGetPublicKey = p6;
p_hwcrhk_RSAUnloadKey = p7;
# endif
p_hwcrhk_RandomBytes = p8;
p_hwcrhk_ModExpCRT = p9;
/*
* Check if the application decided to support dynamic locks, and if it
* does, use them.
*/
if (disable_mutex_callbacks == 0) {
if (CRYPTO_get_dynlock_create_callback() != NULL &&
CRYPTO_get_dynlock_lock_callback() != NULL &&
CRYPTO_get_dynlock_destroy_callback() != NULL) {
hwcrhk_globals.mutex_init = hwcrhk_mutex_init;
hwcrhk_globals.mutex_acquire = hwcrhk_mutex_lock;
hwcrhk_globals.mutex_release = hwcrhk_mutex_unlock;
hwcrhk_globals.mutex_destroy = hwcrhk_mutex_destroy;
}
}
/*
* Try and get a context - if not, we may have a DSO but no accelerator!
*/
if (!get_context(&hwcrhk_context, &password_context)) {
HWCRHKerr(HWCRHK_F_HWCRHK_INIT, HWCRHK_R_UNIT_FAILURE);
goto err;
}
/* Everything's fine. */
# ifndef OPENSSL_NO_RSA
if (hndidx_rsa == -1)
hndidx_rsa = RSA_get_ex_new_index(0,
"nFast HWCryptoHook RSA key handle",
NULL, NULL, NULL);
# endif
return 1;
err:
if (hwcrhk_dso)
DSO_free(hwcrhk_dso);
hwcrhk_dso = NULL;
p_hwcrhk_Init = NULL;
p_hwcrhk_Finish = NULL;
p_hwcrhk_ModExp = NULL;
# ifndef OPENSSL_NO_RSA
p_hwcrhk_RSA = NULL;
p_hwcrhk_RSALoadKey = NULL;
p_hwcrhk_RSAGetPublicKey = NULL;
p_hwcrhk_RSAUnloadKey = NULL;
# endif
p_hwcrhk_ModExpCRT = NULL;
p_hwcrhk_RandomBytes = NULL;
return 0;
}
static int hwcrhk_finish(ENGINE *e)
{
int to_return = 1;
free_HWCRHK_LIBNAME();
if (hwcrhk_dso == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_FINISH, HWCRHK_R_NOT_LOADED);
to_return = 0;
goto err;
}
release_context(hwcrhk_context);
if (!DSO_free(hwcrhk_dso)) {
HWCRHKerr(HWCRHK_F_HWCRHK_FINISH, HWCRHK_R_DSO_FAILURE);
to_return = 0;
goto err;
}
err:
if (logstream)
BIO_free(logstream);
hwcrhk_dso = NULL;
p_hwcrhk_Init = NULL;
p_hwcrhk_Finish = NULL;
p_hwcrhk_ModExp = NULL;
# ifndef OPENSSL_NO_RSA
p_hwcrhk_RSA = NULL;
p_hwcrhk_RSALoadKey = NULL;
p_hwcrhk_RSAGetPublicKey = NULL;
p_hwcrhk_RSAUnloadKey = NULL;
# endif
p_hwcrhk_ModExpCRT = NULL;
p_hwcrhk_RandomBytes = NULL;
return to_return;
}
static int hwcrhk_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
int to_return = 1;
switch (cmd) {
case HWCRHK_CMD_SO_PATH:
if (hwcrhk_dso) {
HWCRHKerr(HWCRHK_F_HWCRHK_CTRL, HWCRHK_R_ALREADY_LOADED);
return 0;
}
if (p == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_CTRL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return set_HWCRHK_LIBNAME((const char *)p);
case ENGINE_CTRL_SET_LOGSTREAM:
{
BIO *bio = (BIO *)p;
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
if (logstream) {
BIO_free(logstream);
logstream = NULL;
}
if (CRYPTO_add(&bio->references, 1, CRYPTO_LOCK_BIO) > 1)
logstream = bio;
else
HWCRHKerr(HWCRHK_F_HWCRHK_CTRL, HWCRHK_R_BIO_WAS_FREED);
}
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
case ENGINE_CTRL_SET_PASSWORD_CALLBACK:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
password_context.password_callback = (pem_password_cb *)f;
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
case ENGINE_CTRL_SET_USER_INTERFACE:
case HWCRHK_CMD_SET_USER_INTERFACE:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
password_context.ui_method = (UI_METHOD *)p;
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
case ENGINE_CTRL_SET_CALLBACK_DATA:
case HWCRHK_CMD_SET_CALLBACK_DATA:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
password_context.callback_data = p;
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
/*
* this enables or disables the "SimpleForkCheck" flag used in the
* initialisation structure.
*/
case ENGINE_CTRL_CHIL_SET_FORKCHECK:
case HWCRHK_CMD_FORK_CHECK:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
if (i)
hwcrhk_globals.flags |= HWCryptoHook_InitFlags_SimpleForkCheck;
else
hwcrhk_globals.flags &= ~HWCryptoHook_InitFlags_SimpleForkCheck;
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
/*
* This will prevent the initialisation function from "installing"
* the mutex-handling callbacks, even if they are available from
* within the library (or were provided to the library from the
* calling application). This is to remove any baggage for
* applications not using multithreading.
*/
case ENGINE_CTRL_CHIL_NO_LOCKING:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
disable_mutex_callbacks = 1;
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
case HWCRHK_CMD_THREAD_LOCKING:
CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
disable_mutex_callbacks = ((i == 0) ? 0 : 1);
CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
break;
/* The command isn't understood by this engine */
default:
HWCRHKerr(HWCRHK_F_HWCRHK_CTRL,
HWCRHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
to_return = 0;
break;
}
return to_return;
}
static EVP_PKEY *hwcrhk_load_privkey(ENGINE *eng, const char *key_id,
UI_METHOD *ui_method,
void *callback_data)
{
# ifndef OPENSSL_NO_RSA
RSA *rtmp = NULL;
# endif
EVP_PKEY *res = NULL;
# ifndef OPENSSL_NO_RSA
HWCryptoHook_MPI e, n;
HWCryptoHook_RSAKeyHandle *hptr;
# endif
# if !defined(OPENSSL_NO_RSA)
char tempbuf[1024];
HWCryptoHook_ErrMsgBuf rmsg;
HWCryptoHook_PassphraseContext ppctx;
# endif
# if !defined(OPENSSL_NO_RSA)
rmsg.buf = tempbuf;
rmsg.size = sizeof(tempbuf);
# endif
if (!hwcrhk_context) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_NOT_INITIALISED);
goto err;
}
# ifndef OPENSSL_NO_RSA
hptr = OPENSSL_malloc(sizeof(HWCryptoHook_RSAKeyHandle));
if (!hptr) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
ppctx.ui_method = ui_method;
ppctx.callback_data = callback_data;
if (p_hwcrhk_RSALoadKey(hwcrhk_context, key_id, hptr, &rmsg, &ppctx)) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_CHIL_ERROR);
ERR_add_error_data(1, rmsg.buf);
goto err;
}
if (!*hptr) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_NO_KEY);
goto err;
}
# endif
# ifndef OPENSSL_NO_RSA
rtmp = RSA_new_method(eng);
if (rtmp == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
RSA_set_ex_data(rtmp, hndidx_rsa, (char *)hptr);
rtmp->e = BN_new();
rtmp->n = BN_new();
if (rtmp->e == NULL || rtmp->n == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
rtmp->flags |= RSA_FLAG_EXT_PKEY;
MPI2BN(rtmp->e, e);
MPI2BN(rtmp->n, n);
if (p_hwcrhk_RSAGetPublicKey(*hptr, &n, &e, &rmsg)
!= HWCRYPTOHOOK_ERROR_MPISIZE) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_CHIL_ERROR);
ERR_add_error_data(1, rmsg.buf);
goto err;
}
if (bn_expand2(rtmp->e, e.size / sizeof(BN_ULONG)) == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
if (bn_expand2(rtmp->n, n.size / sizeof(BN_ULONG)) == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
MPI2BN(rtmp->e, e);
MPI2BN(rtmp->n, n);
if (p_hwcrhk_RSAGetPublicKey(*hptr, &n, &e, &rmsg)) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_CHIL_ERROR);
ERR_add_error_data(1, rmsg.buf);
goto err;
}
rtmp->e->top = e.size / sizeof(BN_ULONG);
bn_fix_top(rtmp->e);
rtmp->n->top = n.size / sizeof(BN_ULONG);
bn_fix_top(rtmp->n);
res = EVP_PKEY_new();
if (res == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY, HWCRHK_R_CHIL_ERROR);
goto err;
}
EVP_PKEY_assign_RSA(res, rtmp);
# endif
if (!res)
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PRIVKEY,
HWCRHK_R_PRIVATE_KEY_ALGORITHMS_DISABLED);
return res;
err:
# ifndef OPENSSL_NO_RSA
if (rtmp)
RSA_free(rtmp);
# endif
return NULL;
}
static EVP_PKEY *hwcrhk_load_pubkey(ENGINE *eng, const char *key_id,
UI_METHOD *ui_method, void *callback_data)
{
EVP_PKEY *res = NULL;
# ifndef OPENSSL_NO_RSA
res = hwcrhk_load_privkey(eng, key_id, ui_method, callback_data);
# endif
if (res)
switch (res->type) {
# ifndef OPENSSL_NO_RSA
case EVP_PKEY_RSA:
{
RSA *rsa = NULL;
CRYPTO_w_lock(CRYPTO_LOCK_EVP_PKEY);
rsa = res->pkey.rsa;
res->pkey.rsa = RSA_new();
res->pkey.rsa->n = rsa->n;
res->pkey.rsa->e = rsa->e;
rsa->n = NULL;
rsa->e = NULL;
CRYPTO_w_unlock(CRYPTO_LOCK_EVP_PKEY);
RSA_free(rsa);
}
break;
# endif
default:
HWCRHKerr(HWCRHK_F_HWCRHK_LOAD_PUBKEY,
HWCRHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
goto err;
}
return res;
err:
if (res)
EVP_PKEY_free(res);
return NULL;
}
/* A little mod_exp */
static int hwcrhk_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx)
{
char tempbuf[1024];
HWCryptoHook_ErrMsgBuf rmsg;
/*
* Since HWCryptoHook_MPI is pretty compatible with BIGNUM's, we use them
* directly, plus a little macro magic. We only thing we need to make
* sure of is that enough space is allocated.
*/
HWCryptoHook_MPI m_a, m_p, m_n, m_r;
int to_return, ret;
to_return = 0; /* expect failure */
rmsg.buf = tempbuf;
rmsg.size = sizeof(tempbuf);
if (!hwcrhk_context) {
HWCRHKerr(HWCRHK_F_HWCRHK_MOD_EXP, HWCRHK_R_NOT_INITIALISED);
goto err;
}
/* Prepare the params */
if (bn_expand2(r, m->top) == NULL) { /* Check for error !! */
HWCRHKerr(HWCRHK_F_HWCRHK_MOD_EXP, ERR_R_MALLOC_FAILURE);
goto err;
}
BN2MPI(m_a, a);
BN2MPI(m_p, p);
BN2MPI(m_n, m);
MPI2BN(r, m_r);
/* Perform the operation */
ret = p_hwcrhk_ModExp(hwcrhk_context, m_a, m_p, m_n, &m_r, &rmsg);
/* Convert the response */
r->top = m_r.size / sizeof(BN_ULONG);
bn_fix_top(r);
if (ret < 0) {
/*
* FIXME: When this error is returned, HWCryptoHook is telling us
* that falling back to software computation might be a good thing.
*/
if (ret == HWCRYPTOHOOK_ERROR_FALLBACK) {
HWCRHKerr(HWCRHK_F_HWCRHK_MOD_EXP, HWCRHK_R_REQUEST_FALLBACK);
} else {
HWCRHKerr(HWCRHK_F_HWCRHK_MOD_EXP, HWCRHK_R_REQUEST_FAILED);
}
ERR_add_error_data(1, rmsg.buf);
goto err;
}
to_return = 1;
err:
return to_return;
}
# ifndef OPENSSL_NO_RSA
static int hwcrhk_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx)
{
char tempbuf[1024];
HWCryptoHook_ErrMsgBuf rmsg;
HWCryptoHook_RSAKeyHandle *hptr;
int to_return = 0, ret;
rmsg.buf = tempbuf;
rmsg.size = sizeof(tempbuf);
if (!hwcrhk_context) {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP, HWCRHK_R_NOT_INITIALISED);
goto err;
}
/*
* This provides support for nForce keys. Since that's opaque data all
* we do is provide a handle to the proper key and let HWCryptoHook take
* care of the rest.
*/
if ((hptr =
(HWCryptoHook_RSAKeyHandle *) RSA_get_ex_data(rsa, hndidx_rsa))
!= NULL) {
HWCryptoHook_MPI m_a, m_r;
if (!rsa->n) {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_MISSING_KEY_COMPONENTS);
goto err;
}
/* Prepare the params */
if (bn_expand2(r, rsa->n->top) == NULL) { /* Check for error !! */
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP, ERR_R_MALLOC_FAILURE);
goto err;
}
BN2MPI(m_a, I);
MPI2BN(r, m_r);
/* Perform the operation */
ret = p_hwcrhk_RSA(m_a, *hptr, &m_r, &rmsg);
/* Convert the response */
r->top = m_r.size / sizeof(BN_ULONG);
bn_fix_top(r);
if (ret < 0) {
/*
* FIXME: When this error is returned, HWCryptoHook is telling us
* that falling back to software computation might be a good
* thing.
*/
if (ret == HWCRYPTOHOOK_ERROR_FALLBACK) {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_REQUEST_FALLBACK);
} else {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_REQUEST_FAILED);
}
ERR_add_error_data(1, rmsg.buf);
goto err;
}
} else {
HWCryptoHook_MPI m_a, m_p, m_q, m_dmp1, m_dmq1, m_iqmp, m_r;
if (!rsa->p || !rsa->q || !rsa->dmp1 || !rsa->dmq1 || !rsa->iqmp) {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_MISSING_KEY_COMPONENTS);
goto err;
}
/* Prepare the params */
if (bn_expand2(r, rsa->n->top) == NULL) { /* Check for error !! */
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP, ERR_R_MALLOC_FAILURE);
goto err;
}
BN2MPI(m_a, I);
BN2MPI(m_p, rsa->p);
BN2MPI(m_q, rsa->q);
BN2MPI(m_dmp1, rsa->dmp1);
BN2MPI(m_dmq1, rsa->dmq1);
BN2MPI(m_iqmp, rsa->iqmp);
MPI2BN(r, m_r);
/* Perform the operation */
ret = p_hwcrhk_ModExpCRT(hwcrhk_context, m_a, m_p, m_q,
m_dmp1, m_dmq1, m_iqmp, &m_r, &rmsg);
/* Convert the response */
r->top = m_r.size / sizeof(BN_ULONG);
bn_fix_top(r);
if (ret < 0) {
/*
* FIXME: When this error is returned, HWCryptoHook is telling us
* that falling back to software computation might be a good
* thing.
*/
if (ret == HWCRYPTOHOOK_ERROR_FALLBACK) {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_REQUEST_FALLBACK);
} else {
HWCRHKerr(HWCRHK_F_HWCRHK_RSA_MOD_EXP,
HWCRHK_R_REQUEST_FAILED);
}
ERR_add_error_data(1, rmsg.buf);
goto err;
}
}
/*
* If we're here, we must be here with some semblance of success :-)
*/
to_return = 1;
err:
return to_return;
}
# endif
# ifndef OPENSSL_NO_RSA
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int hwcrhk_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return hwcrhk_mod_exp(r, a, p, m, ctx);
}
static int hwcrhk_rsa_finish(RSA *rsa)
{
HWCryptoHook_RSAKeyHandle *hptr;
hptr = RSA_get_ex_data(rsa, hndidx_rsa);
if (hptr) {
p_hwcrhk_RSAUnloadKey(*hptr, NULL);
OPENSSL_free(hptr);
RSA_set_ex_data(rsa, hndidx_rsa, NULL);
}
return 1;
}
# endif
# ifndef OPENSSL_NO_DH
/* This function is aliased to mod_exp (with the dh and mont dropped). */
static int hwcrhk_mod_exp_dh(const DH *dh, BIGNUM *r,
const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
return hwcrhk_mod_exp(r, a, p, m, ctx);
}
# endif
/* Random bytes are good */
static int hwcrhk_rand_bytes(unsigned char *buf, int num)
{
char tempbuf[1024];
HWCryptoHook_ErrMsgBuf rmsg;
int to_return = 0; /* assume failure */
int ret;
rmsg.buf = tempbuf;
rmsg.size = sizeof(tempbuf);
if (!hwcrhk_context) {
HWCRHKerr(HWCRHK_F_HWCRHK_RAND_BYTES, HWCRHK_R_NOT_INITIALISED);
goto err;
}
ret = p_hwcrhk_RandomBytes(hwcrhk_context, buf, num, &rmsg);
if (ret < 0) {
/*
* FIXME: When this error is returned, HWCryptoHook is telling us
* that falling back to software computation might be a good thing.
*/
if (ret == HWCRYPTOHOOK_ERROR_FALLBACK) {
HWCRHKerr(HWCRHK_F_HWCRHK_RAND_BYTES, HWCRHK_R_REQUEST_FALLBACK);
} else {
HWCRHKerr(HWCRHK_F_HWCRHK_RAND_BYTES, HWCRHK_R_REQUEST_FAILED);
}
ERR_add_error_data(1, rmsg.buf);
goto err;
}
to_return = 1;
err:
return to_return;
}
static int hwcrhk_rand_status(void)
{
return 1;
}
/*
* Mutex calls: since the HWCryptoHook model closely follows the POSIX model
* these just wrap the POSIX functions and add some logging.
*/
static int hwcrhk_mutex_init(HWCryptoHook_Mutex * mt,
HWCryptoHook_CallerContext * cactx)
{
mt->lockid = CRYPTO_get_new_dynlockid();
if (mt->lockid == 0)
return 1; /* failure */
return 0; /* success */
}
static int hwcrhk_mutex_lock(HWCryptoHook_Mutex * mt)
{
CRYPTO_w_lock(mt->lockid);
return 0;
}
static void hwcrhk_mutex_unlock(HWCryptoHook_Mutex * mt)
{
CRYPTO_w_unlock(mt->lockid);
}
static void hwcrhk_mutex_destroy(HWCryptoHook_Mutex * mt)
{
CRYPTO_destroy_dynlockid(mt->lockid);
}
static int hwcrhk_get_pass(const char *prompt_info,
int *len_io, char *buf,
HWCryptoHook_PassphraseContext * ppctx,
HWCryptoHook_CallerContext * cactx)
{
pem_password_cb *callback = NULL;
void *callback_data = NULL;
UI_METHOD *ui_method = NULL;
/*
* Despite what the documentation says prompt_info can be an empty
* string.
*/
if (prompt_info && !*prompt_info)
prompt_info = NULL;
if (cactx) {
if (cactx->ui_method)
ui_method = cactx->ui_method;
if (cactx->password_callback)
callback = cactx->password_callback;
if (cactx->callback_data)
callback_data = cactx->callback_data;
}
if (ppctx) {
if (ppctx->ui_method) {
ui_method = ppctx->ui_method;
callback = NULL;
}
if (ppctx->callback_data)
callback_data = ppctx->callback_data;
}
if (callback == NULL && ui_method == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_GET_PASS, HWCRHK_R_NO_CALLBACK);
return -1;
}
if (ui_method) {
UI *ui = UI_new_method(ui_method);
if (ui) {
int ok;
char *prompt = UI_construct_prompt(ui,
"pass phrase", prompt_info);
ok = UI_add_input_string(ui, prompt,
UI_INPUT_FLAG_DEFAULT_PWD,
buf, 0, (*len_io) - 1);
UI_add_user_data(ui, callback_data);
UI_ctrl(ui, UI_CTRL_PRINT_ERRORS, 1, 0, 0);
if (ok >= 0)
do {
ok = UI_process(ui);
}
while (ok < 0 && UI_ctrl(ui, UI_CTRL_IS_REDOABLE, 0, 0, 0));
if (ok >= 0)
*len_io = strlen(buf);
UI_free(ui);
OPENSSL_free(prompt);
}
} else {
*len_io = callback(buf, *len_io, 0, callback_data);
}
if (!*len_io)
return -1;
return 0;
}
static int hwcrhk_insert_card(const char *prompt_info,
const char *wrong_info,
HWCryptoHook_PassphraseContext * ppctx,
HWCryptoHook_CallerContext * cactx)
{
int ok = -1;
UI *ui;
void *callback_data = NULL;
UI_METHOD *ui_method = NULL;
if (cactx) {
if (cactx->ui_method)
ui_method = cactx->ui_method;
if (cactx->callback_data)
callback_data = cactx->callback_data;
}
if (ppctx) {
if (ppctx->ui_method)
ui_method = ppctx->ui_method;
if (ppctx->callback_data)
callback_data = ppctx->callback_data;
}
if (ui_method == NULL) {
HWCRHKerr(HWCRHK_F_HWCRHK_INSERT_CARD, HWCRHK_R_NO_CALLBACK);
return -1;
}
ui = UI_new_method(ui_method);
if (ui) {
char answer = '\0';
char buf[BUFSIZ];
/*
* Despite what the documentation says wrong_info can be an empty
* string.
*/
if (wrong_info && *wrong_info)
BIO_snprintf(buf, sizeof(buf) - 1,
"Current card: \"%s\"\n", wrong_info);
else
buf[0] = 0;
ok = UI_dup_info_string(ui, buf);
if (ok >= 0 && prompt_info) {
BIO_snprintf(buf, sizeof(buf) - 1,
"Insert card \"%s\"", prompt_info);
ok = UI_dup_input_boolean(ui, buf,
"\n then hit <enter> or C<enter> to cancel\n",
"\r\n", "Cc", UI_INPUT_FLAG_ECHO,
&answer);
}
UI_add_user_data(ui, callback_data);
if (ok >= 0)
ok = UI_process(ui);
UI_free(ui);
if (ok == -2 || (ok >= 0 && answer == 'C'))
ok = 1;
else if (ok < 0)
ok = -1;
else
ok = 0;
}
return ok;
}
static void hwcrhk_log_message(void *logstr, const char *message)
{
BIO *lstream = NULL;
CRYPTO_w_lock(CRYPTO_LOCK_BIO);
if (logstr)
lstream = *(BIO **)logstr;
if (lstream) {
BIO_printf(lstream, "%s\n", message);
}
CRYPTO_w_unlock(CRYPTO_LOCK_BIO);
}
/*
* This stuff is needed if this ENGINE is being compiled into a
* self-contained shared-library.
*/
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_fn(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_hwcrhk_id) != 0) &&
(strcmp(id, engine_hwcrhk_id_alt) != 0))
return 0;
if (!bind_helper(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_fn)
# endif /* OPENSSL_NO_DYNAMIC_ENGINE */
# endif /* !OPENSSL_NO_HW_CHIL */
#endif /* !OPENSSL_NO_HW */