snapraid/raid/mktables.c
2025-08-12 21:36:56 +02:00

429 lines
9.2 KiB
C

/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdio.h>
#include <stdint.h>
/**
* Multiplication a*b in GF(2^8).
*/
static uint8_t gfmul(uint8_t a, uint8_t b)
{
uint8_t v;
v = 0;
while (b) {
if ((b & 1) != 0)
v ^= a;
if ((a & 0x80) != 0) {
a <<= 1;
a ^= 0x1d;
} else {
a <<= 1;
}
b >>= 1;
}
return v;
}
/**
* Inversion (1/a) in GF(2^8).
*/
uint8_t gfinv[256];
/**
* Number of parities.
* This is the number of rows of the generator matrix.
*/
#define PARITY 6
/**
* Number of disks.
* This is the number of columns of the generator matrix.
*/
#define DISK (257 - PARITY)
/**
* Setup the Cauchy matrix used to generate the parity.
*/
static void set_cauchy(uint8_t *matrix)
{
int i, j;
uint8_t inv_x, y;
/*
* The first row of the generator matrix is formed by all 1.
*
* The generator matrix is an Extended Cauchy matrix built from
* a Cauchy matrix adding at the top a row of all 1.
*
* Extending a Cauchy matrix in this way maintains the MDS property
* of the matrix.
*
* For example, considering a generator matrix of 4x6 we have now:
*
* 1 1 1 1 1 1
* - - - - - -
* - - - - - -
* - - - - - -
*/
for (i = 0; i < DISK; ++i)
matrix[0 * DISK + i] = 1;
/*
* Second row is formed with powers 2^i, and it's the first
* row of the Cauchy matrix.
*
* Each element of the Cauchy matrix is in the form 1/(x_i + y_j)
* where all x_i and y_j must be different for any i and j.
*
* For the first row with j=0, we choose x_i = 2^-i and y_0 = 0
* and we obtain a first row formed as:
*
* 1/(x_i + y_0) = 1/(2^-i + 0) = 2^i
*
* with 2^-i != 0 for any i
*
* In the example we get:
*
* x_0 = 1
* x_1 = 142
* x_2 = 71
* x_3 = 173
* x_4 = 216
* x_5 = 108
* y_0 = 0
*
* with the matrix:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* - - - - - -
* - - - - - -
*/
inv_x = 1;
for (i = 0; i < DISK; ++i) {
matrix[1 * DISK + i] = inv_x;
inv_x = gfmul(2, inv_x);
}
/*
* The rest of the Cauchy matrix is formed choosing for each row j
* a new y_j = 2^j and reusing the x_i already assigned in the first
* row obtaining :
*
* 1/(x_i + y_j) = 1/(2^-i + 2^j)
*
* with 2^-i + 2^j != 0 for any i,j with i>=0,j>=1,i+j<255
*
* In the example we get:
*
* y_1 = 2
* y_2 = 4
*
* with the matrix:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* 244 83 78 183 118 47
* 167 39 213 59 153 82
*/
y = 2;
for (j = 0; j < PARITY - 2; ++j) {
inv_x = 1;
for (i = 0; i < DISK; ++i) {
uint8_t x = gfinv[inv_x];
matrix[(j + 2) * DISK + i] = gfinv[y ^ x];
inv_x = gfmul(2, inv_x);
}
y = gfmul(2, y);
}
/*
* Finally we adjust the matrix multiplying each row for
* the inverse of the first element in the row.
*
* Also this operation maintains the MDS property of the matrix.
*
* Resulting in:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* 1 245 210 196 154 113
* 1 187 166 215 7 106
*/
for (j = 0; j < PARITY - 2; ++j) {
uint8_t f = gfinv[matrix[(j + 2) * DISK]];
for (i = 0; i < DISK; ++i)
matrix[(j + 2) * DISK + i] = gfmul(matrix[(j + 2) * DISK + i], f);
}
}
/**
* Setup the Power matrix used to generate the parity.
*/
static void set_power(uint8_t *matrix)
{
unsigned i;
uint8_t v;
v = 1;
for (i = 0; i < DISK; ++i)
matrix[0 * DISK + i] = v;
v = 1;
for (i = 0; i < DISK; ++i) {
matrix[1 * DISK + i] = v;
v = gfmul(2, v);
}
v = 1;
for (i = 0; i < DISK; ++i) {
matrix[2 * DISK + i] = v;
v = gfmul(0x8e, v);
}
}
/**
* Next power of 2.
*/
static unsigned np(unsigned v)
{
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
++v;
return v;
}
int main(void)
{
uint8_t v;
int i, j, k, p;
uint8_t matrix[PARITY * 256];
printf("/*\n");
printf(" * Copyright (C) 2013 Andrea Mazzoleni\n");
printf(" *\n");
printf(" * This program is free software: you can redistribute it and/or modify\n");
printf(" * it under the terms of the GNU General Public License as published by\n");
printf(" * the Free Software Foundation, either version 2 of the License, or\n");
printf(" * (at your option) any later version.\n");
printf(" *\n");
printf(" * This program is distributed in the hope that it will be useful,\n");
printf(" * but WITHOUT ANY WARRANTY; without even the implied warranty of\n");
printf(" * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");
printf(" * GNU General Public License for more details.\n");
printf(" */\n");
printf("\n");
printf("#include \"internal.h\"\n");
printf("\n");
/* a*b */
printf("const uint8_t __aligned(256) raid_gfmul[256][256] =\n");
printf("{\n");
for (i = 0; i < 256; ++i) {
printf("\t{\n");
for (j = 0; j < 256; ++j) {
if (j % 8 == 0)
printf("\t\t");
v = gfmul(i, j);
if (v == 1)
gfinv[i] = j;
printf("0x%02x,", (unsigned)v);
if (j % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("\t},\n");
}
printf("};\n\n");
/* 2^a */
printf("const uint8_t __aligned(256) raid_gfexp[256] =\n");
printf("{\n");
v = 1;
for (i = 0; i < 256; ++i) {
if (i % 8 == 0)
printf("\t");
printf("0x%02x,", v);
v = gfmul(v, 2);
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("};\n\n");
/* 1/a */
printf("const uint8_t __aligned(256) raid_gfinv[256] =\n");
printf("{\n");
printf("\t/* note that the first element is not significative */\n");
for (i = 0; i < 256; ++i) {
if (i % 8 == 0)
printf("\t");
if (i == 0)
v = 0;
else
v = gfinv[i];
printf("0x%02x,", v);
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("};\n\n");
/* power matrix */
set_power(matrix);
printf("/**\n");
printf(" * Power matrix used to generate parity.\n");
printf(" * This matrix is valid for up to %u parity with %u data disks.\n", 3, DISK);
printf(" *\n");
for (p = 0; p < 3; ++p) {
printf(" *");
for (i = 0; i < DISK; ++i)
printf(" %02x", matrix[p * DISK + i]);
printf("\n");
}
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfvandermonde[%u][256] =\n", 3);
printf("{\n");
for (p = 0; p < 3; ++p) {
printf("\t{\n");
for (i = 0; i < DISK; ++i) {
if (i % 8 == 0)
printf("\t\t");
printf("0x%02x,", matrix[p * DISK + i]);
if (i != DISK - 1) {
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
}
printf("\n\t},\n");
}
printf("};\n\n");
/* cauchy matrix */
set_cauchy(matrix);
printf("/**\n");
printf(" * Cauchy matrix used to generate parity.\n");
printf(" * This matrix is valid for up to %u parity with %u data disks.\n", PARITY, DISK);
printf(" *\n");
for (p = 0; p < PARITY; ++p) {
printf(" *");
for (i = 0; i < DISK; ++i)
printf(" %02x", matrix[p * DISK + i]);
printf("\n");
}
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfcauchy[%u][256] =\n", PARITY);
printf("{\n");
for (p = 0; p < PARITY; ++p) {
printf("\t{\n");
for (i = 0; i < DISK; ++i) {
if (i % 8 == 0)
printf("\t\t");
printf("0x%02x,", matrix[p * DISK + i]);
if (i != DISK - 1) {
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
}
printf("\n\t},\n");
}
printf("};\n\n");
printf("#ifdef CONFIG_X86\n");
printf("/**\n");
printf(" * PSHUFB tables for the Cauchy matrix.\n");
printf(" *\n");
printf(" * Indexes are [DISK][PARITY - 2][LH].\n");
printf(" * Where DISK is from 0 to %u, PARITY from 2 to %u, LH from 0 to 1.\n", DISK - 1, PARITY - 1);
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfcauchypshufb[%u][%u][2][16] =\n", DISK, np(PARITY - 2));
printf("{\n");
for (i = 0; i < DISK; ++i) {
printf("\t{\n");
for (p = 2; p < PARITY; ++p) {
printf("\t\t{\n");
for (j = 0; j < 2; ++j) {
printf("\t\t\t{ ");
for (k = 0; k < 16; ++k) {
v = gfmul(matrix[p * DISK + i], k);
if (j == 1)
v = gfmul(v, 16);
printf("0x%02x", (unsigned)v);
if (k != 15)
printf(", ");
}
printf(" },\n");
}
printf("\t\t},\n");
}
printf("\t},\n");
}
printf("};\n");
printf("#endif\n\n");
printf("#ifdef CONFIG_X86\n");
printf("/**\n");
printf(" * PSHUFB tables for generic multiplication.\n");
printf(" *\n");
printf(" * Indexes are [MULTIPLIER][LH].\n");
printf(" * Where MULTIPLIER is from 0 to 255, LH from 0 to 1.\n");
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfmulpshufb[256][2][16] =\n");
printf("{\n");
for (i = 0; i < 256; ++i) {
printf("\t{\n");
for (j = 0; j < 2; ++j) {
printf("\t\t{ ");
for (k = 0; k < 16; ++k) {
v = gfmul(i, k);
if (j == 1)
v = gfmul(v, 16);
printf("0x%02x", (unsigned)v);
if (k != 15)
printf(", ");
}
printf(" },\n");
}
printf("\t},\n");
}
printf("};\n");
printf("#endif\n\n");
return 0;
}