openssl1.0/crypto/aes/asm/aes-s390x.pl
2019-08-09 10:00:55 +02:00

2229 lines
52 KiB
Perl

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# AES for s390x.
# April 2007.
#
# Software performance improvement over gcc-generated code is ~70% and
# in absolute terms is ~73 cycles per byte processed with 128-bit key.
# You're likely to exclaim "why so slow?" Keep in mind that z-CPUs are
# *strictly* in-order execution and issued instruction [in this case
# load value from memory is critical] has to complete before execution
# flow proceeds. S-boxes are compressed to 2KB[+256B].
#
# As for hardware acceleration support. It's basically a "teaser," as
# it can and should be improved in several ways. Most notably support
# for CBC is not utilized, nor multiple blocks are ever processed.
# Then software key schedule can be postponed till hardware support
# detection... Performance improvement over assembler is reportedly
# ~2.5x, but can reach >8x [naturally on larger chunks] if proper
# support is implemented.
# May 2007.
#
# Implement AES_set_[en|de]crypt_key. Key schedule setup is avoided
# for 128-bit keys, if hardware support is detected.
# Januray 2009.
#
# Add support for hardware AES192/256 and reschedule instructions to
# minimize/avoid Address Generation Interlock hazard and to favour
# dual-issue z10 pipeline. This gave ~25% improvement on z10 and
# almost 50% on z9. The gain is smaller on z10, because being dual-
# issue z10 makes it improssible to eliminate the interlock condition:
# critial path is not long enough. Yet it spends ~24 cycles per byte
# processed with 128-bit key.
#
# Unlike previous version hardware support detection takes place only
# at the moment of key schedule setup, which is denoted in key->rounds.
# This is done, because deferred key setup can't be made MT-safe, not
# for keys longer than 128 bits.
#
# Add AES_cbc_encrypt, which gives incredible performance improvement,
# it was measured to be ~6.6x. It's less than previously mentioned 8x,
# because software implementation was optimized.
# May 2010.
#
# Add AES_ctr32_encrypt. If hardware-assisted, it provides up to 4.3x
# performance improvement over "generic" counter mode routine relying
# on single-block, also hardware-assisted, AES_encrypt. "Up to" refers
# to the fact that exact throughput value depends on current stack
# frame alignment within 4KB page. In worst case you get ~75% of the
# maximum, but *on average* it would be as much as ~98%. Meaning that
# worst case is unlike, it's like hitting ravine on plateau.
# November 2010.
#
# Adapt for -m31 build. If kernel supports what's called "highgprs"
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
# instructions and achieve "64-bit" performance even in 31-bit legacy
# application context. The feature is not specific to any particular
# processor, as long as it's "z-CPU". Latter implies that the code
# remains z/Architecture specific. On z990 it was measured to perform
# 2x better than code generated by gcc 4.3.
# December 2010.
#
# Add support for z196 "cipher message with counter" instruction.
# Note however that it's disengaged, because it was measured to
# perform ~12% worse than vanilla km-based code...
# February 2011.
#
# Add AES_xts_[en|de]crypt. This includes support for z196 km-xts-aes
# instructions, which deliver ~70% improvement at 8KB block size over
# vanilla km-based code, 37% - at most like 512-bytes block size.
$flavour = shift;
if ($flavour =~ /3[12]/) {
$SIZE_T=4;
$g="";
} else {
$SIZE_T=8;
$g="g";
}
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$softonly=0; # allow hardware support
$t0="%r0"; $mask="%r0";
$t1="%r1";
$t2="%r2"; $inp="%r2";
$t3="%r3"; $out="%r3"; $bits="%r3";
$key="%r4";
$i1="%r5";
$i2="%r6";
$i3="%r7";
$s0="%r8";
$s1="%r9";
$s2="%r10";
$s3="%r11";
$tbl="%r12";
$rounds="%r13";
$ra="%r14";
$sp="%r15";
$stdframe=16*$SIZE_T+4*8;
sub _data_word()
{ my $i;
while(defined($i=shift)) { $code.=sprintf".long\t0x%08x,0x%08x\n",$i,$i; }
}
$code=<<___;
.text
.type AES_Te,\@object
.align 256
AES_Te:
___
&_data_word(
0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d,
0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554,
0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a,
0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87,
0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea,
0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b,
0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f,
0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108,
0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e,
0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5,
0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f,
0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e,
0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce,
0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497,
0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed,
0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b,
0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16,
0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594,
0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3,
0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a,
0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163,
0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d,
0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739,
0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47,
0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f,
0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883,
0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76,
0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e,
0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6,
0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b,
0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0,
0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25,
0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72,
0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651,
0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85,
0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa,
0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0,
0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9,
0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7,
0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920,
0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17,
0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8,
0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a);
$code.=<<___;
# Te4[256]
.byte 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5
.byte 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76
.byte 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0
.byte 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0
.byte 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc
.byte 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15
.byte 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a
.byte 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75
.byte 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0
.byte 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84
.byte 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b
.byte 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf
.byte 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85
.byte 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8
.byte 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5
.byte 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2
.byte 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17
.byte 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73
.byte 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88
.byte 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb
.byte 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c
.byte 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79
.byte 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9
.byte 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08
.byte 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6
.byte 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a
.byte 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e
.byte 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e
.byte 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94
.byte 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf
.byte 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68
.byte 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
# rcon[]
.long 0x01000000, 0x02000000, 0x04000000, 0x08000000
.long 0x10000000, 0x20000000, 0x40000000, 0x80000000
.long 0x1B000000, 0x36000000, 0, 0, 0, 0, 0, 0
.align 256
.size AES_Te,.-AES_Te
# void AES_encrypt(const unsigned char *inp, unsigned char *out,
# const AES_KEY *key) {
.globl AES_encrypt
.type AES_encrypt,\@function
AES_encrypt:
___
$code.=<<___ if (!$softonly);
l %r0,240($key)
lhi %r1,16
clr %r0,%r1
jl .Lesoft
la %r1,0($key)
#la %r2,0($inp)
la %r4,0($out)
lghi %r3,16 # single block length
.long 0xb92e0042 # km %r4,%r2
brc 1,.-4 # can this happen?
br %r14
.align 64
.Lesoft:
___
$code.=<<___;
stm${g} %r3,$ra,3*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
llgf $s2,8($inp)
llgf $s3,12($inp)
larl $tbl,AES_Te
bras $ra,_s390x_AES_encrypt
l${g} $out,3*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_encrypt,.-AES_encrypt
.type _s390x_AES_encrypt,\@function
.align 16
_s390x_AES_encrypt:
st${g} $ra,15*$SIZE_T($sp)
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
x $s3,12($key)
l $rounds,240($key)
llill $mask,`0xff<<3`
aghi $rounds,-1
j .Lenc_loop
.align 16
.Lenc_loop:
sllg $t1,$s0,`0+3`
srlg $t2,$s0,`8-3`
srlg $t3,$s0,`16-3`
srl $s0,`24-3`
nr $s0,$mask
ngr $t1,$mask
nr $t2,$mask
nr $t3,$mask
srlg $i1,$s1,`16-3` # i0
sllg $i2,$s1,`0+3`
srlg $i3,$s1,`8-3`
srl $s1,`24-3`
nr $i1,$mask
nr $s1,$mask
ngr $i2,$mask
nr $i3,$mask
l $s0,0($s0,$tbl) # Te0[s0>>24]
l $t1,1($t1,$tbl) # Te3[s0>>0]
l $t2,2($t2,$tbl) # Te2[s0>>8]
l $t3,3($t3,$tbl) # Te1[s0>>16]
x $s0,3($i1,$tbl) # Te1[s1>>16]
l $s1,0($s1,$tbl) # Te0[s1>>24]
x $t2,1($i2,$tbl) # Te3[s1>>0]
x $t3,2($i3,$tbl) # Te2[s1>>8]
srlg $i1,$s2,`8-3` # i0
srlg $i2,$s2,`16-3` # i1
nr $i1,$mask
nr $i2,$mask
sllg $i3,$s2,`0+3`
srl $s2,`24-3`
nr $s2,$mask
ngr $i3,$mask
xr $s1,$t1
srlg $ra,$s3,`8-3` # i1
sllg $t1,$s3,`0+3` # i0
nr $ra,$mask
la $key,16($key)
ngr $t1,$mask
x $s0,2($i1,$tbl) # Te2[s2>>8]
x $s1,3($i2,$tbl) # Te1[s2>>16]
l $s2,0($s2,$tbl) # Te0[s2>>24]
x $t3,1($i3,$tbl) # Te3[s2>>0]
srlg $i3,$s3,`16-3` # i2
xr $s2,$t2
srl $s3,`24-3`
nr $i3,$mask
nr $s3,$mask
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
x $t3,12($key)
x $s0,1($t1,$tbl) # Te3[s3>>0]
x $s1,2($ra,$tbl) # Te2[s3>>8]
x $s2,3($i3,$tbl) # Te1[s3>>16]
l $s3,0($s3,$tbl) # Te0[s3>>24]
xr $s3,$t3
brct $rounds,.Lenc_loop
.align 16
sllg $t1,$s0,`0+3`
srlg $t2,$s0,`8-3`
ngr $t1,$mask
srlg $t3,$s0,`16-3`
srl $s0,`24-3`
nr $s0,$mask
nr $t2,$mask
nr $t3,$mask
srlg $i1,$s1,`16-3` # i0
sllg $i2,$s1,`0+3`
ngr $i2,$mask
srlg $i3,$s1,`8-3`
srl $s1,`24-3`
nr $i1,$mask
nr $s1,$mask
nr $i3,$mask
llgc $s0,2($s0,$tbl) # Te4[s0>>24]
llgc $t1,2($t1,$tbl) # Te4[s0>>0]
sll $s0,24
llgc $t2,2($t2,$tbl) # Te4[s0>>8]
llgc $t3,2($t3,$tbl) # Te4[s0>>16]
sll $t2,8
sll $t3,16
llgc $i1,2($i1,$tbl) # Te4[s1>>16]
llgc $s1,2($s1,$tbl) # Te4[s1>>24]
llgc $i2,2($i2,$tbl) # Te4[s1>>0]
llgc $i3,2($i3,$tbl) # Te4[s1>>8]
sll $i1,16
sll $s1,24
sll $i3,8
or $s0,$i1
or $s1,$t1
or $t2,$i2
or $t3,$i3
srlg $i1,$s2,`8-3` # i0
srlg $i2,$s2,`16-3` # i1
nr $i1,$mask
nr $i2,$mask
sllg $i3,$s2,`0+3`
srl $s2,`24-3`
ngr $i3,$mask
nr $s2,$mask
sllg $t1,$s3,`0+3` # i0
srlg $ra,$s3,`8-3` # i1
ngr $t1,$mask
llgc $i1,2($i1,$tbl) # Te4[s2>>8]
llgc $i2,2($i2,$tbl) # Te4[s2>>16]
sll $i1,8
llgc $s2,2($s2,$tbl) # Te4[s2>>24]
llgc $i3,2($i3,$tbl) # Te4[s2>>0]
sll $i2,16
nr $ra,$mask
sll $s2,24
or $s0,$i1
or $s1,$i2
or $s2,$t2
or $t3,$i3
srlg $i3,$s3,`16-3` # i2
srl $s3,`24-3`
nr $i3,$mask
nr $s3,$mask
l $t0,16($key)
l $t2,20($key)
llgc $i1,2($t1,$tbl) # Te4[s3>>0]
llgc $i2,2($ra,$tbl) # Te4[s3>>8]
llgc $i3,2($i3,$tbl) # Te4[s3>>16]
llgc $s3,2($s3,$tbl) # Te4[s3>>24]
sll $i2,8
sll $i3,16
sll $s3,24
or $s0,$i1
or $s1,$i2
or $s2,$i3
or $s3,$t3
l${g} $ra,15*$SIZE_T($sp)
xr $s0,$t0
xr $s1,$t2
x $s2,24($key)
x $s3,28($key)
br $ra
.size _s390x_AES_encrypt,.-_s390x_AES_encrypt
___
$code.=<<___;
.type AES_Td,\@object
.align 256
AES_Td:
___
&_data_word(
0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96,
0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393,
0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25,
0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f,
0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1,
0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6,
0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da,
0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844,
0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd,
0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4,
0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45,
0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94,
0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7,
0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a,
0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5,
0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c,
0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1,
0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a,
0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75,
0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051,
0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46,
0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff,
0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77,
0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb,
0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000,
0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e,
0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927,
0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a,
0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e,
0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16,
0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d,
0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8,
0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd,
0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34,
0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163,
0xd731dcca, 0x42638510, 0x13972240, 0x84c61120,
0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d,
0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0,
0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422,
0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef,
0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36,
0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4,
0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662,
0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5,
0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3,
0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b,
0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8,
0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6,
0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6,
0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0,
0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815,
0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f,
0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df,
0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f,
0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e,
0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713,
0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89,
0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c,
0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf,
0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86,
0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f,
0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541,
0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190,
0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742);
$code.=<<___;
# Td4[256]
.byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38
.byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
.byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87
.byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
.byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d
.byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
.byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2
.byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
.byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16
.byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
.byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda
.byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
.byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a
.byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
.byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02
.byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
.byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea
.byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
.byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85
.byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
.byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89
.byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
.byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20
.byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
.byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31
.byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
.byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d
.byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
.byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0
.byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
.byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26
.byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
.size AES_Td,.-AES_Td
# void AES_decrypt(const unsigned char *inp, unsigned char *out,
# const AES_KEY *key) {
.globl AES_decrypt
.type AES_decrypt,\@function
AES_decrypt:
___
$code.=<<___ if (!$softonly);
l %r0,240($key)
lhi %r1,16
clr %r0,%r1
jl .Ldsoft
la %r1,0($key)
#la %r2,0($inp)
la %r4,0($out)
lghi %r3,16 # single block length
.long 0xb92e0042 # km %r4,%r2
brc 1,.-4 # can this happen?
br %r14
.align 64
.Ldsoft:
___
$code.=<<___;
stm${g} %r3,$ra,3*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
llgf $s2,8($inp)
llgf $s3,12($inp)
larl $tbl,AES_Td
bras $ra,_s390x_AES_decrypt
l${g} $out,3*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_decrypt,.-AES_decrypt
.type _s390x_AES_decrypt,\@function
.align 16
_s390x_AES_decrypt:
st${g} $ra,15*$SIZE_T($sp)
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
x $s3,12($key)
l $rounds,240($key)
llill $mask,`0xff<<3`
aghi $rounds,-1
j .Ldec_loop
.align 16
.Ldec_loop:
srlg $t1,$s0,`16-3`
srlg $t2,$s0,`8-3`
sllg $t3,$s0,`0+3`
srl $s0,`24-3`
nr $s0,$mask
nr $t1,$mask
nr $t2,$mask
ngr $t3,$mask
sllg $i1,$s1,`0+3` # i0
srlg $i2,$s1,`16-3`
srlg $i3,$s1,`8-3`
srl $s1,`24-3`
ngr $i1,$mask
nr $s1,$mask
nr $i2,$mask
nr $i3,$mask
l $s0,0($s0,$tbl) # Td0[s0>>24]
l $t1,3($t1,$tbl) # Td1[s0>>16]
l $t2,2($t2,$tbl) # Td2[s0>>8]
l $t3,1($t3,$tbl) # Td3[s0>>0]
x $s0,1($i1,$tbl) # Td3[s1>>0]
l $s1,0($s1,$tbl) # Td0[s1>>24]
x $t2,3($i2,$tbl) # Td1[s1>>16]
x $t3,2($i3,$tbl) # Td2[s1>>8]
srlg $i1,$s2,`8-3` # i0
sllg $i2,$s2,`0+3` # i1
srlg $i3,$s2,`16-3`
srl $s2,`24-3`
nr $i1,$mask
ngr $i2,$mask
nr $s2,$mask
nr $i3,$mask
xr $s1,$t1
srlg $ra,$s3,`8-3` # i1
srlg $t1,$s3,`16-3` # i0
nr $ra,$mask
la $key,16($key)
nr $t1,$mask
x $s0,2($i1,$tbl) # Td2[s2>>8]
x $s1,1($i2,$tbl) # Td3[s2>>0]
l $s2,0($s2,$tbl) # Td0[s2>>24]
x $t3,3($i3,$tbl) # Td1[s2>>16]
sllg $i3,$s3,`0+3` # i2
srl $s3,`24-3`
ngr $i3,$mask
nr $s3,$mask
xr $s2,$t2
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
x $t3,12($key)
x $s0,3($t1,$tbl) # Td1[s3>>16]
x $s1,2($ra,$tbl) # Td2[s3>>8]
x $s2,1($i3,$tbl) # Td3[s3>>0]
l $s3,0($s3,$tbl) # Td0[s3>>24]
xr $s3,$t3
brct $rounds,.Ldec_loop
.align 16
l $t1,`2048+0`($tbl) # prefetch Td4
l $t2,`2048+64`($tbl)
l $t3,`2048+128`($tbl)
l $i1,`2048+192`($tbl)
llill $mask,0xff
srlg $i3,$s0,24 # i0
srlg $t1,$s0,16
srlg $t2,$s0,8
nr $s0,$mask # i3
nr $t1,$mask
srlg $i1,$s1,24
nr $t2,$mask
srlg $i2,$s1,16
srlg $ra,$s1,8
nr $s1,$mask # i0
nr $i2,$mask
nr $ra,$mask
llgc $i3,2048($i3,$tbl) # Td4[s0>>24]
llgc $t1,2048($t1,$tbl) # Td4[s0>>16]
llgc $t2,2048($t2,$tbl) # Td4[s0>>8]
sll $t1,16
llgc $t3,2048($s0,$tbl) # Td4[s0>>0]
sllg $s0,$i3,24
sll $t2,8
llgc $s1,2048($s1,$tbl) # Td4[s1>>0]
llgc $i1,2048($i1,$tbl) # Td4[s1>>24]
llgc $i2,2048($i2,$tbl) # Td4[s1>>16]
sll $i1,24
llgc $i3,2048($ra,$tbl) # Td4[s1>>8]
sll $i2,16
sll $i3,8
or $s0,$s1
or $t1,$i1
or $t2,$i2
or $t3,$i3
srlg $i1,$s2,8 # i0
srlg $i2,$s2,24
srlg $i3,$s2,16
nr $s2,$mask # i1
nr $i1,$mask
nr $i3,$mask
llgc $i1,2048($i1,$tbl) # Td4[s2>>8]
llgc $s1,2048($s2,$tbl) # Td4[s2>>0]
llgc $i2,2048($i2,$tbl) # Td4[s2>>24]
llgc $i3,2048($i3,$tbl) # Td4[s2>>16]
sll $i1,8
sll $i2,24
or $s0,$i1
sll $i3,16
or $t2,$i2
or $t3,$i3
srlg $i1,$s3,16 # i0
srlg $i2,$s3,8 # i1
srlg $i3,$s3,24
nr $s3,$mask # i2
nr $i1,$mask
nr $i2,$mask
l${g} $ra,15*$SIZE_T($sp)
or $s1,$t1
l $t0,16($key)
l $t1,20($key)
llgc $i1,2048($i1,$tbl) # Td4[s3>>16]
llgc $i2,2048($i2,$tbl) # Td4[s3>>8]
sll $i1,16
llgc $s2,2048($s3,$tbl) # Td4[s3>>0]
llgc $s3,2048($i3,$tbl) # Td4[s3>>24]
sll $i2,8
sll $s3,24
or $s0,$i1
or $s1,$i2
or $s2,$t2
or $s3,$t3
xr $s0,$t0
xr $s1,$t1
x $s2,24($key)
x $s3,28($key)
br $ra
.size _s390x_AES_decrypt,.-_s390x_AES_decrypt
___
$code.=<<___;
# void AES_set_encrypt_key(const unsigned char *in, int bits,
# AES_KEY *key) {
.globl private_AES_set_encrypt_key
.type private_AES_set_encrypt_key,\@function
.align 16
private_AES_set_encrypt_key:
_s390x_AES_set_encrypt_key:
lghi $t0,0
cl${g}r $inp,$t0
je .Lminus1
cl${g}r $key,$t0
je .Lminus1
lghi $t0,128
clr $bits,$t0
je .Lproceed
lghi $t0,192
clr $bits,$t0
je .Lproceed
lghi $t0,256
clr $bits,$t0
je .Lproceed
lghi %r2,-2
br %r14
.align 16
.Lproceed:
___
$code.=<<___ if (!$softonly);
# convert bits to km code, [128,192,256]->[18,19,20]
lhi %r5,-128
lhi %r0,18
ar %r5,$bits
srl %r5,6
ar %r5,%r0
larl %r1,OPENSSL_s390xcap_P
lg %r0,0(%r1)
tmhl %r0,0x4000 # check for message-security assist
jz .Lekey_internal
llihh %r0,0x8000
srlg %r0,%r0,0(%r5)
ng %r0,48(%r1) # check kmc capability vector
jz .Lekey_internal
lmg %r0,%r1,0($inp) # just copy 128 bits...
stmg %r0,%r1,0($key)
lhi %r0,192
cr $bits,%r0
jl 1f
lg %r1,16($inp)
stg %r1,16($key)
je 1f
lg %r1,24($inp)
stg %r1,24($key)
1: st $bits,236($key) # save bits [for debugging purposes]
lgr $t0,%r5
st %r5,240($key) # save km code
lghi %r2,0
br %r14
___
$code.=<<___;
.align 16
.Lekey_internal:
stm${g} %r4,%r13,4*$SIZE_T($sp) # all non-volatile regs and $key
larl $tbl,AES_Te+2048
llgf $s0,0($inp)
llgf $s1,4($inp)
llgf $s2,8($inp)
llgf $s3,12($inp)
st $s0,0($key)
st $s1,4($key)
st $s2,8($key)
st $s3,12($key)
lghi $t0,128
cr $bits,$t0
jne .Lnot128
llill $mask,0xff
lghi $t3,0 # i=0
lghi $rounds,10
st $rounds,240($key)
llgfr $t2,$s3 # temp=rk[3]
srlg $i1,$s3,8
srlg $i2,$s3,16
srlg $i3,$s3,24
nr $t2,$mask
nr $i1,$mask
nr $i2,$mask
.align 16
.L128_loop:
la $t2,0($t2,$tbl)
la $i1,0($i1,$tbl)
la $i2,0($i2,$tbl)
la $i3,0($i3,$tbl)
icm $t2,2,0($t2) # Te4[rk[3]>>0]<<8
icm $t2,4,0($i1) # Te4[rk[3]>>8]<<16
icm $t2,8,0($i2) # Te4[rk[3]>>16]<<24
icm $t2,1,0($i3) # Te4[rk[3]>>24]
x $t2,256($t3,$tbl) # rcon[i]
xr $s0,$t2 # rk[4]=rk[0]^...
xr $s1,$s0 # rk[5]=rk[1]^rk[4]
xr $s2,$s1 # rk[6]=rk[2]^rk[5]
xr $s3,$s2 # rk[7]=rk[3]^rk[6]
llgfr $t2,$s3 # temp=rk[3]
srlg $i1,$s3,8
srlg $i2,$s3,16
nr $t2,$mask
nr $i1,$mask
srlg $i3,$s3,24
nr $i2,$mask
st $s0,16($key)
st $s1,20($key)
st $s2,24($key)
st $s3,28($key)
la $key,16($key) # key+=4
la $t3,4($t3) # i++
brct $rounds,.L128_loop
lghi $t0,10
lghi %r2,0
lm${g} %r4,%r13,4*$SIZE_T($sp)
br $ra
.align 16
.Lnot128:
llgf $t0,16($inp)
llgf $t1,20($inp)
st $t0,16($key)
st $t1,20($key)
lghi $t0,192
cr $bits,$t0
jne .Lnot192
llill $mask,0xff
lghi $t3,0 # i=0
lghi $rounds,12
st $rounds,240($key)
lghi $rounds,8
srlg $i1,$t1,8
srlg $i2,$t1,16
srlg $i3,$t1,24
nr $t1,$mask
nr $i1,$mask
nr $i2,$mask
.align 16
.L192_loop:
la $t1,0($t1,$tbl)
la $i1,0($i1,$tbl)
la $i2,0($i2,$tbl)
la $i3,0($i3,$tbl)
icm $t1,2,0($t1) # Te4[rk[5]>>0]<<8
icm $t1,4,0($i1) # Te4[rk[5]>>8]<<16
icm $t1,8,0($i2) # Te4[rk[5]>>16]<<24
icm $t1,1,0($i3) # Te4[rk[5]>>24]
x $t1,256($t3,$tbl) # rcon[i]
xr $s0,$t1 # rk[6]=rk[0]^...
xr $s1,$s0 # rk[7]=rk[1]^rk[6]
xr $s2,$s1 # rk[8]=rk[2]^rk[7]
xr $s3,$s2 # rk[9]=rk[3]^rk[8]
st $s0,24($key)
st $s1,28($key)
st $s2,32($key)
st $s3,36($key)
brct $rounds,.L192_continue
lghi $t0,12
lghi %r2,0
lm${g} %r4,%r13,4*$SIZE_T($sp)
br $ra
.align 16
.L192_continue:
lgr $t1,$s3
x $t1,16($key) # rk[10]=rk[4]^rk[9]
st $t1,40($key)
x $t1,20($key) # rk[11]=rk[5]^rk[10]
st $t1,44($key)
srlg $i1,$t1,8
srlg $i2,$t1,16
srlg $i3,$t1,24
nr $t1,$mask
nr $i1,$mask
nr $i2,$mask
la $key,24($key) # key+=6
la $t3,4($t3) # i++
j .L192_loop
.align 16
.Lnot192:
llgf $t0,24($inp)
llgf $t1,28($inp)
st $t0,24($key)
st $t1,28($key)
llill $mask,0xff
lghi $t3,0 # i=0
lghi $rounds,14
st $rounds,240($key)
lghi $rounds,7
srlg $i1,$t1,8
srlg $i2,$t1,16
srlg $i3,$t1,24
nr $t1,$mask
nr $i1,$mask
nr $i2,$mask
.align 16
.L256_loop:
la $t1,0($t1,$tbl)
la $i1,0($i1,$tbl)
la $i2,0($i2,$tbl)
la $i3,0($i3,$tbl)
icm $t1,2,0($t1) # Te4[rk[7]>>0]<<8
icm $t1,4,0($i1) # Te4[rk[7]>>8]<<16
icm $t1,8,0($i2) # Te4[rk[7]>>16]<<24
icm $t1,1,0($i3) # Te4[rk[7]>>24]
x $t1,256($t3,$tbl) # rcon[i]
xr $s0,$t1 # rk[8]=rk[0]^...
xr $s1,$s0 # rk[9]=rk[1]^rk[8]
xr $s2,$s1 # rk[10]=rk[2]^rk[9]
xr $s3,$s2 # rk[11]=rk[3]^rk[10]
st $s0,32($key)
st $s1,36($key)
st $s2,40($key)
st $s3,44($key)
brct $rounds,.L256_continue
lghi $t0,14
lghi %r2,0
lm${g} %r4,%r13,4*$SIZE_T($sp)
br $ra
.align 16
.L256_continue:
lgr $t1,$s3 # temp=rk[11]
srlg $i1,$s3,8
srlg $i2,$s3,16
srlg $i3,$s3,24
nr $t1,$mask
nr $i1,$mask
nr $i2,$mask
la $t1,0($t1,$tbl)
la $i1,0($i1,$tbl)
la $i2,0($i2,$tbl)
la $i3,0($i3,$tbl)
llgc $t1,0($t1) # Te4[rk[11]>>0]
icm $t1,2,0($i1) # Te4[rk[11]>>8]<<8
icm $t1,4,0($i2) # Te4[rk[11]>>16]<<16
icm $t1,8,0($i3) # Te4[rk[11]>>24]<<24
x $t1,16($key) # rk[12]=rk[4]^...
st $t1,48($key)
x $t1,20($key) # rk[13]=rk[5]^rk[12]
st $t1,52($key)
x $t1,24($key) # rk[14]=rk[6]^rk[13]
st $t1,56($key)
x $t1,28($key) # rk[15]=rk[7]^rk[14]
st $t1,60($key)
srlg $i1,$t1,8
srlg $i2,$t1,16
srlg $i3,$t1,24
nr $t1,$mask
nr $i1,$mask
nr $i2,$mask
la $key,32($key) # key+=8
la $t3,4($t3) # i++
j .L256_loop
.Lminus1:
lghi %r2,-1
br $ra
.size private_AES_set_encrypt_key,.-private_AES_set_encrypt_key
# void AES_set_decrypt_key(const unsigned char *in, int bits,
# AES_KEY *key) {
.globl private_AES_set_decrypt_key
.type private_AES_set_decrypt_key,\@function
.align 16
private_AES_set_decrypt_key:
#st${g} $key,4*$SIZE_T($sp) # I rely on AES_set_encrypt_key to
st${g} $ra,14*$SIZE_T($sp) # save non-volatile registers and $key!
bras $ra,_s390x_AES_set_encrypt_key
#l${g} $key,4*$SIZE_T($sp)
l${g} $ra,14*$SIZE_T($sp)
ltgr %r2,%r2
bnzr $ra
___
$code.=<<___ if (!$softonly);
#l $t0,240($key)
lhi $t1,16
cr $t0,$t1
jl .Lgo
oill $t0,0x80 # set "decrypt" bit
st $t0,240($key)
br $ra
___
$code.=<<___;
.align 16
.Lgo: lgr $rounds,$t0 #llgf $rounds,240($key)
la $i1,0($key)
sllg $i2,$rounds,4
la $i2,0($i2,$key)
srl $rounds,1
lghi $t1,-16
.align 16
.Linv: lmg $s0,$s1,0($i1)
lmg $s2,$s3,0($i2)
stmg $s0,$s1,0($i2)
stmg $s2,$s3,0($i1)
la $i1,16($i1)
la $i2,0($t1,$i2)
brct $rounds,.Linv
___
$mask80=$i1;
$mask1b=$i2;
$maskfe=$i3;
$code.=<<___;
llgf $rounds,240($key)
aghi $rounds,-1
sll $rounds,2 # (rounds-1)*4
llilh $mask80,0x8080
llilh $mask1b,0x1b1b
llilh $maskfe,0xfefe
oill $mask80,0x8080
oill $mask1b,0x1b1b
oill $maskfe,0xfefe
.align 16
.Lmix: l $s0,16($key) # tp1
lr $s1,$s0
ngr $s1,$mask80
srlg $t1,$s1,7
slr $s1,$t1
nr $s1,$mask1b
sllg $t1,$s0,1
nr $t1,$maskfe
xr $s1,$t1 # tp2
lr $s2,$s1
ngr $s2,$mask80
srlg $t1,$s2,7
slr $s2,$t1
nr $s2,$mask1b
sllg $t1,$s1,1
nr $t1,$maskfe
xr $s2,$t1 # tp4
lr $s3,$s2
ngr $s3,$mask80
srlg $t1,$s3,7
slr $s3,$t1
nr $s3,$mask1b
sllg $t1,$s2,1
nr $t1,$maskfe
xr $s3,$t1 # tp8
xr $s1,$s0 # tp2^tp1
xr $s2,$s0 # tp4^tp1
rll $s0,$s0,24 # = ROTATE(tp1,8)
xr $s2,$s3 # ^=tp8
xr $s0,$s1 # ^=tp2^tp1
xr $s1,$s3 # tp2^tp1^tp8
xr $s0,$s2 # ^=tp4^tp1^tp8
rll $s1,$s1,8
rll $s2,$s2,16
xr $s0,$s1 # ^= ROTATE(tp8^tp2^tp1,24)
rll $s3,$s3,24
xr $s0,$s2 # ^= ROTATE(tp8^tp4^tp1,16)
xr $s0,$s3 # ^= ROTATE(tp8,8)
st $s0,16($key)
la $key,4($key)
brct $rounds,.Lmix
lm${g} %r6,%r13,6*$SIZE_T($sp)# as was saved by AES_set_encrypt_key!
lghi %r2,0
br $ra
.size private_AES_set_decrypt_key,.-private_AES_set_decrypt_key
___
########################################################################
# void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
# size_t length, const AES_KEY *key,
# unsigned char *ivec, const int enc)
{
my $inp="%r2";
my $out="%r4"; # length and out are swapped
my $len="%r3";
my $key="%r5";
my $ivp="%r6";
$code.=<<___;
.globl AES_cbc_encrypt
.type AES_cbc_encrypt,\@function
.align 16
AES_cbc_encrypt:
xgr %r3,%r4 # flip %r3 and %r4, out and len
xgr %r4,%r3
xgr %r3,%r4
___
$code.=<<___ if (!$softonly);
lhi %r0,16
cl %r0,240($key)
jh .Lcbc_software
lg %r0,0($ivp) # copy ivec
lg %r1,8($ivp)
stmg %r0,%r1,16($sp)
lmg %r0,%r1,0($key) # copy key, cover 256 bit
stmg %r0,%r1,32($sp)
lmg %r0,%r1,16($key)
stmg %r0,%r1,48($sp)
l %r0,240($key) # load kmc code
lghi $key,15 # res=len%16, len-=res;
ngr $key,$len
sl${g}r $len,$key
la %r1,16($sp) # parameter block - ivec || key
jz .Lkmc_truncated
.long 0xb92f0042 # kmc %r4,%r2
brc 1,.-4 # pay attention to "partial completion"
ltr $key,$key
jnz .Lkmc_truncated
.Lkmc_done:
lmg %r0,%r1,16($sp) # copy ivec to caller
stg %r0,0($ivp)
stg %r1,8($ivp)
br $ra
.align 16
.Lkmc_truncated:
ahi $key,-1 # it's the way it's encoded in mvc
tmll %r0,0x80
jnz .Lkmc_truncated_dec
lghi %r1,0
stg %r1,16*$SIZE_T($sp)
stg %r1,16*$SIZE_T+8($sp)
bras %r1,1f
mvc 16*$SIZE_T(1,$sp),0($inp)
1: ex $key,0(%r1)
la %r1,16($sp) # restore parameter block
la $inp,16*$SIZE_T($sp)
lghi $len,16
.long 0xb92f0042 # kmc %r4,%r2
j .Lkmc_done
.align 16
.Lkmc_truncated_dec:
st${g} $out,4*$SIZE_T($sp)
la $out,16*$SIZE_T($sp)
lghi $len,16
.long 0xb92f0042 # kmc %r4,%r2
l${g} $out,4*$SIZE_T($sp)
bras %r1,2f
mvc 0(1,$out),16*$SIZE_T($sp)
2: ex $key,0(%r1)
j .Lkmc_done
.align 16
.Lcbc_software:
___
$code.=<<___;
stm${g} $key,$ra,5*$SIZE_T($sp)
lhi %r0,0
cl %r0,`$stdframe+$SIZE_T-4`($sp)
je .Lcbc_decrypt
larl $tbl,AES_Te
llgf $s0,0($ivp)
llgf $s1,4($ivp)
llgf $s2,8($ivp)
llgf $s3,12($ivp)
lghi $t0,16
sl${g}r $len,$t0
brc 4,.Lcbc_enc_tail # if borrow
.Lcbc_enc_loop:
stm${g} $inp,$out,2*$SIZE_T($sp)
x $s0,0($inp)
x $s1,4($inp)
x $s2,8($inp)
x $s3,12($inp)
lgr %r4,$key
bras $ra,_s390x_AES_encrypt
lm${g} $inp,$key,2*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
la $inp,16($inp)
la $out,16($out)
lghi $t0,16
lt${g}r $len,$len
jz .Lcbc_enc_done
sl${g}r $len,$t0
brc 4,.Lcbc_enc_tail # if borrow
j .Lcbc_enc_loop
.align 16
.Lcbc_enc_done:
l${g} $ivp,6*$SIZE_T($sp)
st $s0,0($ivp)
st $s1,4($ivp)
st $s2,8($ivp)
st $s3,12($ivp)
lm${g} %r7,$ra,7*$SIZE_T($sp)
br $ra
.align 16
.Lcbc_enc_tail:
aghi $len,15
lghi $t0,0
stg $t0,16*$SIZE_T($sp)
stg $t0,16*$SIZE_T+8($sp)
bras $t1,3f
mvc 16*$SIZE_T(1,$sp),0($inp)
3: ex $len,0($t1)
lghi $len,0
la $inp,16*$SIZE_T($sp)
j .Lcbc_enc_loop
.align 16
.Lcbc_decrypt:
larl $tbl,AES_Td
lg $t0,0($ivp)
lg $t1,8($ivp)
stmg $t0,$t1,16*$SIZE_T($sp)
.Lcbc_dec_loop:
stm${g} $inp,$out,2*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
llgf $s2,8($inp)
llgf $s3,12($inp)
lgr %r4,$key
bras $ra,_s390x_AES_decrypt
lm${g} $inp,$key,2*$SIZE_T($sp)
sllg $s0,$s0,32
sllg $s2,$s2,32
lr $s0,$s1
lr $s2,$s3
lg $t0,0($inp)
lg $t1,8($inp)
xg $s0,16*$SIZE_T($sp)
xg $s2,16*$SIZE_T+8($sp)
lghi $s1,16
sl${g}r $len,$s1
brc 4,.Lcbc_dec_tail # if borrow
brc 2,.Lcbc_dec_done # if zero
stg $s0,0($out)
stg $s2,8($out)
stmg $t0,$t1,16*$SIZE_T($sp)
la $inp,16($inp)
la $out,16($out)
j .Lcbc_dec_loop
.Lcbc_dec_done:
stg $s0,0($out)
stg $s2,8($out)
.Lcbc_dec_exit:
lm${g} %r6,$ra,6*$SIZE_T($sp)
stmg $t0,$t1,0($ivp)
br $ra
.align 16
.Lcbc_dec_tail:
aghi $len,15
stg $s0,16*$SIZE_T($sp)
stg $s2,16*$SIZE_T+8($sp)
bras $s1,4f
mvc 0(1,$out),16*$SIZE_T($sp)
4: ex $len,0($s1)
j .Lcbc_dec_exit
.size AES_cbc_encrypt,.-AES_cbc_encrypt
___
}
########################################################################
# void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
# size_t blocks, const AES_KEY *key,
# const unsigned char *ivec)
{
my $inp="%r2";
my $out="%r4"; # blocks and out are swapped
my $len="%r3";
my $key="%r5"; my $iv0="%r5";
my $ivp="%r6";
my $fp ="%r7";
$code.=<<___;
.globl AES_ctr32_encrypt
.type AES_ctr32_encrypt,\@function
.align 16
AES_ctr32_encrypt:
xgr %r3,%r4 # flip %r3 and %r4, $out and $len
xgr %r4,%r3
xgr %r3,%r4
llgfr $len,$len # safe in ctr32 subroutine even in 64-bit case
___
$code.=<<___ if (!$softonly);
l %r0,240($key)
lhi %r1,16
clr %r0,%r1
jl .Lctr32_software
stm${g} %r6,$s3,6*$SIZE_T($sp)
slgr $out,$inp
la %r1,0($key) # %r1 is permanent copy of $key
lg $iv0,0($ivp) # load ivec
lg $ivp,8($ivp)
# prepare and allocate stack frame at the top of 4K page
# with 1K reserved for eventual signal handling
lghi $s0,-1024-256-16# guarantee at least 256-bytes buffer
lghi $s1,-4096
algr $s0,$sp
lgr $fp,$sp
ngr $s0,$s1 # align at page boundary
slgr $fp,$s0 # total buffer size
lgr $s2,$sp
lghi $s1,1024+16 # sl[g]fi is extended-immediate facility
slgr $fp,$s1 # deduct reservation to get usable buffer size
# buffer size is at lest 256 and at most 3072+256-16
la $sp,1024($s0) # alloca
srlg $fp,$fp,4 # convert bytes to blocks, minimum 16
st${g} $s2,0($sp) # back-chain
st${g} $fp,$SIZE_T($sp)
slgr $len,$fp
brc 1,.Lctr32_hw_switch # not zero, no borrow
algr $fp,$len # input is shorter than allocated buffer
lghi $len,0
st${g} $fp,$SIZE_T($sp)
.Lctr32_hw_switch:
___
$code.=<<___ if (0); ######### kmctr code was measured to be ~12% slower
larl $s0,OPENSSL_s390xcap_P
lg $s0,8($s0)
tmhh $s0,0x0004 # check for message_security-assist-4
jz .Lctr32_km_loop
llgfr $s0,%r0
lgr $s1,%r1
larl %r1,OPENSSL_s390xcap_P
llihh %r0,0x8000 # check if kmctr supports the function code
srlg %r0,%r0,0($s0)
ng %r0,64(%r1) # check kmctr capability vector
lgr %r0,$s0
lgr %r1,$s1
jz .Lctr32_km_loop
####### kmctr code
algr $out,$inp # restore $out
lgr $s1,$len # $s1 undertakes $len
j .Lctr32_kmctr_loop
.align 16
.Lctr32_kmctr_loop:
la $s2,16($sp)
lgr $s3,$fp
.Lctr32_kmctr_prepare:
stg $iv0,0($s2)
stg $ivp,8($s2)
la $s2,16($s2)
ahi $ivp,1 # 32-bit increment, preserves upper half
brct $s3,.Lctr32_kmctr_prepare
#la $inp,0($inp) # inp
sllg $len,$fp,4 # len
#la $out,0($out) # out
la $s2,16($sp) # iv
.long 0xb92da042 # kmctr $out,$s2,$inp
brc 1,.-4 # pay attention to "partial completion"
slgr $s1,$fp
brc 1,.Lctr32_kmctr_loop # not zero, no borrow
algr $fp,$s1
lghi $s1,0
brc 4+1,.Lctr32_kmctr_loop # not zero
l${g} $sp,0($sp)
lm${g} %r6,$s3,6*$SIZE_T($sp)
br $ra
.align 16
___
$code.=<<___;
.Lctr32_km_loop:
la $s2,16($sp)
lgr $s3,$fp
.Lctr32_km_prepare:
stg $iv0,0($s2)
stg $ivp,8($s2)
la $s2,16($s2)
ahi $ivp,1 # 32-bit increment, preserves upper half
brct $s3,.Lctr32_km_prepare
la $s0,16($sp) # inp
sllg $s1,$fp,4 # len
la $s2,16($sp) # out
.long 0xb92e00a8 # km %r10,%r8
brc 1,.-4 # pay attention to "partial completion"
la $s2,16($sp)
lgr $s3,$fp
slgr $s2,$inp
.Lctr32_km_xor:
lg $s0,0($inp)
lg $s1,8($inp)
xg $s0,0($s2,$inp)
xg $s1,8($s2,$inp)
stg $s0,0($out,$inp)
stg $s1,8($out,$inp)
la $inp,16($inp)
brct $s3,.Lctr32_km_xor
slgr $len,$fp
brc 1,.Lctr32_km_loop # not zero, no borrow
algr $fp,$len
lghi $len,0
brc 4+1,.Lctr32_km_loop # not zero
l${g} $s0,0($sp)
l${g} $s1,$SIZE_T($sp)
la $s2,16($sp)
.Lctr32_km_zap:
stg $s0,0($s2)
stg $s0,8($s2)
la $s2,16($s2)
brct $s1,.Lctr32_km_zap
la $sp,0($s0)
lm${g} %r6,$s3,6*$SIZE_T($sp)
br $ra
.align 16
.Lctr32_software:
___
$code.=<<___;
stm${g} $key,$ra,5*$SIZE_T($sp)
sl${g}r $inp,$out
larl $tbl,AES_Te
llgf $t1,12($ivp)
.Lctr32_loop:
stm${g} $inp,$out,2*$SIZE_T($sp)
llgf $s0,0($ivp)
llgf $s1,4($ivp)
llgf $s2,8($ivp)
lgr $s3,$t1
st $t1,16*$SIZE_T($sp)
lgr %r4,$key
bras $ra,_s390x_AES_encrypt
lm${g} $inp,$ivp,2*$SIZE_T($sp)
llgf $t1,16*$SIZE_T($sp)
x $s0,0($inp,$out)
x $s1,4($inp,$out)
x $s2,8($inp,$out)
x $s3,12($inp,$out)
stm $s0,$s3,0($out)
la $out,16($out)
ahi $t1,1 # 32-bit increment
brct $len,.Lctr32_loop
lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_ctr32_encrypt,.-AES_ctr32_encrypt
___
}
########################################################################
# void AES_xts_encrypt(const unsigned char *inp, unsigned char *out,
# size_t len, const AES_KEY *key1, const AES_KEY *key2,
# const unsigned char iv[16]);
#
{
my $inp="%r2";
my $out="%r4"; # len and out are swapped
my $len="%r3";
my $key1="%r5"; # $i1
my $key2="%r6"; # $i2
my $fp="%r7"; # $i3
my $tweak=16*$SIZE_T+16; # or $stdframe-16, bottom of the frame...
$code.=<<___;
.type _s390x_xts_km,\@function
.align 16
_s390x_xts_km:
___
$code.=<<___ if(1);
llgfr $s0,%r0 # put aside the function code
lghi $s1,0x7f
nr $s1,%r0
larl %r1,OPENSSL_s390xcap_P
llihh %r0,0x8000
srlg %r0,%r0,32($s1) # check for 32+function code
ng %r0,32(%r1) # check km capability vector
lgr %r0,$s0 # restore the function code
la %r1,0($key1) # restore $key1
jz .Lxts_km_vanilla
lmg $i2,$i3,$tweak($sp) # put aside the tweak value
algr $out,$inp
oill %r0,32 # switch to xts function code
aghi $s1,-18 #
sllg $s1,$s1,3 # (function code - 18)*8, 0 or 16
la %r1,$tweak-16($sp)
slgr %r1,$s1 # parameter block position
lmg $s0,$s3,0($key1) # load 256 bits of key material,
stmg $s0,$s3,0(%r1) # and copy it to parameter block.
# yes, it contains junk and overlaps
# with the tweak in 128-bit case.
# it's done to avoid conditional
# branch.
stmg $i2,$i3,$tweak($sp) # "re-seat" the tweak value
.long 0xb92e0042 # km %r4,%r2
brc 1,.-4 # pay attention to "partial completion"
lrvg $s0,$tweak+0($sp) # load the last tweak
lrvg $s1,$tweak+8($sp)
stmg %r0,%r3,$tweak-32($sp) # wipe copy of the key
nill %r0,0xffdf # switch back to original function code
la %r1,0($key1) # restore pointer to $key1
slgr $out,$inp
llgc $len,2*$SIZE_T-1($sp)
nill $len,0x0f # $len%=16
br $ra
.align 16
.Lxts_km_vanilla:
___
$code.=<<___;
# prepare and allocate stack frame at the top of 4K page
# with 1K reserved for eventual signal handling
lghi $s0,-1024-256-16# guarantee at least 256-bytes buffer
lghi $s1,-4096
algr $s0,$sp
lgr $fp,$sp
ngr $s0,$s1 # align at page boundary
slgr $fp,$s0 # total buffer size
lgr $s2,$sp
lghi $s1,1024+16 # sl[g]fi is extended-immediate facility
slgr $fp,$s1 # deduct reservation to get usable buffer size
# buffer size is at lest 256 and at most 3072+256-16
la $sp,1024($s0) # alloca
nill $fp,0xfff0 # round to 16*n
st${g} $s2,0($sp) # back-chain
nill $len,0xfff0 # redundant
st${g} $fp,$SIZE_T($sp)
slgr $len,$fp
brc 1,.Lxts_km_go # not zero, no borrow
algr $fp,$len # input is shorter than allocated buffer
lghi $len,0
st${g} $fp,$SIZE_T($sp)
.Lxts_km_go:
lrvg $s0,$tweak+0($s2) # load the tweak value in little-endian
lrvg $s1,$tweak+8($s2)
la $s2,16($sp) # vector of ascending tweak values
slgr $s2,$inp
srlg $s3,$fp,4
j .Lxts_km_start
.Lxts_km_loop:
la $s2,16($sp)
slgr $s2,$inp
srlg $s3,$fp,4
.Lxts_km_prepare:
lghi $i1,0x87
srag $i2,$s1,63 # broadcast upper bit
ngr $i1,$i2 # rem
algr $s0,$s0
alcgr $s1,$s1
xgr $s0,$i1
.Lxts_km_start:
lrvgr $i1,$s0 # flip byte order
lrvgr $i2,$s1
stg $i1,0($s2,$inp)
stg $i2,8($s2,$inp)
xg $i1,0($inp)
xg $i2,8($inp)
stg $i1,0($out,$inp)
stg $i2,8($out,$inp)
la $inp,16($inp)
brct $s3,.Lxts_km_prepare
slgr $inp,$fp # rewind $inp
la $s2,0($out,$inp)
lgr $s3,$fp
.long 0xb92e00aa # km $s2,$s2
brc 1,.-4 # pay attention to "partial completion"
la $s2,16($sp)
slgr $s2,$inp
srlg $s3,$fp,4
.Lxts_km_xor:
lg $i1,0($out,$inp)
lg $i2,8($out,$inp)
xg $i1,0($s2,$inp)
xg $i2,8($s2,$inp)
stg $i1,0($out,$inp)
stg $i2,8($out,$inp)
la $inp,16($inp)
brct $s3,.Lxts_km_xor
slgr $len,$fp
brc 1,.Lxts_km_loop # not zero, no borrow
algr $fp,$len
lghi $len,0
brc 4+1,.Lxts_km_loop # not zero
l${g} $i1,0($sp) # back-chain
llgf $fp,`2*$SIZE_T-4`($sp) # bytes used
la $i2,16($sp)
srlg $fp,$fp,4
.Lxts_km_zap:
stg $i1,0($i2)
stg $i1,8($i2)
la $i2,16($i2)
brct $fp,.Lxts_km_zap
la $sp,0($i1)
llgc $len,2*$SIZE_T-1($i1)
nill $len,0x0f # $len%=16
bzr $ra
# generate one more tweak...
lghi $i1,0x87
srag $i2,$s1,63 # broadcast upper bit
ngr $i1,$i2 # rem
algr $s0,$s0
alcgr $s1,$s1
xgr $s0,$i1
ltr $len,$len # clear zero flag
br $ra
.size _s390x_xts_km,.-_s390x_xts_km
.globl AES_xts_encrypt
.type AES_xts_encrypt,\@function
.align 16
AES_xts_encrypt:
xgr %r3,%r4 # flip %r3 and %r4, $out and $len
xgr %r4,%r3
xgr %r3,%r4
___
$code.=<<___ if ($SIZE_T==4);
llgfr $len,$len
___
$code.=<<___;
st${g} $len,1*$SIZE_T($sp) # save copy of $len
srag $len,$len,4 # formally wrong, because it expands
# sign byte, but who can afford asking
# to process more than 2^63-1 bytes?
# I use it, because it sets condition
# code...
bcr 8,$ra # abort if zero (i.e. less than 16)
___
$code.=<<___ if (!$softonly);
llgf %r0,240($key2)
lhi %r1,16
clr %r0,%r1
jl .Lxts_enc_software
st${g} $ra,5*$SIZE_T($sp)
stm${g} %r6,$s3,6*$SIZE_T($sp)
sllg $len,$len,4 # $len&=~15
slgr $out,$inp
# generate the tweak value
l${g} $s3,$stdframe($sp) # pointer to iv
la $s2,$tweak($sp)
lmg $s0,$s1,0($s3)
lghi $s3,16
stmg $s0,$s1,0($s2)
la %r1,0($key2) # $key2 is not needed anymore
.long 0xb92e00aa # km $s2,$s2, generate the tweak
brc 1,.-4 # can this happen?
l %r0,240($key1)
la %r1,0($key1) # $key1 is not needed anymore
bras $ra,_s390x_xts_km
jz .Lxts_enc_km_done
aghi $inp,-16 # take one step back
la $i3,0($out,$inp) # put aside real $out
.Lxts_enc_km_steal:
llgc $i1,16($inp)
llgc $i2,0($out,$inp)
stc $i1,0($out,$inp)
stc $i2,16($out,$inp)
la $inp,1($inp)
brct $len,.Lxts_enc_km_steal
la $s2,0($i3)
lghi $s3,16
lrvgr $i1,$s0 # flip byte order
lrvgr $i2,$s1
xg $i1,0($s2)
xg $i2,8($s2)
stg $i1,0($s2)
stg $i2,8($s2)
.long 0xb92e00aa # km $s2,$s2
brc 1,.-4 # can this happen?
lrvgr $i1,$s0 # flip byte order
lrvgr $i2,$s1
xg $i1,0($i3)
xg $i2,8($i3)
stg $i1,0($i3)
stg $i2,8($i3)
.Lxts_enc_km_done:
stg $sp,$tweak+0($sp) # wipe tweak
stg $sp,$tweak+8($sp)
l${g} $ra,5*$SIZE_T($sp)
lm${g} %r6,$s3,6*$SIZE_T($sp)
br $ra
.align 16
.Lxts_enc_software:
___
$code.=<<___;
stm${g} %r6,$ra,6*$SIZE_T($sp)
slgr $out,$inp
l${g} $s3,$stdframe($sp) # ivp
llgf $s0,0($s3) # load iv
llgf $s1,4($s3)
llgf $s2,8($s3)
llgf $s3,12($s3)
stm${g} %r2,%r5,2*$SIZE_T($sp)
la $key,0($key2)
larl $tbl,AES_Te
bras $ra,_s390x_AES_encrypt # generate the tweak
lm${g} %r2,%r5,2*$SIZE_T($sp)
stm $s0,$s3,$tweak($sp) # save the tweak
j .Lxts_enc_enter
.align 16
.Lxts_enc_loop:
lrvg $s1,$tweak+0($sp) # load the tweak in little-endian
lrvg $s3,$tweak+8($sp)
lghi %r1,0x87
srag %r0,$s3,63 # broadcast upper bit
ngr %r1,%r0 # rem
algr $s1,$s1
alcgr $s3,$s3
xgr $s1,%r1
lrvgr $s1,$s1 # flip byte order
lrvgr $s3,$s3
srlg $s0,$s1,32 # smash the tweak to 4x32-bits
stg $s1,$tweak+0($sp) # save the tweak
llgfr $s1,$s1
srlg $s2,$s3,32
stg $s3,$tweak+8($sp)
llgfr $s3,$s3
la $inp,16($inp) # $inp+=16
.Lxts_enc_enter:
x $s0,0($inp) # ^=*($inp)
x $s1,4($inp)
x $s2,8($inp)
x $s3,12($inp)
stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing
la $key,0($key1)
bras $ra,_s390x_AES_encrypt
lm${g} %r2,%r5,2*$SIZE_T($sp)
x $s0,$tweak+0($sp) # ^=tweak
x $s1,$tweak+4($sp)
x $s2,$tweak+8($sp)
x $s3,$tweak+12($sp)
st $s0,0($out,$inp)
st $s1,4($out,$inp)
st $s2,8($out,$inp)
st $s3,12($out,$inp)
brct${g} $len,.Lxts_enc_loop
llgc $len,`2*$SIZE_T-1`($sp)
nill $len,0x0f # $len%16
jz .Lxts_enc_done
la $i3,0($inp,$out) # put aside real $out
.Lxts_enc_steal:
llgc %r0,16($inp)
llgc %r1,0($out,$inp)
stc %r0,0($out,$inp)
stc %r1,16($out,$inp)
la $inp,1($inp)
brct $len,.Lxts_enc_steal
la $out,0($i3) # restore real $out
# generate last tweak...
lrvg $s1,$tweak+0($sp) # load the tweak in little-endian
lrvg $s3,$tweak+8($sp)
lghi %r1,0x87
srag %r0,$s3,63 # broadcast upper bit
ngr %r1,%r0 # rem
algr $s1,$s1
alcgr $s3,$s3
xgr $s1,%r1
lrvgr $s1,$s1 # flip byte order
lrvgr $s3,$s3
srlg $s0,$s1,32 # smash the tweak to 4x32-bits
stg $s1,$tweak+0($sp) # save the tweak
llgfr $s1,$s1
srlg $s2,$s3,32
stg $s3,$tweak+8($sp)
llgfr $s3,$s3
x $s0,0($out) # ^=*(inp)|stolen cipther-text
x $s1,4($out)
x $s2,8($out)
x $s3,12($out)
st${g} $out,4*$SIZE_T($sp)
la $key,0($key1)
bras $ra,_s390x_AES_encrypt
l${g} $out,4*$SIZE_T($sp)
x $s0,`$tweak+0`($sp) # ^=tweak
x $s1,`$tweak+4`($sp)
x $s2,`$tweak+8`($sp)
x $s3,`$tweak+12`($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
.Lxts_enc_done:
stg $sp,$tweak+0($sp) # wipe tweak
stg $sp,$twesk+8($sp)
lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_xts_encrypt,.-AES_xts_encrypt
___
# void AES_xts_decrypt(const unsigned char *inp, unsigned char *out,
# size_t len, const AES_KEY *key1, const AES_KEY *key2,
# const unsigned char iv[16]);
#
$code.=<<___;
.globl AES_xts_decrypt
.type AES_xts_decrypt,\@function
.align 16
AES_xts_decrypt:
xgr %r3,%r4 # flip %r3 and %r4, $out and $len
xgr %r4,%r3
xgr %r3,%r4
___
$code.=<<___ if ($SIZE_T==4);
llgfr $len,$len
___
$code.=<<___;
st${g} $len,1*$SIZE_T($sp) # save copy of $len
aghi $len,-16
bcr 4,$ra # abort if less than zero. formally
# wrong, because $len is unsigned,
# but who can afford asking to
# process more than 2^63-1 bytes?
tmll $len,0x0f
jnz .Lxts_dec_proceed
aghi $len,16
.Lxts_dec_proceed:
___
$code.=<<___ if (!$softonly);
llgf %r0,240($key2)
lhi %r1,16
clr %r0,%r1
jl .Lxts_dec_software
st${g} $ra,5*$SIZE_T($sp)
stm${g} %r6,$s3,6*$SIZE_T($sp)
nill $len,0xfff0 # $len&=~15
slgr $out,$inp
# generate the tweak value
l${g} $s3,$stdframe($sp) # pointer to iv
la $s2,$tweak($sp)
lmg $s0,$s1,0($s3)
lghi $s3,16
stmg $s0,$s1,0($s2)
la %r1,0($key2) # $key2 is not needed past this point
.long 0xb92e00aa # km $s2,$s2, generate the tweak
brc 1,.-4 # can this happen?
l %r0,240($key1)
la %r1,0($key1) # $key1 is not needed anymore
ltgr $len,$len
jz .Lxts_dec_km_short
bras $ra,_s390x_xts_km
jz .Lxts_dec_km_done
lrvgr $s2,$s0 # make copy in reverse byte order
lrvgr $s3,$s1
j .Lxts_dec_km_2ndtweak
.Lxts_dec_km_short:
llgc $len,`2*$SIZE_T-1`($sp)
nill $len,0x0f # $len%=16
lrvg $s0,$tweak+0($sp) # load the tweak
lrvg $s1,$tweak+8($sp)
lrvgr $s2,$s0 # make copy in reverse byte order
lrvgr $s3,$s1
.Lxts_dec_km_2ndtweak:
lghi $i1,0x87
srag $i2,$s1,63 # broadcast upper bit
ngr $i1,$i2 # rem
algr $s0,$s0
alcgr $s1,$s1
xgr $s0,$i1
lrvgr $i1,$s0 # flip byte order
lrvgr $i2,$s1
xg $i1,0($inp)
xg $i2,8($inp)
stg $i1,0($out,$inp)
stg $i2,8($out,$inp)
la $i2,0($out,$inp)
lghi $i3,16
.long 0xb92e0066 # km $i2,$i2
brc 1,.-4 # can this happen?
lrvgr $i1,$s0
lrvgr $i2,$s1
xg $i1,0($out,$inp)
xg $i2,8($out,$inp)
stg $i1,0($out,$inp)
stg $i2,8($out,$inp)
la $i3,0($out,$inp) # put aside real $out
.Lxts_dec_km_steal:
llgc $i1,16($inp)
llgc $i2,0($out,$inp)
stc $i1,0($out,$inp)
stc $i2,16($out,$inp)
la $inp,1($inp)
brct $len,.Lxts_dec_km_steal
lgr $s0,$s2
lgr $s1,$s3
xg $s0,0($i3)
xg $s1,8($i3)
stg $s0,0($i3)
stg $s1,8($i3)
la $s0,0($i3)
lghi $s1,16
.long 0xb92e0088 # km $s0,$s0
brc 1,.-4 # can this happen?
xg $s2,0($i3)
xg $s3,8($i3)
stg $s2,0($i3)
stg $s3,8($i3)
.Lxts_dec_km_done:
stg $sp,$tweak+0($sp) # wipe tweak
stg $sp,$tweak+8($sp)
l${g} $ra,5*$SIZE_T($sp)
lm${g} %r6,$s3,6*$SIZE_T($sp)
br $ra
.align 16
.Lxts_dec_software:
___
$code.=<<___;
stm${g} %r6,$ra,6*$SIZE_T($sp)
srlg $len,$len,4
slgr $out,$inp
l${g} $s3,$stdframe($sp) # ivp
llgf $s0,0($s3) # load iv
llgf $s1,4($s3)
llgf $s2,8($s3)
llgf $s3,12($s3)
stm${g} %r2,%r5,2*$SIZE_T($sp)
la $key,0($key2)
larl $tbl,AES_Te
bras $ra,_s390x_AES_encrypt # generate the tweak
lm${g} %r2,%r5,2*$SIZE_T($sp)
larl $tbl,AES_Td
lt${g}r $len,$len
stm $s0,$s3,$tweak($sp) # save the tweak
jz .Lxts_dec_short
j .Lxts_dec_enter
.align 16
.Lxts_dec_loop:
lrvg $s1,$tweak+0($sp) # load the tweak in little-endian
lrvg $s3,$tweak+8($sp)
lghi %r1,0x87
srag %r0,$s3,63 # broadcast upper bit
ngr %r1,%r0 # rem
algr $s1,$s1
alcgr $s3,$s3
xgr $s1,%r1
lrvgr $s1,$s1 # flip byte order
lrvgr $s3,$s3
srlg $s0,$s1,32 # smash the tweak to 4x32-bits
stg $s1,$tweak+0($sp) # save the tweak
llgfr $s1,$s1
srlg $s2,$s3,32
stg $s3,$tweak+8($sp)
llgfr $s3,$s3
.Lxts_dec_enter:
x $s0,0($inp) # tweak^=*(inp)
x $s1,4($inp)
x $s2,8($inp)
x $s3,12($inp)
stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing
la $key,0($key1)
bras $ra,_s390x_AES_decrypt
lm${g} %r2,%r5,2*$SIZE_T($sp)
x $s0,$tweak+0($sp) # ^=tweak
x $s1,$tweak+4($sp)
x $s2,$tweak+8($sp)
x $s3,$tweak+12($sp)
st $s0,0($out,$inp)
st $s1,4($out,$inp)
st $s2,8($out,$inp)
st $s3,12($out,$inp)
la $inp,16($inp)
brct${g} $len,.Lxts_dec_loop
llgc $len,`2*$SIZE_T-1`($sp)
nill $len,0x0f # $len%16
jz .Lxts_dec_done
# generate pair of tweaks...
lrvg $s1,$tweak+0($sp) # load the tweak in little-endian
lrvg $s3,$tweak+8($sp)
lghi %r1,0x87
srag %r0,$s3,63 # broadcast upper bit
ngr %r1,%r0 # rem
algr $s1,$s1
alcgr $s3,$s3
xgr $s1,%r1
lrvgr $i2,$s1 # flip byte order
lrvgr $i3,$s3
stmg $i2,$i3,$tweak($sp) # save the 1st tweak
j .Lxts_dec_2ndtweak
.align 16
.Lxts_dec_short:
llgc $len,`2*$SIZE_T-1`($sp)
nill $len,0x0f # $len%16
lrvg $s1,$tweak+0($sp) # load the tweak in little-endian
lrvg $s3,$tweak+8($sp)
.Lxts_dec_2ndtweak:
lghi %r1,0x87
srag %r0,$s3,63 # broadcast upper bit
ngr %r1,%r0 # rem
algr $s1,$s1
alcgr $s3,$s3
xgr $s1,%r1
lrvgr $s1,$s1 # flip byte order
lrvgr $s3,$s3
srlg $s0,$s1,32 # smash the tweak to 4x32-bits
stg $s1,$tweak-16+0($sp) # save the 2nd tweak
llgfr $s1,$s1
srlg $s2,$s3,32
stg $s3,$tweak-16+8($sp)
llgfr $s3,$s3
x $s0,0($inp) # tweak_the_2nd^=*(inp)
x $s1,4($inp)
x $s2,8($inp)
x $s3,12($inp)
stm${g} %r2,%r3,2*$SIZE_T($sp)
la $key,0($key1)
bras $ra,_s390x_AES_decrypt
lm${g} %r2,%r5,2*$SIZE_T($sp)
x $s0,$tweak-16+0($sp) # ^=tweak_the_2nd
x $s1,$tweak-16+4($sp)
x $s2,$tweak-16+8($sp)
x $s3,$tweak-16+12($sp)
st $s0,0($out,$inp)
st $s1,4($out,$inp)
st $s2,8($out,$inp)
st $s3,12($out,$inp)
la $i3,0($out,$inp) # put aside real $out
.Lxts_dec_steal:
llgc %r0,16($inp)
llgc %r1,0($out,$inp)
stc %r0,0($out,$inp)
stc %r1,16($out,$inp)
la $inp,1($inp)
brct $len,.Lxts_dec_steal
la $out,0($i3) # restore real $out
lm $s0,$s3,$tweak($sp) # load the 1st tweak
x $s0,0($out) # tweak^=*(inp)|stolen cipher-text
x $s1,4($out)
x $s2,8($out)
x $s3,12($out)
st${g} $out,4*$SIZE_T($sp)
la $key,0($key1)
bras $ra,_s390x_AES_decrypt
l${g} $out,4*$SIZE_T($sp)
x $s0,$tweak+0($sp) # ^=tweak
x $s1,$tweak+4($sp)
x $s2,$tweak+8($sp)
x $s3,$tweak+12($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
stg $sp,$tweak-16+0($sp) # wipe 2nd tweak
stg $sp,$tweak-16+8($sp)
.Lxts_dec_done:
stg $sp,$tweak+0($sp) # wipe tweak
stg $sp,$twesk+8($sp)
lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_xts_decrypt,.-AES_xts_decrypt
___
}
$code.=<<___;
.string "AES for s390x, CRYPTOGAMS by <appro\@openssl.org>"
.comm OPENSSL_s390xcap_P,80,8
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT; # force flush