352 lines
8.7 KiB
C
352 lines
8.7 KiB
C
#include <common/toolkit/HashTk.h>
|
|
#include <crypto/hash.h>
|
|
|
|
#define get16bits(d) (*((const uint16_t *) (d)))
|
|
|
|
#define HashTkDefaultHash HASHTK_HALFMD4
|
|
//#define HashTkDefaultHash HASHTK_HSIEHHASH32
|
|
|
|
#define Hashtk_HALFMD4_IN_BUF_SIZE 8
|
|
#define HashTk_HALFMD4_OUT_BUF_SIZE 4
|
|
#define HashTk_INT_BYTES 4
|
|
|
|
#define HashTk_HALFMD4_MAJOR_BUFPOS 1 // as in ext4
|
|
#define HashTk_HALFMD4_MINOR_BUFPOS 2
|
|
|
|
|
|
#ifdef KERNEL_HAS_HALF_MD4_TRANSFORM
|
|
#include <linux/types.h>
|
|
#include <linux/cryptohash.h>
|
|
#else
|
|
/* half_md4_transform and macros taken from lib/halfmd4.c */
|
|
/* F, G and H are basic MD4 functions: selection, majority, parity */
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
|
|
/*
|
|
* The generic round function. The application is so specific that
|
|
* we don't bother protecting all the arguments with parens, as is generally
|
|
* good macro practice, in favor of extra legibility.
|
|
* Rotation is separate from addition to prevent recomputation
|
|
*/
|
|
#define ROUND(f, a, b, c, d, x, s) \
|
|
(a += f(b, c, d) + x, a = rol32(a, s))
|
|
#define K1 0
|
|
#define K2 013240474631UL
|
|
#define K3 015666365641UL
|
|
|
|
/*
|
|
* Basic cut-down MD4 transform. Returns only 32 bits of result.
|
|
*/
|
|
static __u32 half_md4_transform(__u32 buf[4], __u32 const in[8])
|
|
{
|
|
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
|
|
|
|
/* Round 1 */
|
|
ROUND(F, a, b, c, d, in[0] + K1, 3);
|
|
ROUND(F, d, a, b, c, in[1] + K1, 7);
|
|
ROUND(F, c, d, a, b, in[2] + K1, 11);
|
|
ROUND(F, b, c, d, a, in[3] + K1, 19);
|
|
ROUND(F, a, b, c, d, in[4] + K1, 3);
|
|
ROUND(F, d, a, b, c, in[5] + K1, 7);
|
|
ROUND(F, c, d, a, b, in[6] + K1, 11);
|
|
ROUND(F, b, c, d, a, in[7] + K1, 19);
|
|
|
|
/* Round 2 */
|
|
ROUND(G, a, b, c, d, in[1] + K2, 3);
|
|
ROUND(G, d, a, b, c, in[3] + K2, 5);
|
|
ROUND(G, c, d, a, b, in[5] + K2, 9);
|
|
ROUND(G, b, c, d, a, in[7] + K2, 13);
|
|
ROUND(G, a, b, c, d, in[0] + K2, 3);
|
|
ROUND(G, d, a, b, c, in[2] + K2, 5);
|
|
ROUND(G, c, d, a, b, in[4] + K2, 9);
|
|
ROUND(G, b, c, d, a, in[6] + K2, 13);
|
|
|
|
/* Round 3 */
|
|
ROUND(H, a, b, c, d, in[3] + K3, 3);
|
|
ROUND(H, d, a, b, c, in[7] + K3, 9);
|
|
ROUND(H, c, d, a, b, in[2] + K3, 11);
|
|
ROUND(H, b, c, d, a, in[6] + K3, 15);
|
|
ROUND(H, a, b, c, d, in[1] + K3, 3);
|
|
ROUND(H, d, a, b, c, in[5] + K3, 9);
|
|
ROUND(H, c, d, a, b, in[0] + K3, 11);
|
|
ROUND(H, b, c, d, a, in[4] + K3, 15);
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
|
|
return buf[1]; /* "most hashed" word */
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
static uint32_t HashTk_HsiehHash32(const char* data, int len);
|
|
|
|
static void HashTk_string2HashBufSigned(const char *msg, int len, __u32 *buf, int num);
|
|
|
|
/**
|
|
* Copied from ext4 hash.c (str2hashbuf_signed() )
|
|
*/
|
|
static void HashTk_string2HashBufSigned(const char *msg, int len, __u32 *buf, int num)
|
|
{
|
|
__u32 pad, val;
|
|
int i;
|
|
const signed char *scp = (const signed char *) msg;
|
|
|
|
pad = (__u32)len | ((__u32)len << 8);
|
|
pad |= pad << 16;
|
|
|
|
val = pad;
|
|
if (len > num*4)
|
|
len = num * 4;
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 4) == 0)
|
|
val = pad;
|
|
val = ((int) scp[i]) + (val << 8);
|
|
if ((i % 4) == 3) {
|
|
*buf++ = val;
|
|
val = pad;
|
|
num--;
|
|
}
|
|
}
|
|
if (--num >= 0)
|
|
*buf++ = val;
|
|
while (--num >= 0)
|
|
*buf++ = pad;
|
|
}
|
|
|
|
|
|
/**
|
|
* Note: This is the Hsieh hash function, which is available under old BSD-style license.
|
|
* (It performs very well on x86 and PowerPC archs compared to other famous hash functions.)
|
|
*
|
|
* @data the buffer for which you want the hash value to be computed (arbitraty length)
|
|
* @len length of the data buffer
|
|
*/
|
|
uint32_t HashTk_HsiehHash32(const char* data, int len)
|
|
{
|
|
uint32_t hash = len, tmp;
|
|
int rem;
|
|
|
|
if(unlikely(len <= 0 || data == NULL) )
|
|
return 0;
|
|
|
|
rem = len & 3;
|
|
len >>= 2;
|
|
|
|
/* Main loop */
|
|
for(; len > 0; len--)
|
|
{
|
|
hash += get16bits(data);
|
|
tmp = (get16bits(data+2) << 11) ^ hash;
|
|
hash = (hash << 16) ^ tmp;
|
|
data += 2 * sizeof(uint16_t);
|
|
hash += hash >> 11;
|
|
}
|
|
|
|
/* Handle end cases */
|
|
switch(rem)
|
|
{
|
|
case 3:
|
|
hash += get16bits(data);
|
|
hash ^= hash << 16;
|
|
hash ^= data[sizeof(uint16_t)] << 18;
|
|
hash += hash >> 11;
|
|
break;
|
|
case 2:
|
|
hash += get16bits(data);
|
|
hash ^= hash << 11;
|
|
hash += hash >> 17;
|
|
break;
|
|
case 1:
|
|
hash += *data;
|
|
hash ^= hash << 10;
|
|
hash += hash >> 1;
|
|
}
|
|
|
|
/* Force "avalanching" of final 127 bits */
|
|
hash ^= hash << 3;
|
|
hash += hash >> 5;
|
|
hash ^= hash << 4;
|
|
hash += hash >> 17;
|
|
hash ^= hash << 25;
|
|
hash += hash >> 6;
|
|
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* Do the halfMD4 hash computation.
|
|
* Note: OutBuf must be an array of size HashTk_HALFMD4_OUT_BUF_SIZE
|
|
*/
|
|
static void HashTk_halfMD4(const char* data, int len, uint32_t* outBuf)
|
|
{
|
|
uint32_t inBuf[Hashtk_HALFMD4_IN_BUF_SIZE];
|
|
int maxMD4StrLen = Hashtk_HALFMD4_IN_BUF_SIZE * HashTk_INT_BYTES; // 32
|
|
const char* dataPtr = data;
|
|
int remainingLen = len;
|
|
|
|
/* Initialize the default seed for the hash checksum functions, magic numbers taken from
|
|
* ext4fs_dirhash() */
|
|
outBuf[0] = 0x67452301;
|
|
outBuf[1] = 0xefcdab89;
|
|
outBuf[2] = 0x98badcfe;
|
|
outBuf[3] = 0x10325476;
|
|
|
|
while (remainingLen > 0) {
|
|
HashTk_string2HashBufSigned(dataPtr, len, inBuf, Hashtk_HALFMD4_IN_BUF_SIZE);
|
|
half_md4_transform(outBuf, inBuf);
|
|
|
|
remainingLen -= maxMD4StrLen;
|
|
dataPtr += maxMD4StrLen;
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t HashTk_hash32(HashTkHashTypes hashType, const char* data, int len)
|
|
{
|
|
switch (hashType)
|
|
{
|
|
default:
|
|
{
|
|
printk_fhgfs(KERN_INFO, "Unknown hashtype: %d\n", hashType);
|
|
hashType = HashTkDefaultHash;
|
|
}
|
|
BEEGFS_FALLTHROUGH;
|
|
|
|
case HASHTK_HSIEHHASH32:
|
|
{
|
|
return HashTk_HsiehHash32(data, len);
|
|
} break;
|
|
|
|
case HASHTK_HALFMD4:
|
|
{
|
|
uint32_t buf[HashTk_HALFMD4_OUT_BUF_SIZE];
|
|
uint32_t majHash;
|
|
|
|
HashTk_halfMD4(data, len, buf);
|
|
|
|
majHash = buf[HashTk_HALFMD4_MAJOR_BUFPOS];
|
|
|
|
return majHash;
|
|
|
|
} break;
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Note: This generates the 64bit hash by computing two 32bit hashes for the first and second half
|
|
* of the data buf.
|
|
*
|
|
* @data the buffer for which you want the hash value to be computed (arbitraty length)
|
|
* @len length of the data buffer
|
|
*/
|
|
uint64_t HashTk_hash64(HashTkHashTypes hashType, const char* data, int len)
|
|
{
|
|
uint64_t hash64;
|
|
|
|
switch (hashType)
|
|
{
|
|
default:
|
|
{
|
|
printk_fhgfs(KERN_INFO, "Unknown hashtype: %d\n", hashType);
|
|
hashType = HashTkDefaultHash;
|
|
}
|
|
BEEGFS_FALLTHROUGH;
|
|
|
|
case HASHTK_HSIEHHASH32:
|
|
{
|
|
int len1stHalf = len / 2;
|
|
int len2ndHalf = len - len1stHalf;
|
|
|
|
uint64_t high = HashTk_HsiehHash32(data, len1stHalf);
|
|
uint64_t low = HashTk_HsiehHash32(&data[len1stHalf], len2ndHalf);
|
|
|
|
hash64 = (high << 32) | low;
|
|
} break;
|
|
|
|
case HASHTK_HALFMD4:
|
|
{
|
|
uint32_t buf[HashTk_HALFMD4_OUT_BUF_SIZE];
|
|
uint32_t majHash;
|
|
uint32_t minHash;
|
|
|
|
HashTk_halfMD4(data, len, buf);
|
|
|
|
majHash = buf[HashTk_HALFMD4_MAJOR_BUFPOS];
|
|
minHash = buf[HashTk_HALFMD4_MINOR_BUFPOS];
|
|
|
|
hash64 = (uint64_t) majHash << 32 | (uint64_t) minHash;
|
|
|
|
} break;
|
|
|
|
}
|
|
|
|
return hash64;
|
|
}
|
|
|
|
|
|
// Generates sha256 hash using the kernel crypto interface.
|
|
int HashTk_sha256(const unsigned char* data, unsigned int dataLen, unsigned char* outHash)
|
|
{
|
|
const char* hashAlgName = "sha256";
|
|
struct crypto_shash *alg;
|
|
struct shash_desc *sdesc;
|
|
int res = 0;
|
|
|
|
alg = crypto_alloc_shash(hashAlgName, 0, 0);
|
|
if(IS_ERR(alg))
|
|
{
|
|
printk_fhgfs(KERN_ERR, "Allocating shash failed: %ld\n", PTR_ERR(alg));
|
|
return -1;
|
|
}
|
|
|
|
sdesc = kmalloc(crypto_shash_descsize(alg), GFP_KERNEL);
|
|
if (sdesc == NULL)
|
|
{
|
|
printk_fhgfs(KERN_ERR, "Allocating hash memory failed\n");
|
|
crypto_free_shash(alg);
|
|
return -1;
|
|
}
|
|
|
|
sdesc->tfm = alg;
|
|
|
|
res = crypto_shash_digest(sdesc, data, dataLen, outHash);
|
|
if (res != 0)
|
|
{
|
|
printk_fhgfs(KERN_ERR, "Calculating hash failed: %d\n", res);
|
|
}
|
|
|
|
kfree(sdesc);
|
|
crypto_free_shash(alg);
|
|
return res;
|
|
}
|
|
|
|
// Generates sha256 hash from the input byte slice and returns the auth secret containing the
|
|
// 8 most significant bytes of the hash in little endian order. Matches the behavior of other
|
|
// implementations.
|
|
int HashTk_authHash(const unsigned char* data, unsigned int dataLen, uint64_t* outHash)
|
|
{
|
|
int res;
|
|
unsigned char buf[32];
|
|
|
|
res = HashTk_sha256(data, dataLen, buf);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
*outHash = 0;
|
|
for(int i = 7; i >= 0; --i)
|
|
{
|
|
*outHash <<= 8;
|
|
*outHash += buf[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|