// BZip2Decoder.cpp #include "StdAfx.h" #include "../../../C/Alloc.h" #include "BZip2Decoder.h" #include "Mtf8.h" namespace NCompress { namespace NBZip2 { #undef NO_INLINE #define NO_INLINE static const UInt32 kNumThreadsMax = 4; static const UInt32 kBufferSize = (1 << 17); static const UInt16 kRandNums[512] = { 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733, 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811, 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684, 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695, 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513, 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911, 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469, 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618, 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318, 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79, 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128, 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669, 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988, 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268, 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392, 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56, 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606, 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206, 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750, 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462, 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979, 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135, 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990, 626, 197, 510, 357, 358, 850, 858, 364, 936, 638 }; bool CState::Alloc() { if (!Counters) Counters = (UInt32 *)::BigAlloc((256 + kBlockSizeMax) * sizeof(UInt32)); return (Counters != 0); } void CState::Free() { ::BigFree(Counters); Counters = 0; } Byte CDecoder::ReadByte() { return (Byte)Base.ReadBits(8); } UInt32 CBase::ReadBits(unsigned numBits) { return BitDecoder.ReadBits(numBits); } unsigned CBase::ReadBit() { return (unsigned)BitDecoder.ReadBits(1); } HRESULT CBase::ReadBlock(UInt32 *charCounters, UInt32 blockSizeMax, CBlockProps *props) { NumBlocks++; if (props->randMode) props->randMode = ReadBit() ? true : false; props->origPtr = ReadBits(kNumOrigBits); // in original code it compares OrigPtr to (UInt32)(10 + blockSizeMax)) : why ? if (props->origPtr >= blockSizeMax) return S_FALSE; CMtf8Decoder mtf; mtf.StartInit(); unsigned numInUse = 0; { Byte inUse16[16]; unsigned i; for (i = 0; i < 16; i++) inUse16[i] = (Byte)ReadBit(); for (i = 0; i < 256; i++) if (inUse16[i >> 4]) { if (ReadBit()) mtf.Add(numInUse++, (Byte)i); } if (numInUse == 0) return S_FALSE; // mtf.Init(numInUse); } unsigned alphaSize = numInUse + 2; unsigned numTables = ReadBits(kNumTablesBits); if (numTables < kNumTablesMin || numTables > kNumTablesMax) return S_FALSE; UInt32 numSelectors = ReadBits(kNumSelectorsBits); if (numSelectors < 1 || numSelectors > kNumSelectorsMax) return S_FALSE; { Byte mtfPos[kNumTablesMax]; unsigned t = 0; do mtfPos[t] = (Byte)t; while (++t < numTables); UInt32 i = 0; do { unsigned j = 0; while (ReadBit()) if (++j >= numTables) return S_FALSE; Byte tmp = mtfPos[j]; for (;j > 0; j--) mtfPos[j] = mtfPos[j - 1]; m_Selectors[i] = mtfPos[0] = tmp; } while (++i < numSelectors); } unsigned t = 0; do { Byte lens[kMaxAlphaSize]; unsigned len = (unsigned)ReadBits(kNumLevelsBits); unsigned i; for (i = 0; i < alphaSize; i++) { for (;;) { if (len < 1 || len > kMaxHuffmanLen) return S_FALSE; if (!ReadBit()) break; len++; len -= (ReadBit() << 1); } lens[i] = (Byte)len; } for (; i < kMaxAlphaSize; i++) lens[i] = 0; if (!m_HuffmanDecoders[t].Build(lens)) return S_FALSE; } while (++t < numTables); { for (unsigned i = 0; i < 256; i++) charCounters[i] = 0; } UInt32 blockSize = 0; { UInt32 groupIndex = 0; UInt32 groupSize = 0; CHuffmanDecoder *huffmanDecoder = 0; unsigned runPower = 0; UInt32 runCounter = 0; for (;;) { if (groupSize == 0) { if (groupIndex >= numSelectors) return S_FALSE; groupSize = kGroupSize; huffmanDecoder = &m_HuffmanDecoders[m_Selectors[groupIndex++]]; } groupSize--; if (BitDecoder.ExtraBitsWereRead_Fast()) break; UInt32 nextSym = huffmanDecoder->Decode(&BitDecoder); if (nextSym < 2) { runCounter += ((UInt32)(nextSym + 1) << runPower++); if (blockSizeMax - blockSize < runCounter) return S_FALSE; continue; } if (runCounter != 0) { UInt32 b = (UInt32)mtf.GetHead(); charCounters[b] += runCounter; do charCounters[256 + blockSize++] = b; while (--runCounter != 0); runPower = 0; } if (nextSym <= (UInt32)numInUse) { UInt32 b = (UInt32)mtf.GetAndMove((unsigned)nextSym - 1); if (blockSize >= blockSizeMax) return S_FALSE; charCounters[b]++; charCounters[256 + blockSize++] = b; } else if (nextSym == (UInt32)numInUse + 1) break; else return S_FALSE; } if (BitDecoder.ExtraBitsWereRead()) return S_FALSE; } props->blockSize = blockSize; return (props->origPtr < props->blockSize) ? S_OK : S_FALSE; } static void NO_INLINE DecodeBlock1(UInt32 *charCounters, UInt32 blockSize) { { UInt32 sum = 0; for (UInt32 i = 0; i < 256; i++) { sum += charCounters[i]; charCounters[i] = sum - charCounters[i]; } } UInt32 *tt = charCounters + 256; // Compute the T^(-1) vector UInt32 i = 0; do tt[charCounters[tt[i] & 0xFF]++] |= (i << 8); while (++i < blockSize); } static UInt32 NO_INLINE DecodeBlock2(const UInt32 *tt, UInt32 blockSize, UInt32 OrigPtr, COutBuffer &m_OutStream) { CBZip2Crc crc; // it's for speed optimization: prefetch & prevByte_init; UInt32 tPos = tt[tt[OrigPtr] >> 8]; unsigned prevByte = (unsigned)(tPos & 0xFF); unsigned numReps = 0; do { unsigned b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; if (numReps == kRleModeRepSize) { for (; b > 0; b--) { crc.UpdateByte(prevByte); m_OutStream.WriteByte((Byte)prevByte); } numReps = 0; continue; } if (b != prevByte) numReps = 0; numReps++; prevByte = b; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); /* prevByte = b; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); for (; --blockSize != 0;) { b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); if (b != prevByte) { prevByte = b; continue; } if (--blockSize == 0) break; b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); if (b != prevByte) { prevByte = b; continue; } if (--blockSize == 0) break; b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); if (b != prevByte) { prevByte = b; continue; } --blockSize; break; } if (blockSize == 0) break; b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; for (; b > 0; b--) { crc.UpdateByte(prevByte); m_OutStream.WriteByte((Byte)prevByte); } */ } while (--blockSize != 0); return crc.GetDigest(); } static UInt32 NO_INLINE DecodeBlock2Rand(const UInt32 *tt, UInt32 blockSize, UInt32 OrigPtr, COutBuffer &m_OutStream) { CBZip2Crc crc; UInt32 randIndex = 1; UInt32 randToGo = kRandNums[0] - 2; unsigned numReps = 0; // it's for speed optimization: prefetch & prevByte_init; UInt32 tPos = tt[tt[OrigPtr] >> 8]; unsigned prevByte = (unsigned)(tPos & 0xFF); do { unsigned b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; { if (randToGo == 0) { b ^= 1; randToGo = kRandNums[randIndex++]; randIndex &= 0x1FF; } randToGo--; } if (numReps == kRleModeRepSize) { for (; b > 0; b--) { crc.UpdateByte(prevByte); m_OutStream.WriteByte((Byte)prevByte); } numReps = 0; continue; } if (b != prevByte) numReps = 0; numReps++; prevByte = b; crc.UpdateByte(b); m_OutStream.WriteByte((Byte)b); } while (--blockSize != 0); return crc.GetDigest(); } static UInt32 NO_INLINE DecodeBlock(const CBlockProps &props, UInt32 *tt, COutBuffer &m_OutStream) { if (props.randMode) return DecodeBlock2Rand(tt, props.blockSize, props.origPtr, m_OutStream); else return DecodeBlock2 (tt, props.blockSize, props.origPtr, m_OutStream); } CDecoder::CDecoder() { #ifndef _7ZIP_ST m_States = 0; m_NumThreadsPrev = 0; NumThreads = 1; #endif _needInStreamInit = true; } #ifndef _7ZIP_ST CDecoder::~CDecoder() { Free(); } #define RINOK_THREAD(x) { WRes __result_ = (x); if (__result_ != 0) return __result_; } HRESULT CDecoder::Create() { RINOK_THREAD(CanProcessEvent.CreateIfNotCreated()); RINOK_THREAD(CanStartWaitingEvent.CreateIfNotCreated()); if (m_States != 0 && m_NumThreadsPrev == NumThreads) return S_OK; Free(); MtMode = (NumThreads > 1); m_NumThreadsPrev = NumThreads; try { m_States = new CState[NumThreads]; if (!m_States) return E_OUTOFMEMORY; } catch(...) { return E_OUTOFMEMORY; } for (UInt32 t = 0; t < NumThreads; t++) { CState &ti = m_States[t]; ti.Decoder = this; if (MtMode) { HRESULT res = ti.Create(); if (res != S_OK) { NumThreads = t; Free(); return res; } } } return S_OK; } void CDecoder::Free() { if (!m_States) return; CloseThreads = true; CanProcessEvent.Set(); for (UInt32 t = 0; t < NumThreads; t++) { CState &s = m_States[t]; if (MtMode) s.Thread.Wait(); s.Free(); } delete []m_States; m_States = 0; } #endif bool IsEndSig(const Byte *p) throw() { return p[0] == kFinSig0 && p[1] == kFinSig1 && p[2] == kFinSig2 && p[3] == kFinSig3 && p[4] == kFinSig4 && p[5] == kFinSig5; } bool IsBlockSig(const Byte *p) throw() { return p[0] == kBlockSig0 && p[1] == kBlockSig1 && p[2] == kBlockSig2 && p[3] == kBlockSig3 && p[4] == kBlockSig4 && p[5] == kBlockSig5; } HRESULT CDecoder::ReadSignature(UInt32 &crc) { BzWasFinished = false; crc = 0; Byte s[10]; unsigned i; for (i = 0; i < 10; i++) s[i] = ReadByte(); if (Base.BitDecoder.ExtraBitsWereRead()) return S_FALSE; UInt32 v = 0; for (i = 0; i < 4; i++) { v <<= 8; v |= s[6 + i]; } crc = v; if (IsBlockSig(s)) { IsBz = true; CombinedCrc.Update(crc); return S_OK; } if (!IsEndSig(s)) return S_FALSE; IsBz = true; BzWasFinished = true; if (crc != CombinedCrc.GetDigest()) { CrcError = true; return S_FALSE; } return S_OK; } HRESULT CDecoder::DecodeFile(ICompressProgressInfo *progress) { Progress = progress; #ifndef _7ZIP_ST RINOK(Create()); for (UInt32 t = 0; t < NumThreads; t++) { CState &s = m_States[t]; if (!s.Alloc()) return E_OUTOFMEMORY; if (MtMode) { RINOK(s.StreamWasFinishedEvent.Reset()); RINOK(s.WaitingWasStartedEvent.Reset()); RINOK(s.CanWriteEvent.Reset()); } } #else if (!m_States[0].Alloc()) return E_OUTOFMEMORY; #endif IsBz = false; /* if (Base.BitDecoder.ExtraBitsWereRead()) return E_FAIL; */ Byte s[4]; unsigned i; for (i = 0; i < 4; i++) s[i] = ReadByte(); if (Base.BitDecoder.ExtraBitsWereRead()) return S_FALSE; if (s[0] != kArSig0 || s[1] != kArSig1 || s[2] != kArSig2 || s[3] <= kArSig3 || s[3] > kArSig3 + kBlockSizeMultMax) return S_FALSE; UInt32 dicSize = (UInt32)(s[3] - kArSig3) * kBlockSizeStep; CombinedCrc.Init(); #ifndef _7ZIP_ST if (MtMode) { NextBlockIndex = 0; StreamWasFinished1 = StreamWasFinished2 = false; CloseThreads = false; CanStartWaitingEvent.Reset(); m_States[0].CanWriteEvent.Set(); BlockSizeMax = dicSize; Result1 = Result2 = S_OK; CanProcessEvent.Set(); UInt32 t; for (t = 0; t < NumThreads; t++) m_States[t].StreamWasFinishedEvent.Lock(); CanProcessEvent.Reset(); CanStartWaitingEvent.Set(); for (t = 0; t < NumThreads; t++) m_States[t].WaitingWasStartedEvent.Lock(); CanStartWaitingEvent.Reset(); RINOK(Result2); RINOK(Result1); } else #endif { CState &state = m_States[0]; for (;;) { RINOK(SetRatioProgress(Base.BitDecoder.GetProcessedSize())); UInt32 crc; RINOK(ReadSignature(crc)); if (BzWasFinished) return S_OK; CBlockProps props; props.randMode = true; RINOK(Base.ReadBlock(state.Counters, dicSize, &props)); DecodeBlock1(state.Counters, props.blockSize); if (DecodeBlock(props, state.Counters + 256, m_OutStream) != crc) { CrcError = true; return S_FALSE; } } } return SetRatioProgress(Base.BitDecoder.GetProcessedSize()); } HRESULT CDecoder::CodeReal(ISequentialInStream *inStream, ISequentialOutStream *outStream, ICompressProgressInfo *progress) { IsBz = false; BzWasFinished = false; CrcError = false; try { if (!Base.BitDecoder.Create(kBufferSize)) return E_OUTOFMEMORY; if (!m_OutStream.Create(kBufferSize)) return E_OUTOFMEMORY; if (inStream) Base.BitDecoder.SetStream(inStream); CDecoderFlusher flusher(this); if (_needInStreamInit) { Base.BitDecoder.Init(); _needInStreamInit = false; } _inStart = Base.BitDecoder.GetProcessedSize(); Base.BitDecoder.AlignToByte(); m_OutStream.SetStream(outStream); m_OutStream.Init(); RINOK(DecodeFile(progress)); flusher.NeedFlush = false; return Flush(); } catch(const CInBufferException &e) { return e.ErrorCode; } catch(const COutBufferException &e) { return e.ErrorCode; } catch(...) { return E_FAIL; } } STDMETHODIMP CDecoder::Code(ISequentialInStream *inStream, ISequentialOutStream *outStream, const UInt64 * /* inSize */, const UInt64 * /* outSize */, ICompressProgressInfo *progress) { _needInStreamInit = true; return CodeReal(inStream, outStream, progress); } HRESULT CDecoder::CodeResume(ISequentialOutStream *outStream, ICompressProgressInfo *progress) { return CodeReal(NULL, outStream, progress); } STDMETHODIMP CDecoder::SetInStream(ISequentialInStream *inStream) { Base.InStreamRef = inStream; Base.BitDecoder.SetStream(inStream); return S_OK; } STDMETHODIMP CDecoder::ReleaseInStream() { Base.InStreamRef.Release(); return S_OK; } #ifndef _7ZIP_ST static THREAD_FUNC_DECL MFThread(void *p) { ((CState *)p)->ThreadFunc(); return 0; } HRESULT CState::Create() { RINOK_THREAD(StreamWasFinishedEvent.CreateIfNotCreated()); RINOK_THREAD(WaitingWasStartedEvent.CreateIfNotCreated()); RINOK_THREAD(CanWriteEvent.CreateIfNotCreated()); RINOK_THREAD(Thread.Create(MFThread, this)); return S_OK; } void CState::FinishStream() { Decoder->StreamWasFinished1 = true; StreamWasFinishedEvent.Set(); Decoder->CS.Leave(); Decoder->CanStartWaitingEvent.Lock(); WaitingWasStartedEvent.Set(); } void CState::ThreadFunc() { for (;;) { Decoder->CanProcessEvent.Lock(); Decoder->CS.Enter(); if (Decoder->CloseThreads) { Decoder->CS.Leave(); return; } if (Decoder->StreamWasFinished1) { FinishStream(); continue; } HRESULT res = S_OK; UInt32 blockIndex = Decoder->NextBlockIndex; UInt32 nextBlockIndex = blockIndex + 1; if (nextBlockIndex == Decoder->NumThreads) nextBlockIndex = 0; Decoder->NextBlockIndex = nextBlockIndex; UInt32 crc; UInt64 packSize = 0; CBlockProps props; try { res = Decoder->ReadSignature(crc); if (res != S_OK) { Decoder->Result1 = res; FinishStream(); continue; } if (Decoder->BzWasFinished) { Decoder->Result1 = res; FinishStream(); continue; } props.randMode = true; res = Decoder->Base.ReadBlock(Counters, Decoder->BlockSizeMax, &props); if (res != S_OK) { Decoder->Result1 = res; FinishStream(); continue; } packSize = Decoder->Base.BitDecoder.GetProcessedSize(); } catch(const CInBufferException &e) { res = e.ErrorCode; if (res == S_OK) res = E_FAIL; } catch(...) { res = E_FAIL; } if (res != S_OK) { Decoder->Result1 = res; FinishStream(); continue; } Decoder->CS.Leave(); DecodeBlock1(Counters, props.blockSize); bool needFinish = true; try { Decoder->m_States[blockIndex].CanWriteEvent.Lock(); needFinish = Decoder->StreamWasFinished2; if (!needFinish) { if (DecodeBlock(props, Counters + 256, Decoder->m_OutStream) == crc) res = Decoder->SetRatioProgress(packSize); else res = S_FALSE; } } catch(const COutBufferException &e) { res = e.ErrorCode; if (res == S_OK) res = E_FAIL; } catch(...) { res = E_FAIL; } if (res != S_OK) { Decoder->Result2 = res; Decoder->StreamWasFinished2 = true; } Decoder->m_States[nextBlockIndex].CanWriteEvent.Set(); if (res != S_OK || needFinish) { StreamWasFinishedEvent.Set(); Decoder->CanStartWaitingEvent.Lock(); WaitingWasStartedEvent.Set(); } } } STDMETHODIMP CDecoder::SetNumberOfThreads(UInt32 numThreads) { NumThreads = numThreads; if (NumThreads < 1) NumThreads = 1; if (NumThreads > kNumThreadsMax) NumThreads = kNumThreadsMax; return S_OK; } #endif HRESULT CDecoder::SetRatioProgress(UInt64 packSize) { if (!Progress) return S_OK; packSize -= _inStart; UInt64 unpackSize = m_OutStream.GetProcessedSize(); return Progress->SetRatioInfo(&packSize, &unpackSize); } // ---------- NSIS ---------- enum { NSIS_STATE_INIT, NSIS_STATE_NEW_BLOCK, NSIS_STATE_DATA, NSIS_STATE_FINISHED, NSIS_STATE_ERROR }; STDMETHODIMP CNsisDecoder::SetInStream(ISequentialInStream *inStream) { Base.InStreamRef = inStream; Base.BitDecoder.SetStream(inStream); return S_OK; } STDMETHODIMP CNsisDecoder::ReleaseInStream() { Base.InStreamRef.Release(); return S_OK; } STDMETHODIMP CNsisDecoder::SetOutStreamSize(const UInt64 * /* outSize */) { _nsisState = NSIS_STATE_INIT; return S_OK; } STDMETHODIMP CNsisDecoder::Read(void *data, UInt32 size, UInt32 *processedSize) { try { *processedSize = 0; if (_nsisState == NSIS_STATE_FINISHED) return S_OK; if (_nsisState == NSIS_STATE_ERROR) return S_FALSE; if (size == 0) return S_OK; CState &state = m_State; if (_nsisState == NSIS_STATE_INIT) { if (!Base.BitDecoder.Create(kBufferSize)) return E_OUTOFMEMORY; if (!state.Alloc()) return E_OUTOFMEMORY; Base.BitDecoder.Init(); _nsisState = NSIS_STATE_NEW_BLOCK; } if (_nsisState == NSIS_STATE_NEW_BLOCK) { Byte b = (Byte)Base.ReadBits(8); if (b == kFinSig0) { _nsisState = NSIS_STATE_FINISHED; return S_OK; } if (b != kBlockSig0) { _nsisState = NSIS_STATE_ERROR; return S_FALSE; } CBlockProps props; props.randMode = false; RINOK(Base.ReadBlock(state.Counters, 9 * kBlockSizeStep, &props)); _blockSize = props.blockSize; DecodeBlock1(state.Counters, props.blockSize); const UInt32 *tt = state.Counters + 256; _tPos = tt[tt[props.origPtr] >> 8]; _prevByte = (unsigned)(_tPos & 0xFF); _numReps = 0; _repRem = 0; _nsisState = NSIS_STATE_DATA; } UInt32 tPos = _tPos; unsigned prevByte = _prevByte; unsigned numReps = _numReps; UInt32 blockSize = _blockSize; const UInt32 *tt = state.Counters + 256; while (_repRem) { _repRem--; *(Byte *)data = (Byte)prevByte; data = (Byte *)data + 1; (*processedSize)++; if (--size == 0) return S_OK; } if (blockSize == 0) { _nsisState = NSIS_STATE_NEW_BLOCK; return S_OK; } do { unsigned b = (unsigned)(tPos & 0xFF); tPos = tt[tPos >> 8]; blockSize--; if (numReps == kRleModeRepSize) { numReps = 0; while (b) { b--; *(Byte *)data = (Byte)prevByte; data = (Byte *)data + 1; (*processedSize)++; if (--size == 0) break; } _repRem = b; continue; } if (b != prevByte) numReps = 0; numReps++; prevByte = b; *(Byte *)data = (Byte)b; data = (Byte *)data + 1; (*processedSize)++; size--; } while (size && blockSize); _tPos = tPos; _prevByte = prevByte; _numReps = numReps; _blockSize = blockSize; return S_OK; } catch(const CInBufferException &e) { return e.ErrorCode; } catch(...) { return S_FALSE; } } }}