New upstream version 2.0pre9.2
Some checks failed
Master / Scheduled (FULL) (push) Has been cancelled
Master / Triggered (push) Has been cancelled
Master / Triggered (ASAN) (push) Has been cancelled
Master / Triggered (FULL) (push) Has been cancelled

This commit is contained in:
geos_one
2025-08-10 12:35:43 +02:00
commit 91736529d5
1056 changed files with 370820 additions and 0 deletions

717
src/base/dev/misc/timers.c Normal file
View File

@@ -0,0 +1,717 @@
/*
* DANG_BEGIN_MODULE
*
* Description: Timer emulation for DOSEMU.
*
* Maintainers: J. Lawrence Stephan
* Scott Buchholz
*
* REMARK
* This is the timer emulation for DOSEMU. It emulates the Programmable
* Interval Timer (PIT), and also handles IRQ0 interrupt events.
* A lot of animation and video game software are dependent on this module
* for high frequency timer interrupts (IRQ0).
*
* This code will actually generate 18.2 DOS interrupts/second (the code
* here itself will be triggered about 100 times per second). It will even
* happily attempt to generate faster clocks, right up to the point where
* it chokes. Since the absolute best case timing we can get out of Linux
* is 100Hz, figure that anything approaching or exceeding that isn't going
* to work well. (The code will attempt to generate up to 10Khz interrupts
* per second at the moment. Too bad that would probably overflow all
* internal queues really fast. :)
*
* Speaker emulation, now including port 61h, is also in here. [rz]
*
* /REMARK
* DANG_END_MODULE
*
*/
#include <sys/time.h>
#include <sys/ioctl.h>
#include "emu.h"
#include "port.h"
#include "iodev.h"
#include "int.h"
#include "emudpmi.h"
#include "vtmr.h"
#include "evtimer.h"
#include "timers.h"
#undef DEBUG_PIT
#undef ONE_MINUTE_TEST
/*******************************************************************
* Programmable Interrupt Timer (PIT) chip *
*******************************************************************/
typedef struct {
Bit16u read_state;
Bit16u write_state;
Bit8u mode, outpin;
Bit32u read_latch;
Bit16u write_latch;
Bit32s cntr;
hitimer_u time;
uint32_t q_ticks;
void *evtmr;
int tmr_skip;
} pit_latch_struct;
static pit_latch_struct pit[PIT_TIMERS]; /* values of 3 PIT counters */
hitimer_t pic_sys_time; /* system time set by pic_watch */
static int irq0_cnt;
#define NEVER -1
static hitimer_t pic_itime[33] = /* time to trigger next interrupt */
{NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER,
NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER,
NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER,
NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER,
NEVER};
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
return /*(__int128_t)*/a * b / c;
}
#define TICKS_TO_NS(t) muldiv64(t, NANOSECONDS_PER_SECOND, PIT_TICK_RATE)
#define NS_TO_TICKS(n) muldiv64(n, PIT_TICK_RATE, NANOSECONDS_PER_SECOND)
static Bit8u port61 = 0x0c;
int is_cli;
/*
* DANG_BEGIN_FUNCTION timer_tick
*
* description:
* Every time we get a TIMER signal from Linux, this procedure is called.
* It checks to see if we should queue a timer interrupt based on the
* current values.
*
* DANG_END_FUNCTION
*/
void timer_tick(void)
{
pic_sys_time = GETtickTIME(0);
if (config.cli_timeout && is_cli) {
if (isset_IF()) {
is_cli = 0;
} else if (is_cli++ >= config.cli_timeout) {
g_printf("Warning: Interrupts were disabled for too long, "
"re-enabling.\n");
set_IF();
}
}
dpmi_timer();
}
#include "speaker.h"
/* DANG_BEGIN_FUNCTION do_sound
*
* do_sound handles the _emulated_ mode pc-speaker emulation.
*
* As far as I can determine all cases of the pc-speaker are now
* emulated. But I am not sure where Rainer Zimmerman got his
* (pit[2].mode == 2) || (pit[2].mode == 3) test in the original
* implementation, it doesn't seem to cause problems though.
*
* The implementation of speaker_on & speaker_off can be found in
* src/base/speaker.c
*
* Major Changes from version written by Rainter Zimmerman.
*
* o Added support for programs that control the directly through bit 1
* of port61.
*
* o Added a generic interface to allow multiple speaker backends.
*
* o Implemented X speaker code so the emulated speaker now works in X.
*
* --EB 21 September 1997
* DANG_END_FUNCTION
*/
void do_sound(Bit16u period)
{
/* Note I assume that a sound before after another will kill
* the previous sound I had a hard time getting X to do that.
* If it becomes a problem possibly tuning sound_duration is
* the answer. I suggest 200ms but as I don't have that
* problem now I'm not worring about it.
*
* But if you set it too low, then sounds can be cut off - clarence
*/
static const unsigned sound_duration = 30000; /* in milliseconds */
switch (port61 & 3) {
case 3: /* speaker on & speaker control through timer channel 2 */
if ((pit[2].mode == 2) || (pit[2].mode == 3)) { /* is this test needed? */
speaker_on(sound_duration,period);
}
else {
speaker_off(); /* is this correct? */
}
break;
case 2: /* speaker on & direct speaker through bit 1 */
speaker_on(sound_duration, 0xfff); /* on as long as possible */
break;
case 1: /* speaker off & speaker control through timer channel 2 */
case 0: /* speaker off & direct speaker through bit 1 */
speaker_off();
break;
}
}
static int _pit_latch(int latch, uint64_t cur)
{
int ret = 0;
hitimer_u cur_time;
long ticks=0;
pit_latch_struct *p = &pit[latch];
/* check for special 'read latch status' mode */
if (p->mode & 0x80) {
/*
* Latch status:
* bit 7 = state of OUT pin
* bit 6 = null count flag (1 == no cntr set, 0 == cntr available)
* bit 4-5 = read latch format
* bit 1-3 = read latch mode
* bit 0 = BCD flag (1 == BCD, 0 == 16-bit -- always 0)
*/
p->read_latch = (p->read_state << 4) |
((p->mode & 7) << 1) |
p->outpin;
if (p->cntr == -1)
p->read_latch |= 0x40;
p->mode &= ~0x80;
return ret; /* let bit 7 on */
}
cur_time.td = cur;
if ((p->mode & 2)==0) {
/* non-periodical modes 0,1,4,5 - used mainly by games
* count down to 0, then set output, wrap and continue counting (gate=1)
* only modes 0,4 allow reloading of the counter on the fly
* (thus modes 1,5 are not correctly implemented)
* we are just not interested in the gate/output pins...
*/
/* mode 0 -- interrupt on terminal count, ctr reload=Y */
/* mode 4 -- software triggered pulse, ctr reload=Y */
/* mode 1 -- programmable monoflop, ctr reload=N */
/* mode 5 -- hardware triggered pulse, ctr reload=N */
/* should have been initialized to the value in write_latch */
if (p->cntr != -1) {
ticks = NS_TO_TICKS(cur_time.td - p->time.td);
if (ticks > p->cntr) { /* time has elapsed */
if ((p->mode&0x40)==0)
p->cntr = -1;
p->outpin = (p->mode&4? 0x00: 0x80);
} else {
p->read_latch = p->cntr - ticks;
p->outpin = (p->mode&4? 0x80: 0x00);
}
}
if (p->cntr == -1) {
p->read_latch = p->write_latch;
p->outpin = (p->mode&4? 0x00: 0x80);
}
}
else {
/* mode 2 -- rate generator */
/* mode 6 -- ??? */
/* mode 3 -- square-wave generator, countdown by 2 */
/* mode 7 -- ??? */
if (latch == 0) {
#if 0
/* when current time is greater than irq time, call pic_request
which will then point pic_itime to next interrupt */
if (((p->mode&0x40)==0) && (pic_sys_time > pic_itime[PIC_IRQ0])) {
if (pic_request(PIC_IRQ0)==PIC_REQ_OK)
{ r_printf("PIT: pit_latch, pic_request IRQ0 mode 2/3\n"); }
}
#endif
/* while current time is less than next irq time, ticks decrease;
* ticks can go out of bounds or negative when the interrupt
* is lost or pending */
if (cur > pic_itime[latch]) {
ticks = 1;
ret++; // underflow seen
} else {
ticks = NS_TO_TICKS(pic_itime[latch] - cur) + 1;
if (ticks > p->cntr)
ticks = 0; // should not be here
}
} else {
ticks = p->cntr - (cur % p->cntr);
}
if ((p->mode & 3)==3) {
/* ticks is now a value which decreases from cntr to 0, and
is greater than cntr/2 in the first half of the cycle */
ticks *= 2;
if (ticks >= p->cntr) {
p->outpin = 0x00; p->read_latch = (ticks-p->cntr) & 0xfffe;
}
else {
p->outpin = 0x80; p->read_latch = ticks;
}
}
else {
p->read_latch = ticks;
p->outpin = (p->read_latch? 0x80: 0x00);
}
}
#ifdef DEBUG_PIT
i_printf("PIT%d: ticks=%lx latch=%x pin=%d\n",latch,ticks,
p->read_latch,(p->outpin!=0));
#endif
return ret;
}
static int do_pit_latch(int latch)
{
int ret;
uint64_t cur_time;
evtimer_block(pit[latch].evtmr);
cur_time = evtimer_gettime(pit[latch].evtmr);
/* if timer is lagging we run it by hands */
if (cur_time > pic_itime[latch] &&
__sync_bool_compare_and_swap(&pit[latch].q_ticks, 0, 1)) {
/* timer thread blocked, we can increment vars w/o sync/atomics */
pit[latch].tmr_skip++;
if (!latch)
vtmr_raise(VTMR_PIT);
else
pit[latch].q_ticks--;
pit[latch].time.td = pic_itime[latch];
pic_itime[latch] += TICKS_TO_NS(pit[latch].cntr);
}
ret = _pit_latch(latch, cur_time);
vtmr_sync(VTMR_PIT);
evtimer_unblock(pit[latch].evtmr);
return ret;
}
static int pit_latch_hndl(void)
{
return do_pit_latch(0);
}
static void pit_latch(int latch)
{
if (latch == 0)
vtmr_latch(VTMR_PIT);
else
do_pit_latch(latch);
}
/* This is called also by port 0x61 - some programs can use timer #2
* as a GP timer and read bit 5 of port 0x61 (e.g. Matrox BIOS)
*/
Bit8u pit_inp(ioport_t port, void *arg)
{
int ret = 0;
port -= 0x40;
if ((port == 2) && (config.speaker == SPKR_NATIVE))
return std_port_inb(0x42);
else if (port == 1)
i_printf("PIT: someone is reading the CMOS refresh time?!?");
if (pit[port].read_latch == -1)
pit_latch(port);
switch (pit[port].read_state) {
case 0: /* read MSB & return to state 3 */
ret = (pit[port].read_latch >> 8) & 0xff;
pit[port].read_state = 3;
pit[port].read_latch = -1;
break;
case 3: /* read LSB followed by MSB */
ret = (pit[port].read_latch & 0xff);
if (pit[port].mode & 0x80) pit[port].mode &= 7; /* moved here */
else
pit[port].read_state = 0;
break;
case 1: /* read MSB */
ret = (pit[port].read_latch >> 8) & 0xff;
pit[port].read_latch = -1;
break;
case 2: /* read LSB */
ret = (pit[port].read_latch & 0xff);
pit[port].read_latch = -1;
break;
}
#ifdef DEBUG_PIT
i_printf("PORT: pit_inp(0x%x) = 0x%x\n", port+0x40, ret);
#endif
return ret;
}
void pit_outp(ioport_t port, Bit8u val, void *arg)
{
port -= 0x40;
if (port == 1)
i_printf("PORT: someone is writing the CMOS refresh time?!?");
else if (port == 2 && config.speaker == SPKR_NATIVE) {
std_port_outb(0x42, val);
return;
}
switch (pit[port].write_state) {
case 0:
pit[port].write_latch = pit[port].write_latch | ((val & 0xff) << 8);
/*
* TRICK: some graphics apps use the vertical retrace bit to
* calibrate themselves. AFAIK this is done by starting PIT#0
* with a value of 0 after detecting the sync, then reading it
* again at next sync pulse. In this special case, synchronizing
* the emulated vertical retrace with the PIT write yields some
* better timing results. It works under X and with emuretrace -- AV
*/
if (pit[port].write_latch==0) t_vretrace = pic_sys_time;
pit[port].write_state = 3;
break;
case 3:
pit[port].write_latch = val & 0xff;
pit[port].write_state = 0;
break;
case 1:
pit[port].write_latch = val & 0xff;
break;
case 2:
pit[port].write_latch = (val & 0xff) << 8;
break;
}
#ifdef DEBUG_PIT
i_printf("PORT: pit_outp(0x%x, 0x%x)\n", port+0x40, val);
#endif
if (pit[port].write_state != 0) {
if (pit[port].write_latch == 0)
pit[port].cntr = 0xffff;
else
pit[port].cntr = pit[port].write_latch;
if (!port)
evtimer_set_rel(pit[port].evtmr, TICKS_TO_NS(pit[port].cntr), 1);
else
evtimer_stop(pit[port].evtmr);
h_printf("PIT: timer %i set to %i ticks\n", port, pit[port].cntr);
pit[port].time.td = 0;
pic_itime[port] = TICKS_TO_NS(pit[port].cntr);
if (port == 2 && (port61 & 3) == 3)
do_sound(pit[port].cntr);
}
}
Bit8u pit_control_inp(ioport_t port, void *arg)
{
return 0;
}
void pit_control_outp(ioport_t port, Bit8u val, void *arg)
{
int latch = (val >> 6) & 0x03;
#ifdef DEBUG_PIT
i_printf("PORT: outp(0x43, 0x%x)\n",val);
#endif
/* Timer commands (00-BF):
* bit 6-7 = Timer (0,1,2)
* 3 is not a timer but a special read-back command
*
* bit 4-5 = command 00=latch 01=LSB mode 10=MSB mode 11=16bit mode
* bit 1-3 = mode selection
* mode 0(000) 1(001) 2(010 or 110) 3(011 or 111)
* 4(100) 5(101)
* 6(110) and 7(111) undefined?
* bit 0 = binary(0), BCD(1)
*
* 0xh counter latch timer 0
* 1xh timer 0 LSB mode
* modes: 0,2,3,4 - 1,5 not applicable
* 2xh timer 0 MSB mode
* modes: 0,2,3,4 - 1,5 not applicable
* 3xh timer 0 16bit mode
* modes: 0,2,4 - 3 typical - 1,5 not applicable
* modes 1,5 applicable only to timer 2 [van Gilluwe,1994]
*/
switch (latch) {
case 2:
if (config.speaker == SPKR_NATIVE) {
std_port_outb(0x43, val);
break;
}
/* nobreak; */
case 0:
case 1:
if ((val & 0x30) == 0)
pit_latch(latch);
else {
pit[latch].read_state = (val >> 4) & 0x03;
pit[latch].write_state = (val >> 4) & 0x03;
pit[latch].mode = (val >> 1) & 0x07;
if ((val & 4)==0) { /* modes 0,1,4,5 */
/* set the time base for the counter - safety code for programs
* which use a non-periodical mode without reloading the counter
*/
pit[latch].time.td = evtimer_gettime(pit[latch].evtmr);
}
}
#ifdef DEBUG_PIT
i_printf("PORT: writing outp(0x43, 0x%x)\n", val);
#endif
break;
case 3:
/* I think this code is more or less correct */
if ((val & 0x20) == 0) { /* latch counts? */
if (val & 0x02) pit_latch(0);
if (val & 0x04) pit_latch(1);
if (val & 0x08) pit_latch(2);
}
else if ((val & 0x10) == 0) { /* latch status words? */
int or_mask = ((val & 0x20) == 0 ? 0xc0 : 0x80);
if (val & 0x02) { pit[0].mode |= or_mask; pit_latch(0); }
if (val & 0x04) { pit[1].mode |= or_mask; pit_latch(1); }
if (val & 0x08) { pit[2].mode |= or_mask; pit_latch(2); }
}
break;
}
}
static void timer_activate(int ticks, void *arg)
{
int pit_num = (uintptr_t)arg;
uint32_t q;
if (pit[pit_num].tmr_skip) {
pit[pit_num].tmr_skip--;
return;
}
if (!ticks) {
error("0 ticks on PIT\n");
return;
}
q = __sync_fetch_and_add(&pit[pit_num].q_ticks, ticks);
h_printf("PIT: timer %i expired, %i\n", pit_num, q);
if (pit_num) {
pit[pit_num].time.td = evtimer_gettime(pit[pit_num].evtmr);
return;
}
if (!q) {
vtmr_raise(VTMR_PIT);
pit[0].time.td = pic_itime[0];
pic_itime[0] += TICKS_TO_NS(pit[0].cntr);
}
}
static int timer_irq_ack(int masked)
{
uint32_t q = __sync_sub_and_fetch(&pit[0].q_ticks, 1);
int ret = 0;
h_printf("PIT: timer 0 acknowledged, %i\n", q);
if (q) {
pit[0].time.td = pic_itime[0];
pic_itime[0] += TICKS_TO_NS(pit[0].cntr);
ret = 1;
}
if (!masked)
irq0_cnt++;
return ret;
}
/* reads/writes to the speaker control port (0x61)
* Port 0x61 is really more complex than a speaker enable bit... look here:
* [output]:
* Bit(s) Description
* 7 pulse to 1 for IRQ1 reset (PC,XT)
* 6-4 reserved
* 3 I/O channel parity check disable
* 2 RAM parity check disable
* 1 speaker data enable
* 0 timer 2 gate to speaker enable
*
* [input]:
* Bit(s) Description
* 7 RAM parity error occurred
* 6 I/O channel parity error occurred
* 5 mirrors timer 2 output condition
* 4 toggles with each refresh request
* 3 NMI I/O channel check status
* 2 NMI parity check status
* 1 speaker data status
* 0 timer 2 clock gate to speaker status
*/
Bit8u spkr_io_read(ioport_t port) {
if (port==0x61) {
if (config.speaker == SPKR_NATIVE)
return std_port_inb(0x61);
else {
/* keep the connection between port 0x61 and PIT timer#2 */
pit_latch(2);
return ((*((Bit8u *)&pic_sys_time)&0x10) | /* or anything that toggles quick enough */
(pit[2].outpin? 0x20:0) | /* outpin: 00 or 80 */
(port61&0xcf));
}
}
return 0xff;
}
void spkr_io_write(ioport_t port, Bit8u value) {
if (port==0x61) {
switch (config.speaker) {
case SPKR_NATIVE:
std_port_outb(0x61, value & 0x03);
break;
case SPKR_EMULATED:
if ((value & 3) == (port61 & 3))
break;
port61 = value & 0x0f;
do_sound(pit[2].write_latch & 0xffff);
break;
case SPKR_OFF:
port61 = value & 0x0c;
break;
}
}
}
void pit_init(void)
{
emu_iodev_t io_device;
/* 8254 PIT (Programmable Interval Timer) */
io_device.read_portb = pit_inp;
io_device.write_portb = pit_outp;
io_device.read_portw = NULL;
io_device.write_portw = NULL;
io_device.read_portd = NULL;
io_device.write_portd = NULL;
io_device.handler_name = "8254 Timer0";
io_device.start_addr = 0x0040;
io_device.end_addr = 0x0040;
port_register_handler(io_device, 0);
io_device.handler_name = "8254 Timer1";
io_device.start_addr = 0x0041;
io_device.end_addr = 0x0041;
port_register_handler(io_device, 0);
io_device.handler_name = "8254 Timer2";
io_device.start_addr = 0x0042;
io_device.end_addr = 0x0042;
port_register_handler(io_device, config.speaker==SPKR_NATIVE? PORT_FAST:0);
io_device.read_portb = pit_control_inp;
io_device.write_portb = pit_control_outp;
io_device.handler_name = "8254 Ctrl02";
io_device.start_addr = 0x0043;
io_device.end_addr = 0x0043;
port_register_handler(io_device, 0);
/* register_handler for port 0x61 is in keyboard code */
port61 = 0x0c;
#if 0
io_device.start_addr = 0x0047;
io_device.end_addr = 0x0047;
port_register_handler(io_device, 0);
#endif
vtmr_register(VTMR_PIT, timer_irq_ack);
vtmr_register_latch(VTMR_PIT, pit_latch_hndl);
vtmr_set_tweaked(VTMR_PIT, config.timer_tweaks, 0);
pit[0].evtmr = evtimer_create(timer_activate, (void *)(uintptr_t)0);
pit[1].evtmr = evtimer_create(timer_activate, (void *)(uintptr_t)1);
pit[2].evtmr = evtimer_create(timer_activate, (void *)(uintptr_t)2);
}
void pit_done(void)
{
evtimer_delete(pit[0].evtmr);
evtimer_delete(pit[1].evtmr);
evtimer_delete(pit[2].evtmr);
}
void pit_reset(void)
{
pit[0].mode = 3;
pit[0].outpin = 0;
pit[0].cntr = 0xffff;
pit[0].time.td = 0;
pit[0].read_latch = 0xffffffff;
pit[0].write_latch = 0;
pit[0].read_state = 3;
pit[0].write_state = 3;
pit[0].q_ticks = 0;
evtimer_stop(pit[0].evtmr);
pit[1].mode = 2;
pit[1].outpin = 0;
pit[1].cntr = 18;
pit[1].time.td = 0;
pit[1].read_latch = 0xffffffff;
pit[1].write_latch = 18;
pit[1].read_state = 3;
pit[1].write_state = 3;
pit[1].q_ticks = 0;
evtimer_stop(pit[1].evtmr);
pit[2].mode = 0;
pit[2].outpin = 0;
pit[2].cntr = 0xffff;
pit[2].time.td = 0;
pit[2].read_latch = 0xffffffff;
pit[2].write_latch = 0;
pit[2].read_state = 3;
pit[2].write_state = 3;
pit[2].q_ticks = 0;
evtimer_stop(pit[2].evtmr);
pit[3].mode = 0;
pit[3].outpin = 0;
pit[3].cntr = 0xffff;
pit[3].time.td = 0;
pit[3].read_latch = 0xffffffff;
pit[3].write_latch = 0;
pit[3].read_state = 3;
pit[3].write_state = 3;
port61 = 0x0c;
pic_sys_time = GETtickTIME(0);
}
void pit_late_init(void)
{
evtimer_set_rel(pit[0].evtmr, TICKS_TO_NS(pit[0].cntr), 1);
pit[0].time.td = 0;
pic_itime[0] = TICKS_TO_NS(pit[0].cntr);
}
#define TIMER0_FLOOD_THRESHOLD 50
int CAN_SLEEP(void)
{
return (!(pic_get_isr() || (REG(eflags) & VIP) || signal_pending() ||
(pit[0].q_ticks > TIMER0_FLOOD_THRESHOLD) || in_leavedos));
}