openssl1.0/crypto/bn/asm/ppc.pl

2009 lines
44 KiB
Perl
Raw Normal View History

2019-08-09 10:00:55 +02:00
#!/usr/bin/env perl
#
# Implemented as a Perl wrapper as we want to support several different
# architectures with single file. We pick up the target based on the
# file name we are asked to generate.
#
# It should be noted though that this perl code is nothing like
# <openssl>/crypto/perlasm/x86*. In this case perl is used pretty much
# as pre-processor to cover for platform differences in name decoration,
# linker tables, 32-/64-bit instruction sets...
#
# As you might know there're several PowerPC ABI in use. Most notably
# Linux and AIX use different 32-bit ABIs. Good news are that these ABIs
# are similar enough to implement leaf(!) functions, which would be ABI
# neutral. And that's what you find here: ABI neutral leaf functions.
# In case you wonder what that is...
#
# AIX performance
#
# MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e.
#
# The following is the performance of 32-bit compiler
# generated code:
#
# OpenSSL 0.9.6c 21 dec 2001
# built on: Tue Jun 11 11:06:51 EDT 2002
# options:bn(64,32) ...
#compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3
# sign verify sign/s verify/s
#rsa 512 bits 0.0098s 0.0009s 102.0 1170.6
#rsa 1024 bits 0.0507s 0.0026s 19.7 387.5
#rsa 2048 bits 0.3036s 0.0085s 3.3 117.1
#rsa 4096 bits 2.0040s 0.0299s 0.5 33.4
#dsa 512 bits 0.0087s 0.0106s 114.3 94.5
#dsa 1024 bits 0.0256s 0.0313s 39.0 32.0
#
# Same bechmark with this assembler code:
#
#rsa 512 bits 0.0056s 0.0005s 178.6 2049.2
#rsa 1024 bits 0.0283s 0.0015s 35.3 674.1
#rsa 2048 bits 0.1744s 0.0050s 5.7 201.2
#rsa 4096 bits 1.1644s 0.0179s 0.9 55.7
#dsa 512 bits 0.0052s 0.0062s 191.6 162.0
#dsa 1024 bits 0.0149s 0.0180s 67.0 55.5
#
# Number of operations increases by at almost 75%
#
# Here are performance numbers for 64-bit compiler
# generated code:
#
# OpenSSL 0.9.6g [engine] 9 Aug 2002
# built on: Fri Apr 18 16:59:20 EDT 2003
# options:bn(64,64) ...
# compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3
# sign verify sign/s verify/s
#rsa 512 bits 0.0028s 0.0003s 357.1 3844.4
#rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7
#rsa 2048 bits 0.0963s 0.0028s 10.4 353.0
#rsa 4096 bits 0.6538s 0.0102s 1.5 98.1
#dsa 512 bits 0.0026s 0.0032s 382.5 313.7
#dsa 1024 bits 0.0081s 0.0099s 122.8 100.6
#
# Same benchmark with this assembler code:
#
#rsa 512 bits 0.0020s 0.0002s 510.4 6273.7
#rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3
#rsa 2048 bits 0.0540s 0.0016s 18.5 622.5
#rsa 4096 bits 0.3700s 0.0058s 2.7 171.0
#dsa 512 bits 0.0016s 0.0020s 610.7 507.1
#dsa 1024 bits 0.0047s 0.0058s 212.5 173.2
#
# Again, performance increases by at about 75%
#
# Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code)
# OpenSSL 0.9.7c 30 Sep 2003
#
# Original code.
#
#rsa 512 bits 0.0011s 0.0001s 906.1 11012.5
#rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1
#rsa 2048 bits 0.0370s 0.0010s 27.1 982.4
#rsa 4096 bits 0.2426s 0.0036s 4.1 280.4
#dsa 512 bits 0.0010s 0.0012s 1038.1 841.5
#dsa 1024 bits 0.0030s 0.0037s 329.6 269.7
#dsa 2048 bits 0.0101s 0.0127s 98.9 78.6
#
# Same benchmark with this assembler code:
#
#rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9
#rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6
#rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5
#rsa 4096 bits 0.1469s 0.0022s 6.8 449.6
#dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2
#dsa 1024 bits 0.0018s 0.0023s 545.0 442.2
#dsa 2048 bits 0.0061s 0.0075s 163.5 132.8
#
# Performance increase of ~60%
#
# If you have comments or suggestions to improve code send
# me a note at schari@us.ibm.com
#
$flavour = shift;
if ($flavour =~ /32/) {
$BITS= 32;
$BNSZ= $BITS/8;
$ISA= "\"ppc\"";
$LD= "lwz"; # load
$LDU= "lwzu"; # load and update
$ST= "stw"; # store
$STU= "stwu"; # store and update
$UMULL= "mullw"; # unsigned multiply low
$UMULH= "mulhwu"; # unsigned multiply high
$UDIV= "divwu"; # unsigned divide
$UCMPI= "cmplwi"; # unsigned compare with immediate
$UCMP= "cmplw"; # unsigned compare
$CNTLZ= "cntlzw"; # count leading zeros
$SHL= "slw"; # shift left
$SHR= "srw"; # unsigned shift right
$SHRI= "srwi"; # unsigned shift right by immediate
$SHLI= "slwi"; # shift left by immediate
$CLRU= "clrlwi"; # clear upper bits
$INSR= "insrwi"; # insert right
$ROTL= "rotlwi"; # rotate left by immediate
$TR= "tw"; # conditional trap
} elsif ($flavour =~ /64/) {
$BITS= 64;
$BNSZ= $BITS/8;
$ISA= "\"ppc64\"";
# same as above, but 64-bit mnemonics...
$LD= "ld"; # load
$LDU= "ldu"; # load and update
$ST= "std"; # store
$STU= "stdu"; # store and update
$UMULL= "mulld"; # unsigned multiply low
$UMULH= "mulhdu"; # unsigned multiply high
$UDIV= "divdu"; # unsigned divide
$UCMPI= "cmpldi"; # unsigned compare with immediate
$UCMP= "cmpld"; # unsigned compare
$CNTLZ= "cntlzd"; # count leading zeros
$SHL= "sld"; # shift left
$SHR= "srd"; # unsigned shift right
$SHRI= "srdi"; # unsigned shift right by immediate
$SHLI= "sldi"; # shift left by immediate
$CLRU= "clrldi"; # clear upper bits
$INSR= "insrdi"; # insert right
$ROTL= "rotldi"; # rotate left by immediate
$TR= "td"; # conditional trap
} else { die "nonsense $flavour"; }
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";
open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!";
$data=<<EOF;
#--------------------------------------------------------------------
#
#
#
#
# File: ppc32.s
#
# Created by: Suresh Chari
# IBM Thomas J. Watson Research Library
# Hawthorne, NY
#
#
# Description: Optimized assembly routines for OpenSSL crypto
# on the 32 bitPowerPC platform.
#
#
# Version History
#
# 2. Fixed bn_add,bn_sub and bn_div_words, added comments,
# cleaned up code. Also made a single version which can
# be used for both the AIX and Linux compilers. See NOTE
# below.
# 12/05/03 Suresh Chari
# (with lots of help from) Andy Polyakov
##
# 1. Initial version 10/20/02 Suresh Chari
#
#
# The following file works for the xlc,cc
# and gcc compilers.
#
# NOTE: To get the file to link correctly with the gcc compiler
# you have to change the names of the routines and remove
# the first .(dot) character. This should automatically
# be done in the build process.
#
# Hand optimized assembly code for the following routines
#
# bn_sqr_comba4
# bn_sqr_comba8
# bn_mul_comba4
# bn_mul_comba8
# bn_sub_words
# bn_add_words
# bn_div_words
# bn_sqr_words
# bn_mul_words
# bn_mul_add_words
#
# NOTE: It is possible to optimize this code more for
# specific PowerPC or Power architectures. On the Northstar
# architecture the optimizations in this file do
# NOT provide much improvement.
#
# If you have comments or suggestions to improve code send
# me a note at schari\@us.ibm.com
#
#--------------------------------------------------------------------------
#
# Defines to be used in the assembly code.
#
#.set r0,0 # we use it as storage for value of 0
#.set SP,1 # preserved
#.set RTOC,2 # preserved
#.set r3,3 # 1st argument/return value
#.set r4,4 # 2nd argument/volatile register
#.set r5,5 # 3rd argument/volatile register
#.set r6,6 # ...
#.set r7,7
#.set r8,8
#.set r9,9
#.set r10,10
#.set r11,11
#.set r12,12
#.set r13,13 # not used, nor any other "below" it...
# Declare function names to be global
# NOTE: For gcc these names MUST be changed to remove
# the first . i.e. for example change ".bn_sqr_comba4"
# to "bn_sqr_comba4". This should be automatically done
# in the build.
.globl .bn_sqr_comba4
.globl .bn_sqr_comba8
.globl .bn_mul_comba4
.globl .bn_mul_comba8
.globl .bn_sub_words
.globl .bn_add_words
.globl .bn_div_words
.globl .bn_sqr_words
.globl .bn_mul_words
.globl .bn_mul_add_words
# .text section
.machine "any"
#
# NOTE: The following label name should be changed to
# "bn_sqr_comba4" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_sqr_comba4:
#
# Optimized version of bn_sqr_comba4.
#
# void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
# r3 contains r
# r4 contains a
#
# Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows:
#
# r5,r6 are the two BN_ULONGs being multiplied.
# r7,r8 are the results of the 32x32 giving 64 bit multiply.
# r9,r10, r11 are the equivalents of c1,c2, c3.
# Here's the assembly
#
#
xor r0,r0,r0 # set r0 = 0. Used in the addze
# instructions below
#sqr_add_c(a,0,c1,c2,c3)
$LD r5,`0*$BNSZ`(r4)
$UMULL r9,r5,r5
$UMULH r10,r5,r5 #in first iteration. No need
#to add since c1=c2=c3=0.
# Note c3(r11) is NOT set to 0
# but will be.
$ST r9,`0*$BNSZ`(r3) # r[0]=c1;
# sqr_add_c2(a,1,0,c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7 # compute (r7,r8)=2*(r7,r8)
adde r8,r8,r8
addze r9,r0 # catch carry if any.
# r9= r0(=0) and carry
addc r10,r7,r10 # now add to temp result.
addze r11,r8 # r8 added to r11 which is 0
addze r9,r9
$ST r10,`1*$BNSZ`(r3) #r[1]=c2;
#sqr_add_c(a,1,c3,c1,c2)
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r0
#sqr_add_c2(a,2,0,c3,c1,c2)
$LD r6,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7
adde r8,r8,r8
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`2*$BNSZ`(r3) #r[2]=c3
#sqr_add_c2(a,3,0,c1,c2,c3);
$LD r6,`3*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7
adde r8,r8,r8
addze r11,r0
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,2,1,c1,c2,c3);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7
adde r8,r8,r8
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
$ST r9,`3*$BNSZ`(r3) #r[3]=c1
#sqr_add_c(a,2,c2,c3,c1);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r0
#sqr_add_c2(a,3,1,c2,c3,c1);
$LD r6,`3*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7
adde r8,r8,r8
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
$ST r10,`4*$BNSZ`(r3) #r[4]=c2
#sqr_add_c2(a,3,2,c3,c1,c2);
$LD r5,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r7,r7,r7
adde r8,r8,r8
addze r10,r0
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`5*$BNSZ`(r3) #r[5] = c3
#sqr_add_c(a,3,c1,c2,c3);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r9,r7,r9
adde r10,r8,r10
$ST r9,`6*$BNSZ`(r3) #r[6]=c1
$ST r10,`7*$BNSZ`(r3) #r[7]=c2
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .bn_sqr_comba4,.-.bn_sqr_comba4
#
# NOTE: The following label name should be changed to
# "bn_sqr_comba8" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_sqr_comba8:
#
# This is an optimized version of the bn_sqr_comba8 routine.
# Tightly uses the adde instruction
#
#
# void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
# r3 contains r
# r4 contains a
#
# Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows:
#
# r5,r6 are the two BN_ULONGs being multiplied.
# r7,r8 are the results of the 32x32 giving 64 bit multiply.
# r9,r10, r11 are the equivalents of c1,c2, c3.
#
# Possible optimization of loading all 8 longs of a into registers
# doesnt provide any speedup
#
xor r0,r0,r0 #set r0 = 0.Used in addze
#instructions below.
#sqr_add_c(a,0,c1,c2,c3);
$LD r5,`0*$BNSZ`(r4)
$UMULL r9,r5,r5 #1st iteration: no carries.
$UMULH r10,r5,r5
$ST r9,`0*$BNSZ`(r3) # r[0]=c1;
#sqr_add_c2(a,1,0,c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10 #add the two register number
adde r11,r8,r0 # (r8,r7) to the three register
addze r9,r0 # number (r9,r11,r10).NOTE:r0=0
addc r10,r7,r10 #add the two register number
adde r11,r8,r11 # (r8,r7) to the three register
addze r9,r9 # number (r9,r11,r10).
$ST r10,`1*$BNSZ`(r3) # r[1]=c2
#sqr_add_c(a,1,c3,c1,c2);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r0
#sqr_add_c2(a,2,0,c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`2*$BNSZ`(r3) #r[2]=c3
#sqr_add_c2(a,3,0,c1,c2,c3);
$LD r6,`3*$BNSZ`(r4) #r6 = a[3]. r5 is already a[0].
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r0
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,2,1,c1,c2,c3);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
$ST r9,`3*$BNSZ`(r3) #r[3]=c1;
#sqr_add_c(a,2,c2,c3,c1);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r0
#sqr_add_c2(a,3,1,c2,c3,c1);
$LD r6,`3*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
#sqr_add_c2(a,4,0,c2,c3,c1);
$LD r5,`0*$BNSZ`(r4)
$LD r6,`4*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
$ST r10,`4*$BNSZ`(r3) #r[4]=c2;
#sqr_add_c2(a,5,0,c3,c1,c2);
$LD r6,`5*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r0
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
#sqr_add_c2(a,4,1,c3,c1,c2);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`4*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
#sqr_add_c2(a,3,2,c3,c1,c2);
$LD r5,`2*$BNSZ`(r4)
$LD r6,`3*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`5*$BNSZ`(r3) #r[5]=c3;
#sqr_add_c(a,3,c1,c2,c3);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r0
#sqr_add_c2(a,4,2,c1,c2,c3);
$LD r6,`4*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,5,1,c1,c2,c3);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`5*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,6,0,c1,c2,c3);
$LD r5,`0*$BNSZ`(r4)
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
$ST r9,`6*$BNSZ`(r3) #r[6]=c1;
#sqr_add_c2(a,7,0,c2,c3,c1);
$LD r6,`7*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r0
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
#sqr_add_c2(a,6,1,c2,c3,c1);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
#sqr_add_c2(a,5,2,c2,c3,c1);
$LD r5,`2*$BNSZ`(r4)
$LD r6,`5*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
#sqr_add_c2(a,4,3,c2,c3,c1);
$LD r5,`3*$BNSZ`(r4)
$LD r6,`4*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
$ST r10,`7*$BNSZ`(r3) #r[7]=c2;
#sqr_add_c(a,4,c3,c1,c2);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r0
#sqr_add_c2(a,5,3,c3,c1,c2);
$LD r6,`5*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
#sqr_add_c2(a,6,2,c3,c1,c2);
$LD r5,`2*$BNSZ`(r4)
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
#sqr_add_c2(a,7,1,c3,c1,c2);
$LD r5,`1*$BNSZ`(r4)
$LD r6,`7*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`8*$BNSZ`(r3) #r[8]=c3;
#sqr_add_c2(a,7,2,c1,c2,c3);
$LD r5,`2*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r0
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,6,3,c1,c2,c3);
$LD r5,`3*$BNSZ`(r4)
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
#sqr_add_c2(a,5,4,c1,c2,c3);
$LD r5,`4*$BNSZ`(r4)
$LD r6,`5*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
$ST r9,`9*$BNSZ`(r3) #r[9]=c1;
#sqr_add_c(a,5,c2,c3,c1);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r0
#sqr_add_c2(a,6,4,c2,c3,c1);
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
#sqr_add_c2(a,7,3,c2,c3,c1);
$LD r5,`3*$BNSZ`(r4)
$LD r6,`7*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
$ST r10,`10*$BNSZ`(r3) #r[10]=c2;
#sqr_add_c2(a,7,4,c3,c1,c2);
$LD r5,`4*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r0
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
#sqr_add_c2(a,6,5,c3,c1,c2);
$LD r5,`5*$BNSZ`(r4)
$LD r6,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
addc r11,r7,r11
adde r9,r8,r9
addze r10,r10
$ST r11,`11*$BNSZ`(r3) #r[11]=c3;
#sqr_add_c(a,6,c1,c2,c3);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r0
#sqr_add_c2(a,7,5,c1,c2,c3)
$LD r6,`7*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
addc r9,r7,r9
adde r10,r8,r10
addze r11,r11
$ST r9,`12*$BNSZ`(r3) #r[12]=c1;
#sqr_add_c2(a,7,6,c2,c3,c1)
$LD r5,`6*$BNSZ`(r4)
$UMULL r7,r5,r6
$UMULH r8,r5,r6
addc r10,r7,r10
adde r11,r8,r11
addze r9,r0
addc r10,r7,r10
adde r11,r8,r11
addze r9,r9
$ST r10,`13*$BNSZ`(r3) #r[13]=c2;
#sqr_add_c(a,7,c3,c1,c2);
$UMULL r7,r6,r6
$UMULH r8,r6,r6
addc r11,r7,r11
adde r9,r8,r9
$ST r11,`14*$BNSZ`(r3) #r[14]=c3;
$ST r9, `15*$BNSZ`(r3) #r[15]=c1;
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .bn_sqr_comba8,.-.bn_sqr_comba8
#
# NOTE: The following label name should be changed to
# "bn_mul_comba4" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_mul_comba4:
#
# This is an optimized version of the bn_mul_comba4 routine.
#
# void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
# r3 contains r
# r4 contains a
# r5 contains b
# r6, r7 are the 2 BN_ULONGs being multiplied.
# r8, r9 are the results of the 32x32 giving 64 multiply.
# r10, r11, r12 are the equivalents of c1, c2, and c3.
#
xor r0,r0,r0 #r0=0. Used in addze below.
#mul_add_c(a[0],b[0],c1,c2,c3);
$LD r6,`0*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r10,r6,r7
$UMULH r11,r6,r7
$ST r10,`0*$BNSZ`(r3) #r[0]=c1
#mul_add_c(a[0],b[1],c2,c3,c1);
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r8,r11
adde r12,r9,r0
addze r10,r0
#mul_add_c(a[1],b[0],c2,c3,c1);
$LD r6, `1*$BNSZ`(r4)
$LD r7, `0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r8,r11
adde r12,r9,r12
addze r10,r10
$ST r11,`1*$BNSZ`(r3) #r[1]=c2
#mul_add_c(a[2],b[0],c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r8,r12
adde r10,r9,r10
addze r11,r0
#mul_add_c(a[1],b[1],c3,c1,c2);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r8,r12
adde r10,r9,r10
addze r11,r11
#mul_add_c(a[0],b[2],c3,c1,c2);
$LD r6,`0*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r8,r12
adde r10,r9,r10
addze r11,r11
$ST r12,`2*$BNSZ`(r3) #r[2]=c3
#mul_add_c(a[0],b[3],c1,c2,c3);
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r8,r10
adde r11,r9,r11
addze r12,r0
#mul_add_c(a[1],b[2],c1,c2,c3);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r8,r10
adde r11,r9,r11
addze r12,r12
#mul_add_c(a[2],b[1],c1,c2,c3);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r8,r10
adde r11,r9,r11
addze r12,r12
#mul_add_c(a[3],b[0],c1,c2,c3);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r8,r10
adde r11,r9,r11
addze r12,r12
$ST r10,`3*$BNSZ`(r3) #r[3]=c1
#mul_add_c(a[3],b[1],c2,c3,c1);
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r8,r11
adde r12,r9,r12
addze r10,r0
#mul_add_c(a[2],b[2],c2,c3,c1);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r8,r11
adde r12,r9,r12
addze r10,r10
#mul_add_c(a[1],b[3],c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r8,r11
adde r12,r9,r12
addze r10,r10
$ST r11,`4*$BNSZ`(r3) #r[4]=c2
#mul_add_c(a[2],b[3],c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r8,r12
adde r10,r9,r10
addze r11,r0
#mul_add_c(a[3],b[2],c3,c1,c2);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r8,r12
adde r10,r9,r10
addze r11,r11
$ST r12,`5*$BNSZ`(r3) #r[5]=c3
#mul_add_c(a[3],b[3],c1,c2,c3);
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r8,r10
adde r11,r9,r11
$ST r10,`6*$BNSZ`(r3) #r[6]=c1
$ST r11,`7*$BNSZ`(r3) #r[7]=c2
blr
.long 0
.byte 0,12,0x14,0,0,0,3,0
.long 0
.size .bn_mul_comba4,.-.bn_mul_comba4
#
# NOTE: The following label name should be changed to
# "bn_mul_comba8" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_mul_comba8:
#
# Optimized version of the bn_mul_comba8 routine.
#
# void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
# r3 contains r
# r4 contains a
# r5 contains b
# r6, r7 are the 2 BN_ULONGs being multiplied.
# r8, r9 are the results of the 32x32 giving 64 multiply.
# r10, r11, r12 are the equivalents of c1, c2, and c3.
#
xor r0,r0,r0 #r0=0. Used in addze below.
#mul_add_c(a[0],b[0],c1,c2,c3);
$LD r6,`0*$BNSZ`(r4) #a[0]
$LD r7,`0*$BNSZ`(r5) #b[0]
$UMULL r10,r6,r7
$UMULH r11,r6,r7
$ST r10,`0*$BNSZ`(r3) #r[0]=c1;
#mul_add_c(a[0],b[1],c2,c3,c1);
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
addze r12,r9 # since we didnt set r12 to zero before.
addze r10,r0
#mul_add_c(a[1],b[0],c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
$ST r11,`1*$BNSZ`(r3) #r[1]=c2;
#mul_add_c(a[2],b[0],c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r0
#mul_add_c(a[1],b[1],c3,c1,c2);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[0],b[2],c3,c1,c2);
$LD r6,`0*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
$ST r12,`2*$BNSZ`(r3) #r[2]=c3;
#mul_add_c(a[0],b[3],c1,c2,c3);
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r0
#mul_add_c(a[1],b[2],c1,c2,c3);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[2],b[1],c1,c2,c3);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[3],b[0],c1,c2,c3);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
$ST r10,`3*$BNSZ`(r3) #r[3]=c1;
#mul_add_c(a[4],b[0],c2,c3,c1);
$LD r6,`4*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r0
#mul_add_c(a[3],b[1],c2,c3,c1);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[2],b[2],c2,c3,c1);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[1],b[3],c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[0],b[4],c2,c3,c1);
$LD r6,`0*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
$ST r11,`4*$BNSZ`(r3) #r[4]=c2;
#mul_add_c(a[0],b[5],c3,c1,c2);
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r0
#mul_add_c(a[1],b[4],c3,c1,c2);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[2],b[3],c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[3],b[2],c3,c1,c2);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[4],b[1],c3,c1,c2);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[5],b[0],c3,c1,c2);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
$ST r12,`5*$BNSZ`(r3) #r[5]=c3;
#mul_add_c(a[6],b[0],c1,c2,c3);
$LD r6,`6*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r0
#mul_add_c(a[5],b[1],c1,c2,c3);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[4],b[2],c1,c2,c3);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[3],b[3],c1,c2,c3);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[2],b[4],c1,c2,c3);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[1],b[5],c1,c2,c3);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[0],b[6],c1,c2,c3);
$LD r6,`0*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
$ST r10,`6*$BNSZ`(r3) #r[6]=c1;
#mul_add_c(a[0],b[7],c2,c3,c1);
$LD r7,`7*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r0
#mul_add_c(a[1],b[6],c2,c3,c1);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[2],b[5],c2,c3,c1);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[3],b[4],c2,c3,c1);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[4],b[3],c2,c3,c1);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[5],b[2],c2,c3,c1);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[6],b[1],c2,c3,c1);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[7],b[0],c2,c3,c1);
$LD r6,`7*$BNSZ`(r4)
$LD r7,`0*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
$ST r11,`7*$BNSZ`(r3) #r[7]=c2;
#mul_add_c(a[7],b[1],c3,c1,c2);
$LD r7,`1*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r0
#mul_add_c(a[6],b[2],c3,c1,c2);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[5],b[3],c3,c1,c2);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[4],b[4],c3,c1,c2);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[3],b[5],c3,c1,c2);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[2],b[6],c3,c1,c2);
$LD r6,`2*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[1],b[7],c3,c1,c2);
$LD r6,`1*$BNSZ`(r4)
$LD r7,`7*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
$ST r12,`8*$BNSZ`(r3) #r[8]=c3;
#mul_add_c(a[2],b[7],c1,c2,c3);
$LD r6,`2*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r0
#mul_add_c(a[3],b[6],c1,c2,c3);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[4],b[5],c1,c2,c3);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[5],b[4],c1,c2,c3);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[6],b[3],c1,c2,c3);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[7],b[2],c1,c2,c3);
$LD r6,`7*$BNSZ`(r4)
$LD r7,`2*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
$ST r10,`9*$BNSZ`(r3) #r[9]=c1;
#mul_add_c(a[7],b[3],c2,c3,c1);
$LD r7,`3*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r0
#mul_add_c(a[6],b[4],c2,c3,c1);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[5],b[5],c2,c3,c1);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[4],b[6],c2,c3,c1);
$LD r6,`4*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
#mul_add_c(a[3],b[7],c2,c3,c1);
$LD r6,`3*$BNSZ`(r4)
$LD r7,`7*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
$ST r11,`10*$BNSZ`(r3) #r[10]=c2;
#mul_add_c(a[4],b[7],c3,c1,c2);
$LD r6,`4*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r0
#mul_add_c(a[5],b[6],c3,c1,c2);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[6],b[5],c3,c1,c2);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
#mul_add_c(a[7],b[4],c3,c1,c2);
$LD r6,`7*$BNSZ`(r4)
$LD r7,`4*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
addze r11,r11
$ST r12,`11*$BNSZ`(r3) #r[11]=c3;
#mul_add_c(a[7],b[5],c1,c2,c3);
$LD r7,`5*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r0
#mul_add_c(a[6],b[6],c1,c2,c3);
$LD r6,`6*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
#mul_add_c(a[5],b[7],c1,c2,c3);
$LD r6,`5*$BNSZ`(r4)
$LD r7,`7*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r10,r10,r8
adde r11,r11,r9
addze r12,r12
$ST r10,`12*$BNSZ`(r3) #r[12]=c1;
#mul_add_c(a[6],b[7],c2,c3,c1);
$LD r6,`6*$BNSZ`(r4)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r0
#mul_add_c(a[7],b[6],c2,c3,c1);
$LD r6,`7*$BNSZ`(r4)
$LD r7,`6*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r11,r11,r8
adde r12,r12,r9
addze r10,r10
$ST r11,`13*$BNSZ`(r3) #r[13]=c2;
#mul_add_c(a[7],b[7],c3,c1,c2);
$LD r7,`7*$BNSZ`(r5)
$UMULL r8,r6,r7
$UMULH r9,r6,r7
addc r12,r12,r8
adde r10,r10,r9
$ST r12,`14*$BNSZ`(r3) #r[14]=c3;
$ST r10,`15*$BNSZ`(r3) #r[15]=c1;
blr
.long 0
.byte 0,12,0x14,0,0,0,3,0
.long 0
.size .bn_mul_comba8,.-.bn_mul_comba8
#
# NOTE: The following label name should be changed to
# "bn_sub_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
#
.align 4
.bn_sub_words:
#
# Handcoded version of bn_sub_words
#
#BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
#
# r3 = r
# r4 = a
# r5 = b
# r6 = n
#
# Note: No loop unrolling done since this is not a performance
# critical loop.
xor r0,r0,r0 #set r0 = 0
#
# check for r6 = 0 AND set carry bit.
#
subfc. r7,r0,r6 # If r6 is 0 then result is 0.
# if r6 > 0 then result !=0
# In either case carry bit is set.
beq Lppcasm_sub_adios
addi r4,r4,-$BNSZ
addi r3,r3,-$BNSZ
addi r5,r5,-$BNSZ
mtctr r6
Lppcasm_sub_mainloop:
$LDU r7,$BNSZ(r4)
$LDU r8,$BNSZ(r5)
subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8)
# if carry = 1 this is r7-r8. Else it
# is r7-r8 -1 as we need.
$STU r6,$BNSZ(r3)
bdnz Lppcasm_sub_mainloop
Lppcasm_sub_adios:
subfze r3,r0 # if carry bit is set then r3 = 0 else -1
andi. r3,r3,1 # keep only last bit.
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
.size .bn_sub_words,.-.bn_sub_words
#
# NOTE: The following label name should be changed to
# "bn_add_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_add_words:
#
# Handcoded version of bn_add_words
#
#BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
#
# r3 = r
# r4 = a
# r5 = b
# r6 = n
#
# Note: No loop unrolling done since this is not a performance
# critical loop.
xor r0,r0,r0
#
# check for r6 = 0. Is this needed?
#
addic. r6,r6,0 #test r6 and clear carry bit.
beq Lppcasm_add_adios
addi r4,r4,-$BNSZ
addi r3,r3,-$BNSZ
addi r5,r5,-$BNSZ
mtctr r6
Lppcasm_add_mainloop:
$LDU r7,$BNSZ(r4)
$LDU r8,$BNSZ(r5)
adde r8,r7,r8
$STU r8,$BNSZ(r3)
bdnz Lppcasm_add_mainloop
Lppcasm_add_adios:
addze r3,r0 #return carry bit.
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
.size .bn_add_words,.-.bn_add_words
#
# NOTE: The following label name should be changed to
# "bn_div_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_div_words:
#
# This is a cleaned up version of code generated by
# the AIX compiler. The only optimization is to use
# the PPC instruction to count leading zeros instead
# of call to num_bits_word. Since this was compiled
# only at level -O2 we can possibly squeeze it more?
#
# r3 = h
# r4 = l
# r5 = d
$UCMPI 0,r5,0 # compare r5 and 0
bne Lppcasm_div1 # proceed if d!=0
li r3,-1 # d=0 return -1
blr
Lppcasm_div1:
xor r0,r0,r0 #r0=0
li r8,$BITS
$CNTLZ. r7,r5 #r7 = num leading 0s in d.
beq Lppcasm_div2 #proceed if no leading zeros
subf r8,r7,r8 #r8 = BN_num_bits_word(d)
$SHR. r9,r3,r8 #are there any bits above r8'th?
$TR 16,r9,r0 #if there're, signal to dump core...
Lppcasm_div2:
$UCMP 0,r3,r5 #h>=d?
blt Lppcasm_div3 #goto Lppcasm_div3 if not
subf r3,r5,r3 #h-=d ;
Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i
cmpi 0,0,r7,0 # is (i == 0)?
beq Lppcasm_div4
$SHL r3,r3,r7 # h = (h<< i)
$SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i)
$SHL r5,r5,r7 # d<<=i
or r3,r3,r8 # h = (h<<i)|(l>>(BN_BITS2-i))
$SHL r4,r4,r7 # l <<=i
Lppcasm_div4:
$SHRI r9,r5,`$BITS/2` # r9 = dh
# dl will be computed when needed
# as it saves registers.
li r6,2 #r6=2
mtctr r6 #counter will be in count.
Lppcasm_divouterloop:
$SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4)
$SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4
# compute here for innerloop.
$UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh
bne Lppcasm_div5 # goto Lppcasm_div5 if not
li r8,-1
$CLRU r8,r8,`$BITS/2` #q = BN_MASK2l
b Lppcasm_div6
Lppcasm_div5:
$UDIV r8,r3,r9 #q = h/dh
Lppcasm_div6:
$UMULL r12,r9,r8 #th = q*dh
$CLRU r10,r5,`$BITS/2` #r10=dl
$UMULL r6,r8,r10 #tl = q*dl
Lppcasm_divinnerloop:
subf r10,r12,r3 #t = h -th
$SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of...
addic. r7,r7,0 #test if r7 == 0. used below.
# now want to compute
# r7 = (t<<BN_BITS4)|((l&BN_MASK2h)>>BN_BITS4)
# the following 2 instructions do that
$SHLI r7,r10,`$BITS/2` # r7 = (t<<BN_BITS4)
or r7,r7,r11 # r7|=((l&BN_MASK2h)>>BN_BITS4)
$UCMP cr1,r6,r7 # compare (tl <= r7)
bne Lppcasm_divinnerexit
ble cr1,Lppcasm_divinnerexit
addi r8,r8,-1 #q--
subf r12,r9,r12 #th -=dh
$CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop.
subf r6,r10,r6 #tl -=dl
b Lppcasm_divinnerloop
Lppcasm_divinnerexit:
$SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4)
$SHLI r11,r6,`$BITS/2` #tl=(tl<<BN_BITS4)&BN_MASK2h;
$UCMP cr1,r4,r11 # compare l and tl
add r12,r12,r10 # th+=t
bge cr1,Lppcasm_div7 # if (l>=tl) goto Lppcasm_div7
addi r12,r12,1 # th++
Lppcasm_div7:
subf r11,r11,r4 #r11=l-tl
$UCMP cr1,r3,r12 #compare h and th
bge cr1,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8
addi r8,r8,-1 # q--
add r3,r5,r3 # h+=d
Lppcasm_div8:
subf r12,r12,r3 #r12 = h-th
$SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<<BN_BITS4
# want to compute
# h = ((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2
# the following 2 instructions will do this.
$INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2.
$ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3
bdz Lppcasm_div9 #if (count==0) break ;
$SHLI r0,r8,`$BITS/2` #ret =q<<BN_BITS4
b Lppcasm_divouterloop
Lppcasm_div9:
or r3,r8,r0
blr
.long 0
.byte 0,12,0x14,0,0,0,3,0
.long 0
.size .bn_div_words,.-.bn_div_words
#
# NOTE: The following label name should be changed to
# "bn_sqr_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_sqr_words:
#
# Optimized version of bn_sqr_words
#
# void bn_sqr_words(BN_ULONG *r, BN_ULONG *a, int n)
#
# r3 = r
# r4 = a
# r5 = n
#
# r6 = a[i].
# r7,r8 = product.
#
# No unrolling done here. Not performance critical.
addic. r5,r5,0 #test r5.
beq Lppcasm_sqr_adios
addi r4,r4,-$BNSZ
addi r3,r3,-$BNSZ
mtctr r5
Lppcasm_sqr_mainloop:
#sqr(r[0],r[1],a[0]);
$LDU r6,$BNSZ(r4)
$UMULL r7,r6,r6
$UMULH r8,r6,r6
$STU r7,$BNSZ(r3)
$STU r8,$BNSZ(r3)
bdnz Lppcasm_sqr_mainloop
Lppcasm_sqr_adios:
blr
.long 0
.byte 0,12,0x14,0,0,0,3,0
.long 0
.size .bn_sqr_words,.-.bn_sqr_words
#
# NOTE: The following label name should be changed to
# "bn_mul_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_mul_words:
#
# BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
#
# r3 = rp
# r4 = ap
# r5 = num
# r6 = w
xor r0,r0,r0
xor r12,r12,r12 # used for carry
rlwinm. r7,r5,30,2,31 # num >> 2
beq Lppcasm_mw_REM
mtctr r7
Lppcasm_mw_LOOP:
#mul(rp[0],ap[0],w,c1);
$LD r8,`0*$BNSZ`(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
addc r9,r9,r12
#addze r10,r10 #carry is NOT ignored.
#will be taken care of
#in second spin below
#using adde.
$ST r9,`0*$BNSZ`(r3)
#mul(rp[1],ap[1],w,c1);
$LD r8,`1*$BNSZ`(r4)
$UMULL r11,r6,r8
$UMULH r12,r6,r8
adde r11,r11,r10
#addze r12,r12
$ST r11,`1*$BNSZ`(r3)
#mul(rp[2],ap[2],w,c1);
$LD r8,`2*$BNSZ`(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
adde r9,r9,r12
#addze r10,r10
$ST r9,`2*$BNSZ`(r3)
#mul_add(rp[3],ap[3],w,c1);
$LD r8,`3*$BNSZ`(r4)
$UMULL r11,r6,r8
$UMULH r12,r6,r8
adde r11,r11,r10
addze r12,r12 #this spin we collect carry into
#r12
$ST r11,`3*$BNSZ`(r3)
addi r3,r3,`4*$BNSZ`
addi r4,r4,`4*$BNSZ`
bdnz Lppcasm_mw_LOOP
Lppcasm_mw_REM:
andi. r5,r5,0x3
beq Lppcasm_mw_OVER
#mul(rp[0],ap[0],w,c1);
$LD r8,`0*$BNSZ`(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
addc r9,r9,r12
addze r10,r10
$ST r9,`0*$BNSZ`(r3)
addi r12,r10,0
addi r5,r5,-1
cmpli 0,0,r5,0
beq Lppcasm_mw_OVER
#mul(rp[1],ap[1],w,c1);
$LD r8,`1*$BNSZ`(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
addc r9,r9,r12
addze r10,r10
$ST r9,`1*$BNSZ`(r3)
addi r12,r10,0
addi r5,r5,-1
cmpli 0,0,r5,0
beq Lppcasm_mw_OVER
#mul_add(rp[2],ap[2],w,c1);
$LD r8,`2*$BNSZ`(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
addc r9,r9,r12
addze r10,r10
$ST r9,`2*$BNSZ`(r3)
addi r12,r10,0
Lppcasm_mw_OVER:
addi r3,r12,0
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
.size bn_mul_words,.-bn_mul_words
#
# NOTE: The following label name should be changed to
# "bn_mul_add_words" i.e. remove the first dot
# for the gcc compiler. This should be automatically
# done in the build
#
.align 4
.bn_mul_add_words:
#
# BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
#
# r3 = rp
# r4 = ap
# r5 = num
# r6 = w
#
# empirical evidence suggests that unrolled version performs best!!
#
xor r0,r0,r0 #r0 = 0
xor r12,r12,r12 #r12 = 0 . used for carry
rlwinm. r7,r5,30,2,31 # num >> 2
beq Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover
mtctr r7
Lppcasm_maw_mainloop:
#mul_add(rp[0],ap[0],w,c1);
$LD r8,`0*$BNSZ`(r4)
$LD r11,`0*$BNSZ`(r3)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
addc r9,r9,r12 #r12 is carry.
addze r10,r10
addc r9,r9,r11
#addze r10,r10
#the above instruction addze
#is NOT needed. Carry will NOT
#be ignored. It's not affected
#by multiply and will be collected
#in the next spin
$ST r9,`0*$BNSZ`(r3)
#mul_add(rp[1],ap[1],w,c1);
$LD r8,`1*$BNSZ`(r4)
$LD r9,`1*$BNSZ`(r3)
$UMULL r11,r6,r8
$UMULH r12,r6,r8
adde r11,r11,r10 #r10 is carry.
addze r12,r12
addc r11,r11,r9
#addze r12,r12
$ST r11,`1*$BNSZ`(r3)
#mul_add(rp[2],ap[2],w,c1);
$LD r8,`2*$BNSZ`(r4)
$UMULL r9,r6,r8
$LD r11,`2*$BNSZ`(r3)
$UMULH r10,r6,r8
adde r9,r9,r12
addze r10,r10
addc r9,r9,r11
#addze r10,r10
$ST r9,`2*$BNSZ`(r3)
#mul_add(rp[3],ap[3],w,c1);
$LD r8,`3*$BNSZ`(r4)
$UMULL r11,r6,r8
$LD r9,`3*$BNSZ`(r3)
$UMULH r12,r6,r8
adde r11,r11,r10
addze r12,r12
addc r11,r11,r9
addze r12,r12
$ST r11,`3*$BNSZ`(r3)
addi r3,r3,`4*$BNSZ`
addi r4,r4,`4*$BNSZ`
bdnz Lppcasm_maw_mainloop
Lppcasm_maw_leftover:
andi. r5,r5,0x3
beq Lppcasm_maw_adios
addi r3,r3,-$BNSZ
addi r4,r4,-$BNSZ
#mul_add(rp[0],ap[0],w,c1);
mtctr r5
$LDU r8,$BNSZ(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
$LDU r11,$BNSZ(r3)
addc r9,r9,r11
addze r10,r10
addc r9,r9,r12
addze r12,r10
$ST r9,0(r3)
bdz Lppcasm_maw_adios
#mul_add(rp[1],ap[1],w,c1);
$LDU r8,$BNSZ(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
$LDU r11,$BNSZ(r3)
addc r9,r9,r11
addze r10,r10
addc r9,r9,r12
addze r12,r10
$ST r9,0(r3)
bdz Lppcasm_maw_adios
#mul_add(rp[2],ap[2],w,c1);
$LDU r8,$BNSZ(r4)
$UMULL r9,r6,r8
$UMULH r10,r6,r8
$LDU r11,$BNSZ(r3)
addc r9,r9,r11
addze r10,r10
addc r9,r9,r12
addze r12,r10
$ST r9,0(r3)
Lppcasm_maw_adios:
addi r3,r12,0
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
.size .bn_mul_add_words,.-.bn_mul_add_words
.align 4
EOF
$data =~ s/\`([^\`]*)\`/eval $1/gem;
print $data;
close STDOUT;