2025-08-10 01:34:16 +02:00

352 lines
8.7 KiB
C

#include <common/toolkit/HashTk.h>
#include <crypto/hash.h>
#define get16bits(d) (*((const uint16_t *) (d)))
#define HashTkDefaultHash HASHTK_HALFMD4
//#define HashTkDefaultHash HASHTK_HSIEHHASH32
#define Hashtk_HALFMD4_IN_BUF_SIZE 8
#define HashTk_HALFMD4_OUT_BUF_SIZE 4
#define HashTk_INT_BYTES 4
#define HashTk_HALFMD4_MAJOR_BUFPOS 1 // as in ext4
#define HashTk_HALFMD4_MINOR_BUFPOS 2
#ifdef KERNEL_HAS_HALF_MD4_TRANSFORM
#include <linux/types.h>
#include <linux/cryptohash.h>
#else
/* half_md4_transform and macros taken from lib/halfmd4.c */
/* F, G and H are basic MD4 functions: selection, majority, parity */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/*
* The generic round function. The application is so specific that
* we don't bother protecting all the arguments with parens, as is generally
* good macro practice, in favor of extra legibility.
* Rotation is separate from addition to prevent recomputation
*/
#define ROUND(f, a, b, c, d, x, s) \
(a += f(b, c, d) + x, a = rol32(a, s))
#define K1 0
#define K2 013240474631UL
#define K3 015666365641UL
/*
* Basic cut-down MD4 transform. Returns only 32 bits of result.
*/
static __u32 half_md4_transform(__u32 buf[4], __u32 const in[8])
{
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
/* Round 1 */
ROUND(F, a, b, c, d, in[0] + K1, 3);
ROUND(F, d, a, b, c, in[1] + K1, 7);
ROUND(F, c, d, a, b, in[2] + K1, 11);
ROUND(F, b, c, d, a, in[3] + K1, 19);
ROUND(F, a, b, c, d, in[4] + K1, 3);
ROUND(F, d, a, b, c, in[5] + K1, 7);
ROUND(F, c, d, a, b, in[6] + K1, 11);
ROUND(F, b, c, d, a, in[7] + K1, 19);
/* Round 2 */
ROUND(G, a, b, c, d, in[1] + K2, 3);
ROUND(G, d, a, b, c, in[3] + K2, 5);
ROUND(G, c, d, a, b, in[5] + K2, 9);
ROUND(G, b, c, d, a, in[7] + K2, 13);
ROUND(G, a, b, c, d, in[0] + K2, 3);
ROUND(G, d, a, b, c, in[2] + K2, 5);
ROUND(G, c, d, a, b, in[4] + K2, 9);
ROUND(G, b, c, d, a, in[6] + K2, 13);
/* Round 3 */
ROUND(H, a, b, c, d, in[3] + K3, 3);
ROUND(H, d, a, b, c, in[7] + K3, 9);
ROUND(H, c, d, a, b, in[2] + K3, 11);
ROUND(H, b, c, d, a, in[6] + K3, 15);
ROUND(H, a, b, c, d, in[1] + K3, 3);
ROUND(H, d, a, b, c, in[5] + K3, 9);
ROUND(H, c, d, a, b, in[0] + K3, 11);
ROUND(H, b, c, d, a, in[4] + K3, 15);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
return buf[1]; /* "most hashed" word */
}
#endif
static uint32_t HashTk_HsiehHash32(const char* data, int len);
static void HashTk_string2HashBufSigned(const char *msg, int len, __u32 *buf, int num);
/**
* Copied from ext4 hash.c (str2hashbuf_signed() )
*/
static void HashTk_string2HashBufSigned(const char *msg, int len, __u32 *buf, int num)
{
__u32 pad, val;
int i;
const signed char *scp = (const signed char *) msg;
pad = (__u32)len | ((__u32)len << 8);
pad |= pad << 16;
val = pad;
if (len > num*4)
len = num * 4;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
val = pad;
val = ((int) scp[i]) + (val << 8);
if ((i % 4) == 3) {
*buf++ = val;
val = pad;
num--;
}
}
if (--num >= 0)
*buf++ = val;
while (--num >= 0)
*buf++ = pad;
}
/**
* Note: This is the Hsieh hash function, which is available under old BSD-style license.
* (It performs very well on x86 and PowerPC archs compared to other famous hash functions.)
*
* @data the buffer for which you want the hash value to be computed (arbitraty length)
* @len length of the data buffer
*/
uint32_t HashTk_HsiehHash32(const char* data, int len)
{
uint32_t hash = len, tmp;
int rem;
if(unlikely(len <= 0 || data == NULL) )
return 0;
rem = len & 3;
len >>= 2;
/* Main loop */
for(; len > 0; len--)
{
hash += get16bits(data);
tmp = (get16bits(data+2) << 11) ^ hash;
hash = (hash << 16) ^ tmp;
data += 2 * sizeof(uint16_t);
hash += hash >> 11;
}
/* Handle end cases */
switch(rem)
{
case 3:
hash += get16bits(data);
hash ^= hash << 16;
hash ^= data[sizeof(uint16_t)] << 18;
hash += hash >> 11;
break;
case 2:
hash += get16bits(data);
hash ^= hash << 11;
hash += hash >> 17;
break;
case 1:
hash += *data;
hash ^= hash << 10;
hash += hash >> 1;
}
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
/**
* Do the halfMD4 hash computation.
* Note: OutBuf must be an array of size HashTk_HALFMD4_OUT_BUF_SIZE
*/
static void HashTk_halfMD4(const char* data, int len, uint32_t* outBuf)
{
uint32_t inBuf[Hashtk_HALFMD4_IN_BUF_SIZE];
int maxMD4StrLen = Hashtk_HALFMD4_IN_BUF_SIZE * HashTk_INT_BYTES; // 32
const char* dataPtr = data;
int remainingLen = len;
/* Initialize the default seed for the hash checksum functions, magic numbers taken from
* ext4fs_dirhash() */
outBuf[0] = 0x67452301;
outBuf[1] = 0xefcdab89;
outBuf[2] = 0x98badcfe;
outBuf[3] = 0x10325476;
while (remainingLen > 0) {
HashTk_string2HashBufSigned(dataPtr, len, inBuf, Hashtk_HALFMD4_IN_BUF_SIZE);
half_md4_transform(outBuf, inBuf);
remainingLen -= maxMD4StrLen;
dataPtr += maxMD4StrLen;
}
}
uint32_t HashTk_hash32(HashTkHashTypes hashType, const char* data, int len)
{
switch (hashType)
{
default:
{
printk_fhgfs(KERN_INFO, "Unknown hashtype: %d\n", hashType);
hashType = HashTkDefaultHash;
}
BEEGFS_FALLTHROUGH;
case HASHTK_HSIEHHASH32:
{
return HashTk_HsiehHash32(data, len);
} break;
case HASHTK_HALFMD4:
{
uint32_t buf[HashTk_HALFMD4_OUT_BUF_SIZE];
uint32_t majHash;
HashTk_halfMD4(data, len, buf);
majHash = buf[HashTk_HALFMD4_MAJOR_BUFPOS];
return majHash;
} break;
}
}
/**
* Note: This generates the 64bit hash by computing two 32bit hashes for the first and second half
* of the data buf.
*
* @data the buffer for which you want the hash value to be computed (arbitraty length)
* @len length of the data buffer
*/
uint64_t HashTk_hash64(HashTkHashTypes hashType, const char* data, int len)
{
uint64_t hash64;
switch (hashType)
{
default:
{
printk_fhgfs(KERN_INFO, "Unknown hashtype: %d\n", hashType);
hashType = HashTkDefaultHash;
}
BEEGFS_FALLTHROUGH;
case HASHTK_HSIEHHASH32:
{
int len1stHalf = len / 2;
int len2ndHalf = len - len1stHalf;
uint64_t high = HashTk_HsiehHash32(data, len1stHalf);
uint64_t low = HashTk_HsiehHash32(&data[len1stHalf], len2ndHalf);
hash64 = (high << 32) | low;
} break;
case HASHTK_HALFMD4:
{
uint32_t buf[HashTk_HALFMD4_OUT_BUF_SIZE];
uint32_t majHash;
uint32_t minHash;
HashTk_halfMD4(data, len, buf);
majHash = buf[HashTk_HALFMD4_MAJOR_BUFPOS];
minHash = buf[HashTk_HALFMD4_MINOR_BUFPOS];
hash64 = (uint64_t) majHash << 32 | (uint64_t) minHash;
} break;
}
return hash64;
}
// Generates sha256 hash using the kernel crypto interface.
int HashTk_sha256(const unsigned char* data, unsigned int dataLen, unsigned char* outHash)
{
const char* hashAlgName = "sha256";
struct crypto_shash *alg;
struct shash_desc *sdesc;
int res = 0;
alg = crypto_alloc_shash(hashAlgName, 0, 0);
if(IS_ERR(alg))
{
printk_fhgfs(KERN_ERR, "Allocating shash failed: %ld\n", PTR_ERR(alg));
return -1;
}
sdesc = kmalloc(crypto_shash_descsize(alg), GFP_KERNEL);
if (sdesc == NULL)
{
printk_fhgfs(KERN_ERR, "Allocating hash memory failed\n");
crypto_free_shash(alg);
return -1;
}
sdesc->tfm = alg;
res = crypto_shash_digest(sdesc, data, dataLen, outHash);
if (res != 0)
{
printk_fhgfs(KERN_ERR, "Calculating hash failed: %d\n", res);
}
kfree(sdesc);
crypto_free_shash(alg);
return res;
}
// Generates sha256 hash from the input byte slice and returns the auth secret containing the
// 8 most significant bytes of the hash in little endian order. Matches the behavior of other
// implementations.
int HashTk_authHash(const unsigned char* data, unsigned int dataLen, uint64_t* outHash)
{
int res;
unsigned char buf[32];
res = HashTk_sha256(data, dataLen, buf);
if (res != 0) {
return res;
}
*outHash = 0;
for(int i = 7; i >= 0; --i)
{
*outHash <<= 8;
*outHash += buf[i];
}
return 0;
}