501 lines
15 KiB
C
501 lines
15 KiB
C
|
/* crypto/dsa/dsa_ossl.c */
|
||
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.]
|
||
|
*/
|
||
|
|
||
|
/* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include "cryptlib.h"
|
||
|
#include <openssl/bn.h>
|
||
|
#include <openssl/sha.h>
|
||
|
#include <openssl/dsa.h>
|
||
|
#include <openssl/rand.h>
|
||
|
#include <openssl/asn1.h>
|
||
|
|
||
|
static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
|
||
|
static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
|
||
|
BIGNUM **rp);
|
||
|
static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
|
||
|
DSA_SIG *sig, DSA *dsa);
|
||
|
static int dsa_init(DSA *dsa);
|
||
|
static int dsa_finish(DSA *dsa);
|
||
|
static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
|
||
|
BN_CTX *ctx);
|
||
|
|
||
|
static DSA_METHOD openssl_dsa_meth = {
|
||
|
"OpenSSL DSA method",
|
||
|
dsa_do_sign,
|
||
|
dsa_sign_setup,
|
||
|
dsa_do_verify,
|
||
|
NULL, /* dsa_mod_exp, */
|
||
|
NULL, /* dsa_bn_mod_exp, */
|
||
|
dsa_init,
|
||
|
dsa_finish,
|
||
|
0,
|
||
|
NULL,
|
||
|
NULL,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
/*-
|
||
|
* These macro wrappers replace attempts to use the dsa_mod_exp() and
|
||
|
* bn_mod_exp() handlers in the DSA_METHOD structure. We avoid the problem of
|
||
|
* having a the macro work as an expression by bundling an "err_instr". So;
|
||
|
*
|
||
|
* if (!dsa->meth->bn_mod_exp(dsa, r,dsa->g,&k,dsa->p,ctx,
|
||
|
* dsa->method_mont_p)) goto err;
|
||
|
*
|
||
|
* can be replaced by;
|
||
|
*
|
||
|
* DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, &k, dsa->p, ctx,
|
||
|
* dsa->method_mont_p);
|
||
|
*/
|
||
|
|
||
|
#define DSA_MOD_EXP(err_instr,dsa,rr,a1,p1,a2,p2,m,ctx,in_mont) \
|
||
|
do { \
|
||
|
int _tmp_res53; \
|
||
|
if ((dsa)->meth->dsa_mod_exp) \
|
||
|
_tmp_res53 = (dsa)->meth->dsa_mod_exp((dsa), (rr), (a1), (p1), \
|
||
|
(a2), (p2), (m), (ctx), (in_mont)); \
|
||
|
else \
|
||
|
_tmp_res53 = BN_mod_exp2_mont((rr), (a1), (p1), (a2), (p2), \
|
||
|
(m), (ctx), (in_mont)); \
|
||
|
if (!_tmp_res53) err_instr; \
|
||
|
} while(0)
|
||
|
#define DSA_BN_MOD_EXP(err_instr,dsa,r,a,p,m,ctx,m_ctx) \
|
||
|
do { \
|
||
|
int _tmp_res53; \
|
||
|
if ((dsa)->meth->bn_mod_exp) \
|
||
|
_tmp_res53 = (dsa)->meth->bn_mod_exp((dsa), (r), (a), (p), \
|
||
|
(m), (ctx), (m_ctx)); \
|
||
|
else \
|
||
|
_tmp_res53 = BN_mod_exp_mont((r), (a), (p), (m), (ctx), (m_ctx)); \
|
||
|
if (!_tmp_res53) err_instr; \
|
||
|
} while(0)
|
||
|
|
||
|
const DSA_METHOD *DSA_OpenSSL(void)
|
||
|
{
|
||
|
return &openssl_dsa_meth;
|
||
|
}
|
||
|
|
||
|
static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
|
||
|
{
|
||
|
BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
|
||
|
BIGNUM *m, *blind, *blindm, *tmp;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
int reason = ERR_R_BN_LIB;
|
||
|
DSA_SIG *ret = NULL;
|
||
|
int noredo = 0;
|
||
|
|
||
|
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
|
||
|
reason = DSA_R_MISSING_PARAMETERS;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
s = BN_new();
|
||
|
if (s == NULL)
|
||
|
goto err;
|
||
|
ctx = BN_CTX_new();
|
||
|
if (ctx == NULL)
|
||
|
goto err;
|
||
|
m = BN_CTX_get(ctx);
|
||
|
blind = BN_CTX_get(ctx);
|
||
|
blindm = BN_CTX_get(ctx);
|
||
|
tmp = BN_CTX_get(ctx);
|
||
|
if (tmp == NULL)
|
||
|
goto err;
|
||
|
|
||
|
redo:
|
||
|
if ((dsa->kinv == NULL) || (dsa->r == NULL)) {
|
||
|
if (!DSA_sign_setup(dsa, ctx, &kinv, &r))
|
||
|
goto err;
|
||
|
} else {
|
||
|
kinv = dsa->kinv;
|
||
|
dsa->kinv = NULL;
|
||
|
r = dsa->r;
|
||
|
dsa->r = NULL;
|
||
|
noredo = 1;
|
||
|
}
|
||
|
|
||
|
if (dlen > BN_num_bytes(dsa->q))
|
||
|
/*
|
||
|
* if the digest length is greater than the size of q use the
|
||
|
* BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
|
||
|
* 4.2
|
||
|
*/
|
||
|
dlen = BN_num_bytes(dsa->q);
|
||
|
if (BN_bin2bn(dgst, dlen, m) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* The normal signature calculation is:
|
||
|
*
|
||
|
* s := k^-1 * (m + r * priv_key) mod q
|
||
|
*
|
||
|
* We will blind this to protect against side channel attacks
|
||
|
*
|
||
|
* s := blind^-1 * k^-1 * (blind * m + blind * r * priv_key) mod q
|
||
|
*/
|
||
|
|
||
|
/* Generate a blinding value */
|
||
|
do {
|
||
|
if (!BN_rand(blind, BN_num_bits(dsa->q) - 1, -1, 0))
|
||
|
goto err;
|
||
|
} while (BN_is_zero(blind));
|
||
|
BN_set_flags(blind, BN_FLG_CONSTTIME);
|
||
|
BN_set_flags(blindm, BN_FLG_CONSTTIME);
|
||
|
BN_set_flags(tmp, BN_FLG_CONSTTIME);
|
||
|
|
||
|
/* tmp := blind * priv_key * r mod q */
|
||
|
if (!BN_mod_mul(tmp, blind, dsa->priv_key, dsa->q, ctx))
|
||
|
goto err;
|
||
|
if (!BN_mod_mul(tmp, tmp, r, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* blindm := blind * m mod q */
|
||
|
if (!BN_mod_mul(blindm, blind, m, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* s : = (blind * priv_key * r) + (blind * m) mod q */
|
||
|
if (!BN_mod_add_quick(s, tmp, blindm, dsa->q))
|
||
|
goto err;
|
||
|
|
||
|
/* s := s * k^-1 mod q */
|
||
|
if (!BN_mod_mul(s, s, kinv, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* s:= s * blind^-1 mod q */
|
||
|
if (BN_mod_inverse(blind, blind, dsa->q, ctx) == NULL)
|
||
|
goto err;
|
||
|
if (!BN_mod_mul(s, s, blind, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* Redo if r or s is zero as required by FIPS 186-3: this is very
|
||
|
* unlikely.
|
||
|
*/
|
||
|
if (BN_is_zero(r) || BN_is_zero(s)) {
|
||
|
if (noredo) {
|
||
|
reason = DSA_R_NEED_NEW_SETUP_VALUES;
|
||
|
goto err;
|
||
|
}
|
||
|
goto redo;
|
||
|
}
|
||
|
ret = DSA_SIG_new();
|
||
|
if (ret == NULL)
|
||
|
goto err;
|
||
|
ret->r = r;
|
||
|
ret->s = s;
|
||
|
|
||
|
err:
|
||
|
if (ret == NULL) {
|
||
|
DSAerr(DSA_F_DSA_DO_SIGN, reason);
|
||
|
BN_free(r);
|
||
|
BN_free(s);
|
||
|
}
|
||
|
BN_CTX_free(ctx);
|
||
|
BN_clear_free(kinv);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
|
||
|
BIGNUM **rp)
|
||
|
{
|
||
|
BN_CTX *ctx;
|
||
|
BIGNUM k, kq, *K, *kinv = NULL, *r = NULL;
|
||
|
BIGNUM l, m;
|
||
|
int ret = 0;
|
||
|
int q_bits;
|
||
|
|
||
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
||
|
DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PARAMETERS);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
BN_init(&k);
|
||
|
BN_init(&kq);
|
||
|
BN_init(&l);
|
||
|
BN_init(&m);
|
||
|
|
||
|
if (ctx_in == NULL) {
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
} else
|
||
|
ctx = ctx_in;
|
||
|
|
||
|
if ((r = BN_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/* Preallocate space */
|
||
|
q_bits = BN_num_bits(dsa->q) + sizeof(dsa->q->d[0]) * 16;
|
||
|
if (!BN_set_bit(&k, q_bits)
|
||
|
|| !BN_set_bit(&l, q_bits)
|
||
|
|| !BN_set_bit(&m, q_bits))
|
||
|
goto err;
|
||
|
|
||
|
/* Get random k */
|
||
|
do
|
||
|
if (!BN_rand_range(&k, dsa->q))
|
||
|
goto err;
|
||
|
while (BN_is_zero(&k));
|
||
|
|
||
|
if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {
|
||
|
BN_set_flags(&k, BN_FLG_CONSTTIME);
|
||
|
BN_set_flags(&l, BN_FLG_CONSTTIME);
|
||
|
}
|
||
|
|
||
|
if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
|
||
|
if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,
|
||
|
CRYPTO_LOCK_DSA, dsa->p, ctx))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* Compute r = (g^k mod p) mod q */
|
||
|
|
||
|
if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {
|
||
|
/*
|
||
|
* We do not want timing information to leak the length of k, so we
|
||
|
* compute G^k using an equivalent scalar of fixed bit-length.
|
||
|
*
|
||
|
* We unconditionally perform both of these additions to prevent a
|
||
|
* small timing information leakage. We then choose the sum that is
|
||
|
* one bit longer than the modulus.
|
||
|
*
|
||
|
* TODO: revisit the BN_copy aiming for a memory access agnostic
|
||
|
* conditional copy.
|
||
|
*/
|
||
|
if (!BN_add(&l, &k, dsa->q)
|
||
|
|| !BN_add(&m, &l, dsa->q)
|
||
|
|| !BN_copy(&kq, BN_num_bits(&l) > q_bits ? &l : &m))
|
||
|
goto err;
|
||
|
|
||
|
BN_set_flags(&kq, BN_FLG_CONSTTIME);
|
||
|
|
||
|
K = &kq;
|
||
|
} else {
|
||
|
K = &k;
|
||
|
}
|
||
|
|
||
|
DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,
|
||
|
dsa->method_mont_p);
|
||
|
if (!BN_mod(r, r, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* Compute part of 's = inv(k) (m + xr) mod q' */
|
||
|
if ((kinv = dsa_mod_inverse_fermat(&k, dsa->q, ctx)) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (*kinvp != NULL)
|
||
|
BN_clear_free(*kinvp);
|
||
|
*kinvp = kinv;
|
||
|
kinv = NULL;
|
||
|
if (*rp != NULL)
|
||
|
BN_clear_free(*rp);
|
||
|
*rp = r;
|
||
|
ret = 1;
|
||
|
err:
|
||
|
if (!ret) {
|
||
|
DSAerr(DSA_F_DSA_SIGN_SETUP, ERR_R_BN_LIB);
|
||
|
if (r != NULL)
|
||
|
BN_clear_free(r);
|
||
|
}
|
||
|
if (ctx_in == NULL)
|
||
|
BN_CTX_free(ctx);
|
||
|
BN_clear_free(&k);
|
||
|
BN_clear_free(&kq);
|
||
|
BN_clear_free(&l);
|
||
|
BN_clear_free(&m);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
|
||
|
DSA_SIG *sig, DSA *dsa)
|
||
|
{
|
||
|
BN_CTX *ctx;
|
||
|
BIGNUM u1, u2, t1;
|
||
|
BN_MONT_CTX *mont = NULL;
|
||
|
int ret = -1, i;
|
||
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
||
|
DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
i = BN_num_bits(dsa->q);
|
||
|
/* fips 186-3 allows only different sizes for q */
|
||
|
if (i != 160 && i != 224 && i != 256) {
|
||
|
DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
|
||
|
DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE);
|
||
|
return -1;
|
||
|
}
|
||
|
BN_init(&u1);
|
||
|
BN_init(&u2);
|
||
|
BN_init(&t1);
|
||
|
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
|
||
|
BN_ucmp(sig->r, dsa->q) >= 0) {
|
||
|
ret = 0;
|
||
|
goto err;
|
||
|
}
|
||
|
if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
|
||
|
BN_ucmp(sig->s, dsa->q) >= 0) {
|
||
|
ret = 0;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate W = inv(S) mod Q save W in u2
|
||
|
*/
|
||
|
if ((BN_mod_inverse(&u2, sig->s, dsa->q, ctx)) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/* save M in u1 */
|
||
|
if (dgst_len > (i >> 3))
|
||
|
/*
|
||
|
* if the digest length is greater than the size of q use the
|
||
|
* BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
|
||
|
* 4.2
|
||
|
*/
|
||
|
dgst_len = (i >> 3);
|
||
|
if (BN_bin2bn(dgst, dgst_len, &u1) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
/* u1 = M * w mod q */
|
||
|
if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* u2 = r * w mod q */
|
||
|
if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
|
||
|
mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
|
||
|
CRYPTO_LOCK_DSA, dsa->p, ctx);
|
||
|
if (!mont)
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
DSA_MOD_EXP(goto err, dsa, &t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p,
|
||
|
ctx, mont);
|
||
|
/* BN_copy(&u1,&t1); */
|
||
|
/* let u1 = u1 mod q */
|
||
|
if (!BN_mod(&u1, &t1, dsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* V is now in u1. If the signature is correct, it will be equal to R.
|
||
|
*/
|
||
|
ret = (BN_ucmp(&u1, sig->r) == 0);
|
||
|
|
||
|
err:
|
||
|
if (ret < 0)
|
||
|
DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB);
|
||
|
if (ctx != NULL)
|
||
|
BN_CTX_free(ctx);
|
||
|
BN_free(&u1);
|
||
|
BN_free(&u2);
|
||
|
BN_free(&t1);
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
static int dsa_init(DSA *dsa)
|
||
|
{
|
||
|
dsa->flags |= DSA_FLAG_CACHE_MONT_P;
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
static int dsa_finish(DSA *dsa)
|
||
|
{
|
||
|
if (dsa->method_mont_p)
|
||
|
BN_MONT_CTX_free(dsa->method_mont_p);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute the inverse of k modulo q.
|
||
|
* Since q is prime, Fermat's Little Theorem applies, which reduces this to
|
||
|
* mod-exp operation. Both the exponent and modulus are public information
|
||
|
* so a mod-exp that doesn't leak the base is sufficient. A newly allocated
|
||
|
* BIGNUM is returned which the caller must free.
|
||
|
*/
|
||
|
static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
|
||
|
BN_CTX *ctx)
|
||
|
{
|
||
|
BIGNUM *res = NULL;
|
||
|
BIGNUM *r, e;
|
||
|
|
||
|
if ((r = BN_new()) == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
BN_init(&e);
|
||
|
|
||
|
if (BN_set_word(r, 2)
|
||
|
&& BN_sub(&e, q, r)
|
||
|
&& BN_mod_exp_mont(r, k, &e, q, ctx, NULL))
|
||
|
res = r;
|
||
|
else
|
||
|
BN_free(r);
|
||
|
BN_free(&e);
|
||
|
return res;
|
||
|
}
|