241 lines
6.9 KiB
C
241 lines
6.9 KiB
C
/*******************************************************************************
|
|
* FILE NAME: COMPLEX.h
|
|
*
|
|
* TITLE: This function prototypes and data type definitions for the Complex Math Functions.
|
|
*
|
|
* DATA_RIGHTS: Western Design Center and R & C Services Proprietary
|
|
* Copyright(C) 1980-2004
|
|
* All rights reserved. Reproduction in any manner,
|
|
* in whole or in part, is strictly prohibited without
|
|
* the prior written approval of R & C Services or
|
|
* Western Design Center.
|
|
*
|
|
* DESCRIPTION: This file describes function prototypes and data type
|
|
* definitions used for Complex Math functions.
|
|
*
|
|
*
|
|
* SPECIAL CONSIDERATIONS:
|
|
* <None>
|
|
*
|
|
* AUTHOR: R. Greenthal
|
|
*
|
|
*
|
|
* CREATION DATE: March 17,2004
|
|
*
|
|
* REVISION HISTORY
|
|
* Name Date Description
|
|
* ------------ ---------- ----------------------------------------------
|
|
* R. Greenthal 03/15/2004 Initial
|
|
* 0x/xx/2004 Added
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#ifndef _COMPLEX_H
|
|
#define _COMPLEX_H
|
|
|
|
|
|
/*
|
|
*=========================== CONSTANTS & MACROS ===============================
|
|
*/
|
|
|
|
|
|
/***********************************
|
|
Special Structures Used by
|
|
Double Precision Complex
|
|
Math Functions
|
|
************************************/
|
|
|
|
typedef struct {double r; double i;} Complex;
|
|
typedef Complex far* Complex_Vector;
|
|
typedef Complex *Complex_Ptr;
|
|
|
|
/***********************************
|
|
Special Structures Used by
|
|
Single Precision Complex
|
|
Math Functions
|
|
************************************/
|
|
|
|
typedef struct {float r; float i;} f_Complex;
|
|
typedef f_Complex far* f_Complex_Vector;
|
|
|
|
|
|
/***********************************
|
|
Special Structures Used by
|
|
Long Double Precision Complex
|
|
Math Functions
|
|
************************************/
|
|
|
|
typedef struct {long double r; long double i;} ld_Complex;
|
|
typedef ld_Complex far* ld_Complex_Vector;
|
|
|
|
|
|
|
|
//typedef double _Complex Complex
|
|
//typedef float _Complex f_Complex
|
|
//typedef long double _Complex ld_Complex
|
|
|
|
|
|
/*
|
|
*============================= FUNCTION CALL PROTOTYPES ============================
|
|
*/
|
|
|
|
|
|
//**************************
|
|
// Simple Complex Functions
|
|
//**************************
|
|
Complex complx(double , double ); // Convert 2 doubles to a Complex variable
|
|
f_Complex complxf(float , float );
|
|
ld_Complex Complxl(long double , long double );
|
|
|
|
double cabs(Complex ); // Absolute value of a Complex number
|
|
float cabsf(f_Complex );
|
|
long double cabsl(ld_Complex );
|
|
|
|
Complex cadd(Complex , Complex ); // Add two Complex numbers
|
|
f_Complex caddf(f_Complex , f_Complex );
|
|
ld_Complex caddl(ld_Complex , ld_Complex );
|
|
|
|
Complex csub(Complex , Complex ); // Subtract two Complex numbers
|
|
f_Complex csubf(f_Complex , f_Complex );
|
|
ld_Complex csubl(ld_Complex , ld_Complex );
|
|
|
|
Complex cmul(Complex , Complex ); // Multiply two Complex numbers
|
|
f_Complex cmulf(f_Complex , f_Complex );
|
|
ld_Complex cmull(ld_Complex , ld_Complex );
|
|
|
|
Complex cdiv(Complex , Complex ); // Divide two Complex numbers
|
|
f_Complex cdivf(f_Complex , f_Complex );
|
|
ld_Complex cdivl(ld_Complex , ld_Complex );
|
|
|
|
Complex conj(Complex ); // Conjugate of a Complex number
|
|
f_Complex conjf(f_Complex ); // Conjugate of a Complex number
|
|
ld_Complex conjl(ld_Complex ); // Conjugate of a Complex number
|
|
|
|
double creal(Complex z); // Real part of a complex #
|
|
float crealf(f_Complex z);
|
|
long double creall(ld_Complex z);
|
|
|
|
double cimag(Complex z); // Imaginary part of a complex #
|
|
float cimagf(f_Complex z);
|
|
long double cimagl(ld_Complex z);
|
|
|
|
|
|
//***********************************************
|
|
// Complex Functions
|
|
//***********************************************
|
|
|
|
|
|
|
|
double cmag(Complex ); // Magnitude of a Complex number
|
|
Complex cscalr(Complex , double ); // Multiply a complex number, x, by a real number, y
|
|
|
|
|
|
|
|
double carg(Complex z); // Calculate the Complex argument
|
|
float cargf(f_Complex z);
|
|
long double cargl(ld_Complex z);
|
|
|
|
Complex cacos(Complex z); // Complex circular arc cosine
|
|
f_Complex cacosf(f_Complex z);
|
|
ld_Complex cacosl(ld_Complex z);
|
|
|
|
Complex cacosh(Complex z); // Complex inverse hyperbolic cosineComplex casin(Complex z); // Complex circular arc sine
|
|
f_Complex cacoshf(f_Complex z);
|
|
ld_Complex cacoshl(ld_Complex z);
|
|
|
|
Complex casin(Complex z); // Complex inverse sine
|
|
f_Complex casinf(f_Complex z);
|
|
ld_Complex casinl(ld_Complex z);
|
|
|
|
Complex casinh(Complex z); // Complex inverse hyperbolic sine
|
|
f_Complex casinhf(f_Complex z);
|
|
ld_Complex casinhl(ld_Complex z);
|
|
|
|
Complex catan(Complex z); // Complex circular arc tangent
|
|
f_Complex catanf(f_Complex z);
|
|
ld_Complex catanl(ld_Complex z);
|
|
|
|
Complex catanh(Complex z); // Complex inverse hyperbolic tangent
|
|
f_Complex catanhf(f_Complex z);
|
|
ld_Complex catanhl(ld_Complex z);
|
|
|
|
Complex ccos(Complex z); // Complex circular cosine
|
|
f_Complex ccosf(f_Complex z);
|
|
ld_Complex ccosl(ld_Complex z);
|
|
|
|
Complex ccosh(Complex z); // Complex hyperbolic cosine
|
|
f_Complex ccoshf(f_Complex z);
|
|
ld_Complex ccoshl(ld_Complex z);
|
|
|
|
Complex ccot(Complex z); // Complex circular cotangent
|
|
f_Complex ccotf(f_Complex z);
|
|
ld_Complex ccotl(ld_Complex z);
|
|
|
|
Complex cexp(Complex z); // Exponential of the complex argument z
|
|
f_Complex cexpf(f_Complex z);
|
|
ld_Complex cexpl(ld_Complex z);
|
|
|
|
Complex clog(Complex z); // Complex logarithm to the base e
|
|
f_Complex clogf(f_Complex z);
|
|
ld_Complex clogl(ld_Complex z);
|
|
|
|
Complex cpow(Complex a, Complex z); // Complex power function
|
|
f_Complex cpowf(f_Complex a, f_Complex z);
|
|
ld_Complex cpowl(ld_Complex a, ld_Complex z);
|
|
|
|
Complex csin(Complex z); // Complex circular sine
|
|
f_Complex csinf(f_Complex z);
|
|
ld_Complex csinl(ld_Complex z);
|
|
|
|
Complex csinh(Complex z); // Complex hyperbolic sine
|
|
f_Complex csinhf(f_Complex z);
|
|
ld_Complex csinhl(ld_Complex z);
|
|
|
|
Complex csqrt(Complex ); // Square Root of a Complex number
|
|
f_Complex csqrtf(f_Complex );
|
|
ld_Complex csqrtl(ld_Complex );
|
|
|
|
Complex ctan(Complex z); // Complex circular tangent
|
|
f_Complex ctanf(f_Complex z);
|
|
ld_Complex ctanl(ld_Complex z);
|
|
|
|
Complex ctanh(Complex z); // Complex hyperbolic tangent
|
|
f_Complex ctanhf(f_Complex z);
|
|
ld_Complex ctanhl(ld_Complex z);
|
|
|
|
double modulus(Complex z); // sqrt(z.real * z.real + z.imag * z.imag)
|
|
float modulusf(f_Complex z);
|
|
long double modulusl(ld_Complex z);
|
|
|
|
double phase(Complex z); // atan(z.i / z.r)
|
|
float phasef(f_Complex z);
|
|
long double phasel(ld_Complex z);
|
|
|
|
|
|
|
|
|
|
//***********************************************
|
|
// DSP/FFT Functions
|
|
//***********************************************
|
|
|
|
void fft42(Complex_Vector data, unsigned n, int isign); // Computes the FFT using a "radix-4+2" algorithm
|
|
void fft42f(f_Complex_Vector data, unsigned n, int isign);
|
|
|
|
void fftrad2(Complex_Vector data, unsigned n, int isign);
|
|
|
|
|
|
|
|
|
|
// Symmetric FIR bandpass filter using a Kaiser-Bessel window
|
|
//double *Cpowspec(Complex_Vector v, unsigned nv, unsigned npw, double *w);
|
|
//
|
|
|
|
|
|
#endif /* End of _COMPLEX_H */
|
|
#pragma Pop (List)
|
|
|
|
/**************************************
|
|
End of File COMPLEX.H
|
|
***************************************/
|